用户名: 密码: 验证码:
两亲性多臂星状聚合物的合成、表征及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文主要研究两亲性多臂星状聚合物聚乙烯亚胺-嵌段-聚乳酸(PEI-b-PLA)的合成、改性,超分子自组装行为及其作为客体分子载体的包裹与释放性质。具体研究内容如下:
     1、两亲性多臂星状聚合物PEI-b-PLA的合成、改性及表征
     以PEI1.2K(PEI1.2K, Mw/Mn=1.04)和PEI10K(PEI10K, Mw/Mn=2.5)为大分子引发剂,2-乙基己酸亚锡-Sn(Oct)2为催化剂,引发丙交酯(DLLA、LLA、DLA)的本体聚合,合成了一系列以PEI为核、聚乳酸(PDLLA、PLLA、PDLA)为外臂的两亲性多臂星状聚合物PEI-b-PLA。通过DSC、NMR和GPC对该类聚合物进行了表征。考察了不同反应条件(聚合温度、反应时间和催化剂的加入量)对PEI-b-PLA的引发效率、分散度及分子量的影响。
     分别用HCl、HBr、H2SO4、HI和CH3I对PEI-b-PLA的内核进行了季铵盐化改性,对端羟基用脂肪酸(丙酸、正戊酸和辛酸)进行了酯化封端改性。同时,采用对硝基苯甲醛对PEI上的部分胺基进行了保护,得到了不同臂密度的两亲性多臂星状聚合物PEI-b-PLA,并用NMR等分析手段进行了表征。
     2、两亲性多臂星状聚合物PEI-b-PLA对染料的包裹及释放性能研究
     PEI-b-PLA聚合物对甲基橙(MO)、曙红(EY)、荧光素钠(FS)、铬黑T(EBT)的包裹具有类似的规律:摩尔包裹量主要取决于PEI内核和臂长,内核越大,外臂越长,包裹量越大;包裹质量百分数与PEI内核关系不大,主要取决于外臂,外臂越长,包裹量越小;PEI-b-PDLLA型聚合物和PEI-b-PLLA型聚合物包裹性能差别不大;聚合物PEI-b-PLA对不同客体分子的包裹量与聚合物浓度和客体分子浓度有关,同时与客体分子的尺寸大小有关。
     聚合物PEI-b-PLA对客体分子的包裹是pH敏感的,包裹甲基橙的量在酸性条件下较好,当pH值为中性或碱性时,聚合物包裹量迅速下降。PEI-b-PLA聚合物分别用CH3I、HCl、 HBr、HI、H2SO4对PEI内核进行季铵盐化处理后,包裹能力大幅提高。聚合物PEI-b-PLA用正戊酸进行酯化封端后,对客体分子的包裹量下降,DLS分析表明,酯化封端后,聚合物在氯仿有机相的分散状态发生了改变,由原来的200nm变成了不到2nm。
     包裹客体分子后,PEI-b-PDLLA型聚合物明显比同类的PEI-b-PLLA型聚合物释放速度快;内核PEI1.2K的聚合物比内核PEI10K聚合物释放速度快,各种聚合物随着臂长的增加释放速度降低明显。
This paper was mainly studied on the synthesis, modification, self-assemble behavior of theamphiphilic multi-arm star copolymer polyethylenimine-block-poly(Lactide)(PEI-b-PLA) andtheir encapsulation and release property as guest molecules delivery. The detail was asfollows:
     1. Synthesis, modification and characterization of the amphiphilic multi-arm star copolymerpolyethylenimine-block-poly(Lactide)(PEI-b-PLA)
     Catalyzed by the Tin(II)2-ethylhexanoate (Sn(Oct)2), hyperbranched polyethylenime(PEI1.2K, Mw/Mn=1.04and PEI10K, Mw/Mn=2.5)have successfully iniatiated ring-openingpolymerization of the lactide(DLLA,LLA,DLA), to obtain the amphiphilic multi-arm starcopolymer with polylactide as shell and polyethylenime (PEI) as core.These polymers werecharacterized by DSC, NMR and GPC. The influences of different reaction conditions(polymerization temperature, reaction time and the amount of catalyst) to initiation efficiency,dispersity and molecular weight were discussed.
     The PEI inner core of polymers (PEI-b-PLA) were quaternized with HCl、HBr、H2SO4、HIand CH3I and the PLA arms were esterified with aliphatic acid(propionic acid,valeric acid andOctylic Acid). In the same time, the polymers (PEI-b-PLA) of different arm density were got bypart amino protection of PEI with paranitrobenzaldehyde and were characterized by NMR.
     2. Study of guest encapsulation and release behavior of the amphiphilic multi-arm star copolymerpolyethylenimine-block-poly(Lactide)(PEI-b-PLA)
     Due to the polar difference of the PLA arms and the PEI inner core, the obtained starcopolymer could act as the unimolecular micelle to encapsulate the water-soluble guests. Theirguest (MO、EY、FS and EBT)encapsulation behaviors have similar laws:Increasing the size of thehydrophilic PEI core and the hydropholic PLA arm length are two effective ways toenhance;Whereas their hydrophilic guest encapsulation capacity of the weight ration mainlydepends on the arm length and has little releration with PEI core.The longer the arm, the smallerguest encapsulation capacity. No obvious difference of their hydrophilic guest encapsulationcapacity was observed between the polymers (PEI-b-PDLLA) and the polymers (PEI-b-PLLA). Inthe same time, their hydrophilic guest encapsulation capacity related with concentration of thepolymers and the guest molecules and the size of guest molecules.
     The guest encapsulation capacity of PEI-b-PLA was pH sensitive, which reached the maximum loading at pH≦5.5and reduced quickly at pH≧7.0. When the PEI inner core ofpolymers (PEI-b-PLA) were quaternized with HCl、HBr、H2SO4、HI and CH3I, their hydrophilicguest encapsulation capacity increased obviously. Whereas when the PLA arms were esterifiedwith valeric acid, their hydrophilic guest encapsulation capacity decreased. It can be seen that thedecentralized state of the Polymers in chloroform changed from original200nm to less than2nmwhen characterized by DLS.
     Increasing the size of the hydrophilic PEI core and the hydropholic PLA arm length are twoeffective ways to slow down the realease rate of the encapsulated guest molecules. Moreover, therealease rate of the encapsulated guest molecules of the polymers (PEI-b-PDLLA) was faster thanthat of the polymers (PEI-b-PLLA).
引文
[1]王国建,高分子合成新技术,北京:化学工业出版社,2004.111-112.
    [2]谭惠民,罗运军,树枝型聚合物,北京:化学工业出版社,2001,1~2.
    [3]P. J. Flory, Molecular Size Distribution in Three Dimensional Polymers.I.Gelation, J. Am. Chem. Soc,1941,63,3083-3090.
    [4]W. H. Stockmayer, Theory of Molecular Size Distribution and Gel-Formation inBranched-Chain Polymers, J. Chem. Phys,1943,11,45-55.
    [5]P. J. Flory, Principles of polymer chemistry, New York: Cornell University Press,1952.
    [6]Denkewalter R G, Kolc J F, Lukasavage W J, USP4410688,1983.
    [7]D. A. Tomalia, H. Baker, J. Dewald, et al., A New Class of Polymers:Starburst-Dendritic Macromolecules, Polymer Journal,1985,17,117-132.
    [8]G. R. Newkome, Z. Q. Yao, G. R. Baker, et al., Micelles. Part1. Cascade molecules:a new approach to micelles. A[27]-arborol, J. Org. Chem.,1985,50,2003-2004.
    [9]C. J. Hawker, J. M. J. Frechet, Preparation of polymers with controlledmolecular architecture.A new convergent approach to dendritic macromolecules,J. Am. Chem. Soc,1990,112,7638-7647.
    [10]J. M. Desinomne, Branching out into new polymer markets, Science,1995,269,1060-1061.
    [11]Y. H. KIM, O. W.Webster, Hyperbranched polyphenylenes, PolymerPreparation,1988,23,310-311.
    [12]Y. H. KIM, O. W.Webster, Water-Soluble Hyperbranched Polyphenylene:“AUnimolecular Micelle”? Journal of the American Chemical Society,1990,112,4592-4593.
    [13]Y. H. KIM, O. W.Webster, Hyperbranched Polyphenylenes, Macromolecules,1992,25,5561-5572.
    [14]C. J. Hawker, R.Lee, J. M. J. Frechet, One-step synthesis of hyperbrancheddendritic polyesters, J.Am.Chem.Soc,1991,113,4583-4588.
    [15]Y. H. Kim, Lyotropic liquid crystalline hyperbranched aromatic polyamides,J.Am.Chem.Soc,1992,114,4947-4948.
    [16]K. E. Uhrich, C. J. Hawker, J. M. J. Frechet, et al., One-pot synthesis ofhyperbranched polyethers, Macromolecules,1992,25,4583-4587.
    [17]J. F. Miravet, J. M. J. Frechet, New hyperbranched poly(siloxysilanes)from AB2AB4and AB6monomers:Variation of the branching pattern and end-functionalization, Polym. Mater. Sci. Eng,1997,77,141-142.
    [18]L. J. Mathias, T. W. Carothers, Hyperbranched poly(siloxysilanes), J. Am.Chem. Soc,1991,113,4043-4044.
    [19]J. F. Miravet, J. M. J. Frechet, New hyperbranched poly(siloxysilanes)from AB2AB4and AB6monomers:Variation of the branching pattern and end-functionalization, Polym. Mater. Sci. Eng,1997,77,141-142.
    [20]C. G. Gong, J. F. Miravet, J. M. J. Frechet, Hyperbranchedpoly(siloxysilane)s:Control of growth and end functionalization with polyolefins,Polym. Mater. Sci. Eng,1999,80,139-140.
    [21]Q. F. Si, X. Wang, X. D. Fan, Synthesis and characterization of ultraviolet-curablehyperbranched poly(siloxysilane)s, J. Polym. Sci. Part A:Polym, Chem,2005,43,1883-1894.
    [22]R. Spindler, J. M. J. Frechet, Synthesis and characterization of hyperbranchedpolyurethanes prepared from blocked isocyanate monomers by step-growthpolymerization, Macromolecules1993,26,4809-4813.
    [23]Lederer A, Voigt D, Clausnitzer C, et al, Structure characterization ofhyperbranched poly(ether amide)s. I. Preparative fractionation, J ChromatographyPart A,2002,976,171-179.
    [24]Schmaljohann D, Komber H, Barratt J,et al. Kinetics of Nonideal HyperbranchedPolymerizations.2. Kinetic Analysis of the Polycondensation of3,5-Bis(trimethylsiloxy)benzoyl chloride Using NMR Spectroscopy,Macromolecules,2003,36,97-108.
    [25]Voit B, Beyerlein D, Eichhorn K J,et al. Functional Hyper-Branched Polyesterfor Application in Blends,Coatings,and Thin Films, Coat Thin Film,Chem EngTechn,2002,25,704-707.
    [26]Tabuani D, Monticelli O, Chincarini A, Palladium Nanoparticles Supported onHyperbranched Aramids: Synthesis, Characterization, and Some Applications inthe Hydrogenation of Unsaturated Substrates, Macromolecules,2004,37,680.
    [27]陆玉,林德,魏焕郁等,超支化聚(胺-酯)的合成及光固化性能研究,高分子学报,2000,8,411-416.
    [28]Kim Y H, Hyperbranched Polymers10Years After, J Polym Sci Part A: PolymChem,1998,36,1685-1698.
    [29]Wiener H, Structural Determination of Paraffin Boiling Points, J. Am. Chem.Soc.,1947,69,17-20.
    [30]Gutman I, Yeh Y N, Less S L. et al., Some Recent Results in the Theory of theWiener Number, Indian J. Chem. A,1993,32,651-661.
    [31]Diudea M V, Molecular topology.25. Hyper-Wiener index of dendrimers, Parv B.J. Chem. Inf. Comput. Sci.,1995,35,1015-1018.
    [32]Diudea M V, Novel Schultz Analogue Indices, Match Commun, Math. Co.,1995,32,71-83.
    [33]Hawker C J, Lee R, Frecher J M J, One step synthesis of hyperbranched dendriticpolyesters,J Am Chem Soc,1991,113,4583-4588.
    [34]K. Inoue, Functional dendrimers, hyperbranched and star polymers, Prog. Polym.Sci.,2000,25,453-571.
    [35]D Holter,H Frey, Degree of branching in hyperbranched polymers.2.Enhancementof the DB:scope and limitations, Acta Polym,1997,48,298-309.
    [36] Frechet J M J, Haw ker C J, Hyperbranched polyphenylene and hyperbanchedpolyesters: new soluble, three dimensional, reactive polymers, Reactive&Functional Polymer,1995,26,127-136.
    [37]Kricheldorf H R, Stukenbrock T, New polymer syntheses85. Telechelic,star-shaped and hyperbranched polyesters of β-(4-hydroxyphenyl) propionic acid,Polymer,1997,38,3373-3383.
    [38]M. Trollsas, J. L. Hedrick Versatile and Controlled Synthesis of Star andBranched Macromolecules by Dentritic Initiation, Macromolecules,1997,30,8508-8511.
    [39]高超,超支化聚合物的分子设计、合成、表征及功能化研究:上海;上海交通大学博士学位论文,2001.
    [40]L. J. Hobson, A. M. Kenwright, W. J. Feast, A simple'one pot'route to thehyperbranched analogues of Tomalia's poly(amido amine)dendrimers, Chem.Commun,1997,19,1877-1878.
    [41]T. M. Londergan, Y. J. You, M. E. Thompson, et al., Ruthenium catalyzedsynthesis of cross-conjugated polymers and related hyperbranched materialsCopoly(arylene/1,1-vinylene)s, Macromolecules,1998,31,2784-2788.
    [42]C. Lach, H. Frey, Enhancing the degree of branching of hyperbranched polymersby postsynthetic modification, Macromolecules,1998,31,2381-2383.
    [43]K. Matyjaszewski, S. G. Gaynor, A. H. E. Muller, Preparation of hyperbranchedpolyacrylates by atom transfer radical polymerization.2.Kinetics and mechanismof chain growth for the self-condensing vinyl polymerization of2-((2bromopropionyl)oxy)ethyl acrylate, Macromolecules,1997,30,7034-7041.
    [44]K. Matyjaszewski, S. G. Gaynor, A. Kulfan, et al., Preparation of hyperbranchedpolyacrylates by atom transfer radical polymerization.1.Acrylic AB*monomersin'living''radical polymerizations, Macromolecules,1997,30,5192-5194.
    [45]K. Matyjaszewski, S. G. Gaynor, Preparation of hyperbranched polyacrylates byatom transfer radical polymerization.3.Effect of reaction conditions on theself-condensing vinyl polymerization of2-((2-bromopropionyl)oxy)ethylacrylate, Macromolecules,1997,30,7042-7049.
    [46]K. Matyjaszewski, J. Pyun, S. G. Gaynor, Preparation of hyperbranchedpolyacrylates by atom transfer radical polymerization,4-The use of zero-valentcopper, Macromol. Rapid Commun,1998,19,665-670.
    [47]P. F. W. Simon, W. Radke, A. H. E. Muller, Hyperbranched methacrylates byself-condensing group transfer polymerization, Macromol. Rapid Commun,1997,18,865-873.
    [48]P. F. W. Simon, A. H. E. Muller, Synthesis of hyperbranched and highly branchedmethacrylates by self-condensing group transfer copolymerization,Macromolecules2001,34,6206-6213.
    [49] ImaiT,Satoh T,Kaga H.Synthesis of hyperbranched carbohydratepolymer byring-opening multibranching polymerization of1,4-anhydroerythritol and1,4-anhydro-L-threitol,Macromolecules,2004,37,3113-3119.
    [50] Kainthan R K,Muliawan E B,Hatzikiriakos S G,Synthesis,characterization,and viscoelastic properties of high molecular weight hyperbranchedpolyglycerols,Macromolecules,2006,9,7708-7717.
    [51]Tomalia D A, Top H D, Topics in Current Chem, Berlin: Springer-Verlag,1998,165,193-313.
    [52]潘才元,功能高分子,北京:科学出版社,2006,241-242.
    [53]Torchilin V. P., Multifunctional Nanocarriers, Advanced Drug Delivery Reviews,2006,58,1532–1555.
    [54]Majeti N. V., Kumar R., Kumar N. et al, Pharmaceutical Polymeric ControlledDrug Delivery Systems, Advances in Polymer Science,2002,160,45-117.
    [55]Discher D.E., Eisenberg A., Polymer Vesicles, Science,2002,297,967-973.
    [56]Langer R., Perspectives: Drug delivery, Drugs on Target Science,2001,293,58-59.
    [57]Kataoka, K., Harada A., Nagaski Y., Block copolymer micelles for drug delivery:design, characterization and biological significance, Advanced Drug DeliveryReviews,2001,47,113-131.
    [58]Kakizawa Y., Kataoka K., Block copolymer micelles for delivery of gene andrelated compounds, Advanced Drug Delivery Reviews,2002,54,203-222.
    [59]Jones M.-C., Leroux J.-C., Polymeric micelles–a new generation of colloidaldrug carriers, European Journal of Pharmaceutics and Biopharmaceutics,1999,48,101-111.
    [60]Jeong B., Bae Y. H., Lee D. S. et al, Biodegradable block copolymers asinjectable drug-delivery systems, Nature,1997,388:860-862.
    [61]Baars M.W. P. L., Meijer E. W., Host-guest chemistry of dendritic molecules,Topics in Current Chemistry,2000,210,131-182.
    [62]Duncan R., The dawning era of polymer therapeutics, Nature Reviews DrugDiscovery,2003,2,347-360.
    [63]Cooper A. I., Londono J. D., Wignall G., et al, Extraction of a hydrophiliccompound from water into liquid CO2using dendritic surfactants, Nature,1997,389,368-371.
    [64]Peng-Fei Cao, Rui Xiang, Xun-Yong Liu, Chun-Xiao Zhang, Fa Cheng, Yu Chen,Modulating the Guest Encapsulation and Release Properties of Multi-Arm StarPolyethylenimine-block-Poly (caprolactone), Journal of Ploymer Science, PartA: Ploymer Chemistry,2009,47,5184-5193.
    [65]Tsubokawa N,Hayashi S,Nishimura J,Grafting of hyperbranched polymers ontoultrafine silica:postgraft polymerization of vinyl monomers initiated by pendantazo groups of grafted polymer chains on the surface,Progress in OrganicCoatings,2002,44,69-74.
    [66]赵辉,罗运军,李杰等,纳米SiO2表面超支化聚合物接枝改性的新方法,高分子材料科学与工程,2005,21,188-191.
    [67]R. W. Peterson, E. M. Nicholson, R. Thapar, et al., Increased Helix and ProteinStability Through the Introduction of a New Tertiary Hydrogen Bond, J. Mol. Biol.1999,286,1609-1619.
    [68]X Y. Liu, F. Cheng, Y. Chen, Preparation and characterization of novelthermoresponsive gold nanoparticles and their responsive catalysis properties, J.Mater. Chem.2010,20,360-368.
    [69] Gode P,Hult A,Jannasch P,A novel sulfonated dendritic polymer as the acidiccomponent in proton conducting membranes, Solid State Ionics,2006,177,787-794.
    [70] Zou J H,Zhao Y B,Shi W F,Preparation and properties of proton conductingorganic-inorganic hybrid membranes based on hyperbranched aliphatic polyesterand phosphoric acid,Journal of Membrane Science,2004,245,35-40.
    [71]Fang J H,Kita H,Okamoto K.Gas permeation properties of hyperbranchedpolyimide membranes,Membr.Sci.,2001,182,245-256.
    [72]Hedrick J. L, Hawker C. J, Miller R, et al., Structure control in organic-inorganichybrids using hyperbranched high-temperature polymers, Macromolecules,1997,30,7607-7610.
    [73] Kaneko Y,Imai Y,Shirai K,et al. Preparation and properties of hyperbranchedpoly(amidoamine) grafted onto a colloidal silica surface,Colloids and SurfacesA:Physicochem.Eng.Aspects,2006,289,212-218.
    [74] Burkinshawa S M,Froehling PE,Mignanellia M,The effect of hyperbranchedpolymers on the dyeing of polypropylene fibres, Dyes and Pigments,2002,53,229-235,
    [75]Ranby B, Shi W. F, WO96107688[P],1996.
    [76]Wei H. Y., Lu Y., Shi W. F. et al., Rad Tech Asia99Conference Proceedings,Malaysia,1999,301-306.
    [77]R. Salazar, L. Fomina, S. Fomine, Functionalized polyglycidol-CuCl-complexesas catalysts in the oxidative coupling reaction of terminal acetylenes, Polym. Bull.,2001,47,151-158.
    [78]R. Knischka, P. J. Lutz, H. Frey, et al., Functional poly(ethylene oxide) multiarmstar polymers: Core-first synthesis using hyperbranched polyglycerol initiators,Macromolecules2000,33,315-320.
    [79]A. Burgath, A. Sunder, I. Neuner, et al., Mutli-arm star block copolymers basedon epsilon-caprolactone with hyperbranched polyglycerol core, Macromol. Chem.Phys.2000,201,792-797.
    [80]Duan L, Qiu Y, Qing G H, et al., A novel hyperbranched conjugated polymer forelectroluminescence application, Synthetic Metals,2001,124,373-377.
    [81]M. C. Daniel, J. Ruiz, S. Nlate, et al., Nanoscopic Assemblies BetweenSuparmolecular Redox Active Metallodendrons and Gold Nanoparticles:Synthesis, Characterization and Selective Recognition of H2PO4-, HSO4-, andAdenosine-5'-Triphosphate (ATP2-) Anions, J. Am. Chem. Soc.2003,125,2617-2628.
    [82]M. C. Daniel, J. Ruize, S. Nlate, et al., Supramolecular H-bonded Assemblies ofRedox-active Metallodendrimers and Positive and Unusual Dendritic Effects onthe Recognition of H2PO4-, J. Am. Chem. Soc.2003,125,1150-1151.
    [83]M.C.Daniel, F.Ba, J. R. Aranzaes, Assemblies of Redox-active Metallodendrimersfor the Electrochemical Recognition of the H2PO4-, andAdenosine-5'-Triphosphate(ATP2-) Anions, Inorganic Chemistry2004,43,8649-8657.
    [84]M. Kr mer, J. F. Stumbé, G. Grimm, et al., Dendritic Polyamines: Simple Accessto New Materials with Defined Treelike Structures for Application in NonviralGene Delivery, ChemBio. Chem.2004,5,1081-1087.
    [85]S. Mecking, R. Thomann, H. Frey, Preparation of catalytically active palladiumnanoclusters in compartments of amphiphilic hyperbranched polyglycerols,Macromolecules2000,33,3958-3960.
    [86]Tian H, Chen X, Lin H,et al.,Micellization and Reversible pH-Sensitive PhaseTransfer of the Hyperbranched Multiarm PEI–PBLG Copolymer, Chem. Eur. J.,2006,12,4305-4312.
    [87] Tian H, Xiong W, Wei J,et al., Gene transfection of hyperbranched PEI graftedby hydrophobic amino acid segment PBLG, Biomaterials,2007,28,2899—2907.
    [88]何喜生,徐雪青,沈辉等,纳米靶向材料在基因治疗中的应用,化工新型材料,2005,33,18-20.
    [89]焦永华,周军,李妍等,超支化聚乙烯亚胺-聚天冬氨酸苄酯共聚物的制备及性能,高等学校化学学报,2010,31,1280-1284.
    [90]王晓青左秀霞,石峰晖等,聚丁二酸丁二醇酯在生物材料领域的研究进展,中国塑料2007,21,6-9.
    [91]X. Y. Liu, F. Cheng, H. J. Liu, et al., Unusual salt effect on the lower criticalsolution temperature of hyperbranched thermoresponsive polymers, Soft Matter,2008,4,1991-1994.
    [92]Hong K,Uhrig D,Jimmy W,Current Opinion in Solid State and MaterialsScience,1999,4,531–538.
    [93]冯晚双,星形和星形杂臂共聚物的合成、表征及其自组装,北京:中国科技大学,2002.
    [94] Frechet J M, Dendrimers and other dendritic macromolecules: from buildingblocks to functional assemblies in nanoscience and nanotechnology,J.Polym.Sci.(Part A):Polym. Chem.,2003,41,3713–3725.
    [95] Klok H A,Becker S,Schuch F,et al, Fluorescent star-shaped polystyrenes:"Core-first" synthesis from perylene-based ATRP initiators and dynamicmechanical solid-state properties, Macromol. Chem. Phys.,2002,203,1106–1113.
    [96]黎宝恩,卢江,活性自由基聚合在高分子合成中的应用,中山大学学报(自然科学版),2001,9,68-71.
    [97]Guan Z, Control of polymer topology through late-transition-metal catalysis,J.Polym. Sci.(Part A):Polym. Chem.,2003,41,3680–3692.
    [98] Coessens V,Pintauer T, Matyjaszewski K, Functional Polymers by atom transferradical polymerization, Prog. Polym. Sci.,2001,26,337—377.
    [99]施文芳,星形超支化聚酯的合成及其光固化,感光科学与光化学,1997,15,165–168.
    [100]傅英娟,赵颜凤,石淑兰等,星形阳离子聚丙烯酰胺在不同浆料体系中的应用,造纸科学与技术,2010,29,51-55.
    [101]王国建,刘琳,夏平,两亲性星状共聚物的合成、表征和性能,同济大学学报,2004,32,127-133.
    [102]Riess G, Micellization of Block Copolymers, Prog. Polym. Sci.,2003,28,1107-1170.
    [103] Jung H M, Price K E, McQuade D T, Synthesis and Characterization ofCross-Linked Reverse Micelles, J. Am. Chem. Soc.,2003,125,5351-5355.
    [104]Muhammad Irfan, Matthias Seiler, Encapsulation Using HyperbranchedPolymers: From Research and Technologies to Emerging Applications,Ind.Eng.Chem.Res,2010,49,1169-1196.
    [105]Kim Y. H., Webster O. W., Water-soluble hyperbranched polyphenylene: aunimolecular micelle, Journal of American Chemical Society,1990,112,4592-4593.
    [106]Stevelmans S., Hest J, Jansen J. et al., Synthesis, characterisation and guest hostproperties of inverted unimolecular dendritic micelles of outstanding interest,J.Am. Chem. Soc.,1996,118,7398-7399.
    [107]Liu H B,Uhrich K E,Hyperbranched Polymeric Micelles:DrugEncapsulation,Realease and Polymer Degradation,Polymer preprint,1997,38,582-583.
    [108]Sunder, A.; Kr mer, M.; Hanselmann, R. et al. Molecular nanocapsules based onamphiphilic hyperbranched polyglycerols, Angew. Chem. Int. Ed. Engl.1999,38,3552–3555.
    [109]Stiriba S. E, Kautz H, Frey H, Hyperbranched molecular nanocapsules:Comparison of the hyperbranched architecture with the perfect linear analogue, J.Am. Chem. Soc.2002,124,9698–9699.
    [110]方宇,唐黎明,邱藤等,两亲性超支化聚(酯-胺)在染料相转移中的应用,高分子学报,2004,2,309-312.
    [111]Chen,Y.;Shen,Z.;Pastor-Perez,L.;Frey,H.;Stiriba,S.E, Role of Topology andAmphiphilicity for Guest Encapsulation in Functionalized HyperbranchedPoly(ethylenimine)s,Macromolecules,2005,38,227-229.
    [112]M.Adeli,R.Haag,Multiarm Star Nanocarriers Containing a Poly(ethylene imine)Core and Polylactide Arms.Journal od Polymer Science:PartA,2006,44,5740-5749.
    [113] Shangjie Xu, Ying Luo, Rainer Haag, Water-Soluble pH-Responsive DendriticCore-Shell Nanocarriers for Polar DyesBased on Poly(ethylene imine),Macromol. Biosci.2007,7,968–974.
    [114]钟玲,贺小华,颜德全等,pH值响应性超支化多臂共聚物的合成及其自组装行为研究,高分子学报,2007,10,986-991.
    [115]Cao,P.;Xiang,R;Chen,Y;et al,Modulating the Guest Encapsulation and ReleaseProperties of Multi-Arm Star Polyethylenimine-block-Poly(-Caprolactone),Journalof Polymer Science: Part A: Polymer Chemistry,2009,47,5184-5193.
    [116]杨斌,绿色塑料聚乳酸,北京:化学工业出版社,2007,13-14.
    [117]Hecht S, Vladimirov N, Frechet J M J, Encapsulation of Functional Moietieswithin Branched Star polymers: Effect of Chain length and Solvent on SiteIsolation, J Am Chem Soc2001,123,18-25.
    [118]Sunder A, Kramer M, Hanselman R, Muhlhaupt R, Frey H, Molecularnanocapsules based on amphiphilic hyperbranched polyglycerols,Angew ChemInt Ed1999;38,3552–3557.
    [119]Haag R, Kr mer M, Stumbe J-F, Kautz H, Polymeric Nanocapsules based onCore-Shell-Type Architectures in Hyperbranched Polyglycerols, Poly. Mat. Sci.Eng.,2001,84,69.
    [120]Kr mer M,Stumbé J-F, Türk H, Krause S, Komp A, Delineau L, Prokohova S,Kautz H, Haag R, pH-Responsive Molecular Nanocarriers Based on DendriticCore-Shell Architectures, Angew. Chem.2002,114,4426-4431.
    [121]Kr mer M,Stumbé J-F, Türk H, Krause S, Komp A, Delineau L, Prokohova S,Kautz H, Haag R, pH-Responsive Molecular Nanocarriers Based on DendriticCore-Shell Architectures, Angew. Chem. Int. Ed,2002,41,4252-4256.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700