用户名: 密码: 验证码:
氧化石墨烯、石墨烯的制备及其功能复合膜研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自2004年石墨烯(Graphene)被成功制得以来,因具有特殊的物理、化学及力学性质,使其成为备受瞩目的国际研究前沿和热点,在众多领域有着潜在的巨大应用价值。本文首先制备了氧化石墨烯和石墨烯,然后以它们为原料制备了聚合物功能复合膜,并对复合膜的性能进行了研究。
     首次利用浓硫酸作为脱氧剂脱氧还原氧化石墨烯制备了石墨烯。研究结果表明,随反应温度和反应液中硫酸浓度的增大,石墨烯的还原程度增强。硫酸浓度是决定还原程度的关键因素,只有浓度大于70wt%时,氧化石墨烯才能被还原的比较彻底。
     利用制得的石墨烯制备了PVDF/Graphene导电复合膜。研究结果显示,随石墨烯含量的增加,复合膜的断面出现越来越多鳞片状断茬结构。复合膜的断裂强度在石墨烯添加量为0.5wt%时达到最大值,比纯膜增大34.2%。石墨烯添加量为1wt%时达到复合膜的导电渗流阀值,电导率为0.001S/m。
     首次将氧化石墨烯片层掺杂到较高磺化度(DS=67%)的SPEEK中制备了复合质子交换膜。研究表明,氧化石墨烯的加入,提高了复合膜的尺寸稳定性,并且复合膜的阻醇性能和可使用温度都得到显著地提高。使用温度的提高使SPEEK高电导率的特性得以发挥。
     利用甲基磺酸作溶剂,采用浸没沉淀相转化法首次制备了不同磺化度的SPEEK超滤膜。研究发现,膜的含水率、溶胀度及膜表面孔径随磺化度的升高而增大。膜的纯水通量随磺化度的升高明显增加,磺化度为60%的膜的纯水通量比磺化度为12%的膜提高了220.9%。超滤膜对BSA有较高的截留性能,而PEG-20K及Rose Bengal的截留率却随磺化度的增大而明显下降。在过滤BSA溶液过程中,由于BSA分子在过程驱动力的作用下沉积在SPEEK超滤膜的表面或进入膜孔内,从而使膜的渗透通量与纯水通量相比下降非常明显。此外,膜的渗透通量还与进料液的pH有关。碱性环境下,BSA与SPEEK超滤膜的电荷排斥作用增强,使得BSA不易在膜表面沉积,从而使膜保持较高的渗透通量。
     首次制备了磺化度为7%的SPEEK纳滤膜,并表征了其纳滤性能。研究发现,通过调节铸膜液的浓度、成膜凝固浴的温度及组成,可以制得性能优异的SPEEK纳滤膜。低磺化度的SPEEK膜具有良好的热稳定性,可以在较高温下工作。
     制备了SPEEK/GO复合纳滤膜,并对复合膜的性能进行了初步的研究。实验发现,随GO添加量的增大,复合膜的渗透性能下降,截留性能提高。并且GO的添加使复合膜的尺寸稳定性得到显著提高。
Graphene, which was first prepared in2004, has attracted tremendous attention andbecome the leading edge and hotspot in various relative fields. Due to many intriguingphysical, chemical and mechanical properties, graphene has great potential appliedvalue. In this paper, we prepared graphene oxide (GO) and graphene firstly, and thenprepared them-based composite membranes and explored their performance.
     We provide a facile approach using graphene oxide colloidal suspension to preparegraphene nanosheets with concentrated sulfuric acid (H2SO4) as deoxidizing agent forthe first time. Results show that the higher the reaction temperature and the H2SO4concentration, the more complete the reduction. According to these two impactparameters, we found that the concentration of H2SO4is the key factor to determinethe degree of reduction. Only the concentration of sulfuric acid more than70wt%, thedegree of reduction would be more thoroughly.
     PVDF/Graphene composite membranes were prepared by a solution mixingmethod. As the content of graphene increased, the cross-section of the membranesshowed more and more scale-like stubble structure. The breaking strength of thecomposite membranes reached the maximum value as graphene content of0.5wt%,which increased34.2%compared to the pure PVDF membrane. The compositemembranes show low percolation threshold around1wt%graphene loading, theconductivity is0.001S/m.
     Graphene oxide was incorporated into the SPEEK matrix with relative high DS(67%) to prepare novle composite membranes for the first time. The strong interactionbetween the GO nanosheets and SPEEK molecular chains helps to reduce the swellingand methanol permeability of the composite membranes, and improve thedimensional stability. For the composite membranes, high conductivity can beachieved as the applicable temperature is improved.
     SPEEK ultrafiltration (UF) membranes with different DS were prepared byimmersion phase inversion method, methylsulfonic acid was used as solvent toaccommodate SPEEK. The water uptake, swelling and surface pore size wereincreased with the DS. Water flux was increased dramatically with the DS, flux of themembrane with60%DS was3.2times that of12%DS. For all the membranes,rejections of BSA were much higher, however, the rejections of PEG-20K and Rose Bengal were decreased with the DS dramatically. During the filtration of BSAsolution, all the SPEEK membranes showed lower permeate fluxes due to membranefouling, which produced by the protein molecules entrapping in the pores and blockthe channels under the trans-membrane pressure. Besides, the permeate flux wasrelevant to the feed pH. When feed pH was higher than7, the repulsion of chargesbetween BSA and membrane surface was enhanced, which suppressed the depositionof BSA, thus keep the permeate flux at a higher level.
     We prepared SPEEK nanofiltration (NF) membranes with7%DS and studiedtheir NF performance. The effects of several basic factors on performances, such asSPEEK concentration, coagulation-bath temperature and component, were explored.SPEEK NF membranes with excellent thermal stability can be used in hightemperature circumstance. In addition, we also prepared SPEEK/GO compositemembrane. Results show that the permeate flux decreases, the rejection and thedimensional stability increased with the rise of GO content.
引文
[1] H.W. Kroto J.R. Heath S.C. O’Brien et a1, C60: Buckm insterfullerence,Nature,1985,318:162-163
    [2] S Ishigami, Helical microtubules of graphite carbon, Nature199135456-58
    [3] K. S. Novoselov, A. K. Geim, S. V. Morozov et al, Electric Field Effect inAtomically Thin Carbon Films, Science,2004,306:666-669
    [4] A. K. Geim, K. S. Novoselov, The rise of graphene, Nature materials,2007,6:183-191
    [5] Y. C. Si, E. T. Samulski, Synthesis of Water Soluble Graphene, Nano Letters,2008,8:1679-1682
    [6] S. J. Park, K. S. Lee, G. Bozoklu, Graphene oxide papers modified by divalentions-Enhancing mechanical properties via chemical cross-linking, ACS Nano,2008,23:572-578
    [7] C.N.R. Rao K. Biswas, K.S. Subrahmanyam et a1, Graphene, the newnanocarbon, Journal of Materials Chemistry,2009,19:2457-2469
    [8] J.C. Meyer, A.K. Geim, M.I. Katsnelson, et a1, The structure of suspendedgraphene sheets, Nature,2007,446:60-63
    [9] M.D. Stoller, S. Park, Y. Zhu, et a1, Graphene-based ultracapacitors. NanoLetters,2008,8:3498-3502
    [10] A.A. Balandin, S. Ghosh, W. Bao, et al, Superior thermal conductivity ofsingle-layer graphene. Nano Letters,2008,8:902–907
    [11] C. Lee, X. Wei, J. Kysar, et al, Measurement of the elastic properties andintrinsic strength of monolayer graphene. Science,2008,321:385-388
    [12] F. Liu P.B. Ming, Ab initio calculation of ideaI strength an d phononinstability of graphene in tension, Physical Review B,2007,76(6):064l20
    [13] K.I. Bolotin, K.J. Sikes, Z. Jiang, et al, Ultrahigh electron mobility insuspended graphene, Solid State Communications,2008,146:351-355
    [14] C. L. Kane, Erasing electron mass, Nature,2005,438:168-169
    [15] F. Liu P.B. Ming, Ab initio calculation of ideaI strength an d phononinstability of graphene in tension, Physical Review B,2007,76(6):064l20
    [16] R.F. Service. Carbon sheets an atom thick give rise to graphene dreams,Science,2009,324(5929):875-877
    [17] H. Bai, Y. Xu, L. Zhao, et al, Non-covalent functionalization of graphene sheetsby sulfonated polyaniline, Chemical Communications,2009,7(13):1667-1669
    [18] J.C. Meyer, C. Kisielowski, R. Erni, et al, Direct imaging of lattice atoms andtopological defects in graphene membranes, Nano Letters,2008,8(11):3582-3586
    [19] A.C. Ferrari, J.C. Meyer, V. Scardaci, et al, Raman Spectrum of Graphene andGraphene Layers, Phycical Review Letters,2006,97(18):187401-187404
    [20] J.C. Meyer, A.K. Geim, M.I. Katsnelson, et al, The structure of suspendedgraphene sheets, Nature,2007,446:60-63
    [21] S. Akcoltekin, M.E. Kharrazi, B. Kohler, et al, Graphene on insulatingcrystalline substrates, Nanotechnology,2009,20(15):155601-155607
    [22] Y. Hernandez, V. Nicolosi, M. Lotya, et al, High yield production of grapheneby liquid phase exfoliation of graphite, Nature Nanotechnology,2008,3:563-568
    [23] P. Blake, P.D. Brimicombe, R.R. Nair, et al, Graphene-Based Liquid CrystalDevice, Nano Letters,2008,8(6):1704-1708
    [24] X. Li, G. Zhang, X. Bai, et al, Highly Conducting Graphene Sheets andLangmuir-Blodgett Films, Nature Nanotechnology,2008,3:538-542
    [25] X. An, T. Simmons, R. Shah, et al, Stable Aqueous Dispersions ofNon-Covalently Functionalized Graphene from Graphite and theirMultifunctional High-Performance Applications, ACS Nano,2009,3(9):2818-2826
    [26] B. Natnael, R.J. Lomeda, M.J. Green, et al, Spontaneous high-concentrationdispersions and liquid crystals of grapheme,Nature Nanotechnology,2010,5(6):406-411
    [27] B. C. Brodie, On the atomic weight of graphite, Philosophical Transactions ofthe Royal Society A,1859,149:249-59
    [28] L. Staudenmaier, Verfahren Zur Darstellung Der Graphitsaure, Ber. Dtsh. Chem.Ges.,1898,31:1481-99
    [29] W.S. Hummers, R.E. Offeman, Preparation of graphitic oxide, J. Am. Chem.Soc.,1958,80:1339-1340
    [30] S. Stankovich, R.D. Piner, X. Chen, et al, Stable aqueous dispersions ofgraphitic nanoplatelets via the reduction of exfoliated graphite oxide in thepresence of poly(sodium4-styrenesulfonate), J. Mater. Chem.2006,16:155-158
    [31] S.Stankovich, R.D. Piner, S.B. Nguyen, et a1, Synthesis and Exfoliation ofIsocyanate-Treated Graphene Oxide Nanoplatelets, Carbon,2006,44(15):3342-3347
    [32] S.Stankovich, D. A. Dikin, R. D. Piner,et a1, Synthesis of grapheme-basednanosheets via chemical reduction of exfoliated graphite oxide, Carbon,2007,45(7):1558-1565
    [33] S. Park, J. An, I. Jung, et al, Colloidal Suspensions of Highly ReducedGraphene Oxide in a Wide Variety of Organic Solvents, Nano letters,2009,9(4):1593-1597
    [34] T. Zhang, D. Zhang, M. Shen, A low-cost method for preliminary separation ofreduced graphene oxide nanosheets, Mterials Letters,2009,63:2051-2054
    [35] J.R. Lomeda, C.D. Doyle, D.V. Kosynkin, et al, Diazonium Functionalizationof Surfactant-Wrapped Chemically Converted Graphene Sheets, J. Am. Chem.Soc.,2008,130(48):16201-16206
    [36] D. Joung, A. Chunder, L. Zhai, et al, High yield fabrication of chemicallyreduced graphene oxide field effect transistors by dielectrophoresis,Nanotechnology,2010,21:165202-165206
    [37] V.C. Tung, M.J. Allen, Y. Yang, et al, High-throughput solution processing oflarge-scale graphene, Nature Nanotechnology,2009,4:25-29
    [38] X. Gao, J. Jang, S. Nagase, Hydrazine and Thermal Reduction of GrapheneOxide: Reaction Mechanisms, Product Structures, and Reaction Design, J. Phys.Chem. C,2010,114:832-842
    [39] Y. Geng, S.J. Wang, J-K. Kim, Preparation of graphite nanoplatelets andgraphene sheets, Journal of Colloid and Interface Science,2009,336:592-598
    [40] L. Tang, Y. Wang, Y. Li, et al, Preparation, Structure, and ElectrochemicalProperties of Reduced Graphene Sheet Films, Adv. Funct. Mater.,2009,19:2782-2789
    [41] D. Li, M.B. Mu, S. Gilje, et al, Processable aqueous dispersions of graphenenanosheets, Nature Nanotechnology,2008,3:101-105
    [42] L.Wan, S. Wang, X. Wang, et al, Room-temperature fabrication of graphenefilms on variable substrates and its use as counter electrodes for dye-sensitizedsolar cells, Solid State Sciences,2011,13:468-475
    [43] S. Lee, S. Lim, E. Lim, et al, Synthesis of aqueous dispersion of graphenes viareduction of graphite oxide in the solution of conductive polymer, Journal ofPhysics and Chemistry of Solids,2010,71:483-486
    [44] Y. Zhu, W. Cai, R.D. Piner, et al, Transparent self-assembled films of reducedgraphene oxide platelets, Applied Physics Letters,2009,95:103104-1-3
    [45] X. Dong, C-Y. Su, W. Zhang, et al, Ultra-large single-layer graphene obtainedfrom solution chemical reduction and its electrical properties, PhysicalChemistry Chemical Physics,2010,12:2164-2169
    [46] V.H. Pham, T.V. Cuong, T-D. Nguyen-Phan, et al, One-step synthesis ofsuperior dispersion of chemically converted graphene in organic solvents,Chem.Commun.2010,46:4375-4377
    [47] S. Park, J. An, R.D. Piner, et al, Aqueous Suspension and Characterization ofChemically Modified Graphene Sheets, Chem. Mater.2008,20:6592-6594
    [48] S. Chandra, S. Sahu, P. Pramanik, A novel synthesis of graphene by dichromateoxidation, Materials Science and Engineering B,2010,167:133-136
    [49] G. Wang, J. Yang, J. Park, et al, Facile Synthesis and Characterization ofGraphene Nanosheets, J. Phys. Chem. C,2008,112:8192-8195
    [50] H-J. Shin, K.K. Kim, A. Benayad, et al, Efficient Reduction of Graphite Oxideby Sodium Borohydride and Its Effect on Electrical Conductance, Adv. Funct.Mater.2009,19:1987-1992
    [51] Q. Yang, X. Pan, F. Huang, et al, Fabrication of High-Concentration and StableAqueous Suspensions of Graphene Nanosheets by NoncovalentFunctionalization with Lignin and Cellulose Derivatives, J. Phys. Chem. C.2010,114(9):3811-3816
    [52] J. Shen, Y. Hu, M. Shi, et al, Fast and Facile Preparation of Graphene Oxideand Reduced Graphene Oxide Nanoplatelets, Chem. Mater.2009,21(15):3514-3520
    [53] J. Che, L. Shen, Y. Xiao, A new approach to fabricate graphene nanosheets inorganic medium: combination of reduction and dispersion, J. Mater. Chem.2010,20:1722-1727
    [54] X. Fan, W. Peng, Y. Li, et al, Deoxygenation of Exfoliated Graphite Oxideunder Alkaline Conditions: A Green Route to Graphene Preparation, AdvancedMaterials,2008,20:4490-4493
    [55] Z. Fan, K. Wang, T. Wei, et al, An environmentally friendly and efficient routefor the reduction of graphene oxide by aluminum powder, Carbon,2010,48:1686-1689
    [56] Z-J. Fan, W. Kai, J. Yan, et al, Facile Synthesis of Graphene Nanosheets via FeReduction of Exfoliated Graphite Oxide, ACS Nano,2011,5:191-198
    [57] X. Shen, L. Jiang, Z. Ji, et al, Stable aqueous dispersions of graphene preparedwith hexamethylenetetramine as a reductant, Journal of Colloid and InterfaceScience,2011,354:493-497
    [58] M. J. Fernández-Merino, L. Guardia, J.I. Paredes, et al, Vitamin C Is an IdealSubstitute for Hydrazine in the Reduction of Graphene Oxide Suspensions, J.Phys. Chem. C,2010,114:6426-6432
    [59] J. Zhang, H. Yang, G. Shen, et al, Reduction of graphene oxide via L-ascorbicacid, Chem. Commun.2010,46:1112-1114
    [60] J. Gao, F. Liu, Y. Liu, et al, Environment-Friendly Method To ProduceGraphene That EmploysVitamin C and Amino Acid, Chem. Mater.2010,22(7):2213-2218
    [61] C. Zhu, S. Guo, Reducing sugar:a new fuctional molecules for the greensynthesis of grapheme nanosheets, ACS Nano,2010,4(4):2429-2437
    [62] A. Dideykin, A.E. Aleksenskiy, D. Kirilenko, et al, Monolayer graphene fromgraphite oxide, Diamond&Related Materials,2011,20:105-108
    [63] J.P. Rourke, P.A. Pandey, J.J. Moore, et al, The Real Graphene Oxide Revealed:Stripping the Oxidative Debris from the Graphene-like Sheets, Angew. Chem.Int. Ed.2011,50:1-6
    [64] C. Nethravathi, M. Rajamathi, Chemically modified graphene sheets producedby the solvothermal reduction of colloidal dispersions of graphite oxide,Carbon,2008,46:1994-1998
    [65] A.V. Murugan, T. Muraliganth, A. Manthiram, Rapid, Facile Microwave-Solvothermal Synthesis of Graphene Nanosheets and Their PolyanilineNanocomposites for Energy Strorage, Chem. Mater.2009,21:5004-5006
    [66] H.Wang, J.T. Robinson, X. Li, et al, Solvothermal Reduction of ChemicallyExfoliated Graphene Sheets, J. Am. Chem. Soc.,2009,131(29):9910–9911
    [67] S. Dubin, S. Gilje, K. Wang, et al, A One-Step, Solvothermal ReductionMethod for Producing Reduced Graphene Oxide Dispersions in OrganicSolvents, ACS nano,2010,4(7):3845-3852
    [68] Y. Zhu, M.D. Stoller, W. Cai, et al, Exfoliation of Graphite Oxide in PropyleneCarbonate and Thermal Reduction of the Resulting Graphene Oxide Platelets,ACS nano,2010,4(2):1227-1233
    [69] W. Chen, L. Yan, P.R. Bangal, Preparation of graphene by the rapid and mildthermal reduction of graphene oxide induced by microwaves, Carbon,2010,48:1146-1152
    [70] Y. Xu, K. Sheng, C. Li, et al, Self-Assembled Graphene Hydrogel via aOne-Step Hydrothermal Process, ACS nano,2010,4(7):4324-4330
    [71] G. Wang, B. Wang, J. Park, Synthesis of enhanced hydrophilic and hydrophobicgraphene oxide nanosheets by a solvothermal method, Carbon,2009,47:68-72
    [72] H.C. Schniepp, J-L. Li, M.J. McAllister, et al, Functionalized Single GrapheneSheets Derived from Splitting Graphite Oxide, J. Phys. Chem. B,2006,110:8535-8539
    [73] M.J. McAllister, J-L. Li, D.H. Adamson, et al, Single Sheet FunctionalizedGraphene by Oxidation and Thermal Expansion of Graphite, Chem. Mater.2007,19:4396-4404
    [74] G. Lu, L.E. Ocola, J. Chen, Reduced graphene oxide for room-temperature gassensors, Nanotechnology,2009,20:445502-445510
    [75] Q. Du, M. Zheng, L. Zhang, et al, Preparation of functionalized graphenesheets by a low-temperature thermal exfoliation approach and theirelectrochemical supercapacitive behaviors, Electrochimica Acta,2010,55:3897-3903
    [76] O. Akhavan, The effect of heat treatment on formation of graphene thin filmsfrom graphene oxide nanosheets, Carbon,2010,48:509-519
    [77] R. Verdejo, F. Barroso-Bujans, M.A. Rodriguez-Perez, et al, Functionalizedgraphene sheet filled silicone foam nanocomposites, J. Mater. Chem.2008,18:2221-2226
    [78] W. Lv, D-M. Tang, Y-B. He, et al, Low-Temperature Exfoliated Graphenes:Vacuum-Promoted Exfoliation and Electrochemical Energy Storage, ACS Nano,2009,3:3730-3736
    [79] M. Eizenberg, J.M. Blakely, Carbon monolayer phase condensation on Ni(111),Surf. Sci.1970,82:228-236
    [80] P.W. Sutter, J. Flege, E. Sutter, Epitaxial graphene on ruthenium, NatureMaterials,2008,7:406-411
    [81] Y. Pan, H. Zhang, D. Shi, et al, Highly Ordered, Millimeter-Scale, Continuous,Single-Crystalline Graphene Monolayer Formed on Ru (0001), Adv. Mater.2008,20:1-4
    [82] C. Berger, Z. Song, X. Li, et al, Electronic Confinement and Coherence inPatterned Epitaxial Graphene, Science,2006,312:1191-1196
    [83] T. Ohta, A. Bostwick, T. Seyller, et al, Controlling the Electronic Structure ofBilayer Graphene, Science,2006,313:951-954
    [84] C. Virojanadara, M. Syv jarvi, R. Yakimova, et al, Homogeneous large-areagraphene layer growth on6H-SiC(0001), Phycical Review B,2008,78:245403-245408
    [85] A. Reina, X. Jia, J. Ho, et al, Large Area, Few-Layer Graphene Films onArbitrary Substrates by Chemical Vapor Deposition, Nano Letters,2009,9:30-35
    [86] A. Dato, V. Radmilovic, Z. Lee, et al, Substrate-free gas-phase synthesis ofgraphene sheets, Nano letters,2008,8(7):2012-2016
    [87] S.J. Chae, F. Günes, K.K. Kim, et al, Synthesis of Large-Area Graphene Layerson Poly-Nickel Substrate by Chemical Vapor Deposition: Wrinkle Formation,Adv. Mater.2009,21:2328-2333
    [88] K.S. Kim, Y. Zhao, H. Jang, et al, Large-scale pattern growth of graphene filmsfor stretchable transparent electrodes, Nature,2009,457:706-710
    [89] X. Wang, H. You, F. Liu, et al, Large-Scale Synthesis of Few-LayeredGraphene using CVD, Chem. Vap. Deposition,2009,15:53-56
    [90] G. Odahara, T. Ishikawa, Self-Standing Graphene Sheets Prepared withChemical Vapor Deposition and Chemical Etching, e-J. Surf. Sci. Nanotech.2009,7:837-840
    [91] Y. Miyata, K. Kamon, K. Ohashi, et al, A simple alcohol-chemical vapordeposition synthesis of single-layer graphenes using flash cooling, AppliedPhysics Letters,2010,96:263105-263107
    [92] Z-Y. Juang, C-Y. Wu, A-Y. Lu, et al, Graphene synthesis by chemical vapordeposition and transfer by a roll-to-roll process, Carbon,2010,48:3169-3174
    [93] N. Liu, F. Luo, H. Wu, et al, One-Step Ionic-Liquid-Assisted ElectrochemicalSynthesis of Ionic-Liquid-Functionalized Graphene Sheets Directly fromGraphite, Adv. Funct. Mater.2008,18:1518-1525
    [94] H-L. Guo, X-F. Wang, Q-Y. Qian, et al, A Green Approach to the Synthesis ofGraphene Nanosheets, ACS Nano,2009,3(9):2653-2659
    [95] Z. Wang, X. Zhou, J. Zhang, et al, Direct Electrochemical Reduction ofSingle-Layer Graphene Oxide and Subsequent Functionalization with GlucoseOxidase, J. Phys. Chem. C,2009,113(32):14071-14075
    [96] G.K. Ramesha, S. Sampath, Electrochemical Reduction of Oriented GrapheneOxide Films: An in Situ Raman Spectroelectrochemical Study, J. Phys. Chem.C,2009,113:7985-7989
    [97] Y. Shao, J. Wang, M. Engelhard, et al, Facile and controllable electrochemicalreduction of graphene oxide and its applications, J. Mater. Chem.2010,20:743-748
    [98] H. Qian, F. Negri, C. Wang, et al, Fully Conjugated Tri(perylene bisimides): AnApproach to the Construction of n-Type Graphene Nanoribbons, J. Am. Chem.Soc.2008,130(52):17970-17976
    [99] K.S. Subrahmanyam, L.S. Panchakarla, A. Govindaraj, et al, Simple Method ofPreparing Graphene Flakes by an Arc-Discharge Method, J. Phys. Chem. C2009,113(11):4257-4259
    [100] D.V. Kosynkin, A.L. Higginbotham, A. Sinitskii,et al, Longitudinal unzippingof carbon nanotubes to form graphene nanoribbons, Nature,2009,458:872-876
    [101] L. Jiao, L. Zhang, X. Wang, et al, Narrow graphene nanoribbons from carbonnanotubes, Nature,2009,458:877-880
    [102] A.G. Cano-Mrquez, F.J. Rodríguez-Macas, J. Campos-Delgado, et al, Ex-MWNTs: Graphene Sheets and Ribbons Produced by Lithium Intercalation andExfoliation of Carbon Nanotubes, Nano Lett.,2009,9(4):1527-1533
    [103] W. Zhao, M. Fang, F. Wu, et al, Preparation of graphene by exfoliation ofgraphite using wet ball milling, J. Mater. Chem.2010,20:5817-5819
    [104] W. Zhang, J. Cui, C. Tao, et al, A Strategy for Producing Pure Single-LayerGraphene Sheets Based on a Confined Self-Assembly Approach, Angew. Chem.Int. Ed.2009,48:5864-5868
    [105] G. Williams, B. Seger, P.V. Kamat. TiO2-graphene nanocomposites UV-Assisted Photocatalytic Reduction of Graphene Oxide, ACS Nano,2008,2(7):1487-1491
    [106] L.J. Cote, R. Cruz-Silva, J. Huang, Flash Reduction and Patterning of GraphiteOxide and Its Polymer Composite, J. Am. Chem. Soc.,2009,131(31):11027-11032
    [107] A.K. Geim K.S. Novoselov, The rise of graphene Nature materials2007,6:183-191
    [108] C. Shan H. Yang D. Han, Water-Soluble Graphene Covalently Functionalizedby Biocompatible Poly-L-lysine, Langmuir,2009,25:12030-12033
    [109] F. Schedin, A.K. Geim, S.V. Morozov, et al, Detection of individual gasmolecules adsorbed on graphene, Nature Materials,2007,6:652-655
    [110] E.J. Yoo, J. Kim, E. Hosono, et al, Large Reversible Li Storage of GrapheneNanosheet Families for Use in Rechargeable Lithium Ion Batteries, NanoLett2008,8(8)2227-2282
    [111] S.M. Pack, E.J. Yoo, I. Honma, Enhanced cyclic performance and lithiumstorage capacity of SnO2/graphene nanoporous electrodes with three-dimensionally delaminated flexible structure, Nano Lett.2009,9:72-75
    [112] M. Khantha, N.A. Cordero, L.M. Molina, et al, Interaction of lithium withgraphene: An ab initio study, Phys. Rev. B,2004,70:125422-125429
    [113] D. Wang, D. Choi, J. Li, et al, Self-Assembled TiO2-Graphene HybridNanostructures for Enhanced Li-Ion Insertion, ACS Nano,2009,3(4):907-914
    [114] M.D. Stoller, S. Park, Y. Zhu, et al, Graphene-based ultracapacitors, Nano Lett.2008,8(10):3498-3502
    [115] Y. Wang, Z. Shi, Y. Huang, et al, Supercapacitor devices based on graphenematerials, J. Phys. Chem. C,2009,113(30):13103-13107
    [116] G.K. Dimitrakakis, E. Tylianakis, G.E. Froudakis, Pillared Graphene: A New3-D Network Nanostructure for Enhanced Hydrogen Storage, Nano Lett.,2008,8(10):3166-3170
    [117] A. Ghosh, K.S. Subrahmanyam, K.S. Krishna, et al, Uptake of H2and CO2byGraphene, J. Phys. Chem. C,2008,112(40):15704-15707
    [118] X. Wang, L. Zhi, K. Mullen, Transparent, conductive graphene electrodes fordye-sensitized solar cells, Nano Letters,2008,8(1):323-327
    [119] J. Wu H.A. Becerril, Z. Bao, et al, Organic solar cells with solution-processedgraphene transparent electrodes, Applied Physics Letters,2008,92:263302-263304
    [120] Q. Liu, Z. Liu, X. Zhang, et al, Organic photovoltaic cells based on an acceptorof soluble graphene, Applied Physics Letters,2008,92:223303-223305
    [121] C. Xu, X. Wang, J. Zhu, Graphene-Metal Particle Nanocomposites, J. Phys.Chem. C,2008,112(50):19841-19845
    [122] R. Kou, Y. Shao, D. Wang, et al, Enhanced activity and stability of Pt catalystson functionalized graphene sheets for electrocatalytic oxygen reduction,Electrochem. Commun.2009,11(5):954-957
    [123] E. Yoo, T. Okata, T. Akita, et al, Enhanced Electrocatalytic Activity of PtSubnanoclusters on Graphene Nanosheet Surface, Nano letters,2009,9(6):2255-2259
    [124] Z. Liu, J.T. Robinson, X. Sun, et al, PEGylated Nanographene Oxide forDelivery of Water-Insoluble Cancer Drugs, J. Am. Chem. Soc.,2008,130(33):10876-10877
    [125] A.J. Patil, J.L. Vickery, T.B. Scott, et al, Aqueous Stabilization and Self-Assembly of Graphene Sheets into Layered Bio-Nanocomposites using DNA,Adv. Mater.2009,21(31):3159-3164
    [126] X. Yang, X. Zhang, Y. Ma, et al, Superparamagnetic graphene oxide-Fe3O4nanoparticles hybrid for controlled targeted drug carriers, J. Mater. Chem.,2009,19:2710-2714
    [127] Y. Xu, Z. Liu, X. Zhang, et al, A Graphene Hybrid Material CovalentlyFunctionalized with Porphyrin: Synthesis and Optical Limiting Property,2009,21(12):1275-1279
    [128] Y. Si, E.T. Samulski, Synthesis of Water Soluble Graphene, Nano Letters,2008,8(6):1679-1682
    [129] E. Bekyarova, M.E. Itkis, P. Ramesh,et al, Haddon Chemical Modification ofEpitaxial Graphene: Spontaneous Grafting of Aryl Groups, J. Am. Chem. Soc.,2009,131(4):1336-1337
    [130] Y. Xu, H. Bai, G. Lu, et al, Flexible Graphene Films via the Filtration ofWater-Soluble Noncovalent Functionalized Graphene Sheets, J. Am. Chem. Soc.2008,130:5856-5857
    [131] R. Hao, W. Qian, L. Zhang, et al, Aqueous dispersions of TCNQ-anionstabilized graphene sheets, Chem. Commun.2008,46(48):6576-65788
    [132] W. Zheng, X. Lu, S.C. Wong. Electrical and mechanical properties of expandedgraphite-reinforced high-density polyethylene. J Appl.Polym. Sci.2004,91:2781-2788
    [133] J. Lianga, Y. Wanga, Y. Huanga, et al, Electromagnetic interference shielding ofgraphene/epoxy composites. Carbon,2009,47:922-925
    [134] A. Yu, P. Ramesh, M.E. Itkis, et al, Graphite nanoplatelet-epoxy compositethermal interface materials, J. Phys. Chem. C,2007,111:7565-7569
    [135] M.A. Rafiee, J. Rafiee, Z. Wang, et al, Enhanced Mechanical Properties ofNanocomposites at Low Graphene Content, ACS nano,2009,3(12):3884-3890
    [136] S.-Y. Yang, W.-N. Lin, Y.-L. Huang, et al, Synergetic effects of grapheneplatelets and carbon nanotubes on the mechanical and thermal properties ofepoxy composites, Carbon,2011,49:793-803
    [137] S. Stankovich, D.A. Dikin, G.H.B. Dommett, et al, Graphene-based compositematerials, Nature,2006,442:282-286
    [138] N. Liu, F. Luo, H. Wu, et al, One step ionic-liquidassisted electrochemicalsynthesis of ionic-liquid-functionalized graphene sheets directly from graphene,Adv. Funct. Mater.,2008,18:1518-1525
    [139] J. Liang, Y. Wang, Y. Huang, et al, Electromagnetic interference shielding ofgraphene/epoxy composites, Carbon,2009,47:922-925
    [140] H. Hu, X. Wang, J. Wang, et al, Preparation and properties of graphenenanosheets-polystyrene nanocomposites via in situ emulsion polymerization,Chemical Physics Letters,2010,484:247-253
    [141] H. Li, J. Chen, S. Han, et al, Electrochemiluminescence from tris(2,2-bipyridyl) ruthenium(II)-graphene-nafion modified electrode, Talanta,2009,79:165-170
    [142] Y.R. Lee, A.V. Raghu, H.M. Jeong, et al, Properties of waterbornepolyurethane/functionalized graphene sheet nanocomposites prepared by an insitu method, Macromol. Chem. Phys.,2009,210:1247-1254
    [143] J. Liang, Y. Xu, Y. Huang, et al, Infraredtriggered actuators fromgraphene-based nanocomposites, J. Phys. Chem.2009,113:9921-9927
    [144] S. Ansari, E.P. Giannelis, Functionalized Graphene Sheet-Poly(vinylidenefluoride) Conductive Nanocomposites, Journal of Polymer Science: Part B:Polymer Physics,2009,47:888-897
    [145] Y. Xu, Y. Wang, J. Liang, et al, A hybrid material of graphene andpoly(3,4-ethyldioxythiophene) with high conductivity, flexibility, andtransparency, Nano Research,2009,2(4):343-348
    [146] H.B. Zhang, W.G. Zheng, Q. Yan, et al, Electrically conductive polyethyleneterephthalate/graphene nanocomposites prepared by melt compounding.Polymer,2010,51:1191-1196
    [147] X. Wang, H. Bai, Z. Yao, et al, Electrically conductive and mechanically strongbiomimetic chitosan/reduced graphene oxide composite films, Journal ofMaterials Chemistry, J. Mater. Chem.,2010,20:9032-9036
    [148] S. Vadukumpully, J. Paul, N. Mahanta, et al, Flexible conductive graphene/poly(vinyl chloride) composite thin films with high mechanical strength andthermal stability, Carbon,2011,49:198-205
    [149] H. Kim, C.W. Macosko, Processing-property relationships ofpolycarbonate/graphene composites, Polymer,2009,50:3797-3809
    [150]Y. Wang, Z. Shi, J. Fang, et al, Graphene oxide/polybenzimidazole composites fabricated by a solvent-exchange method, Carbon,2011,49:1199-1207
    [151]Y. Wang, Z. Shi, J. Fang, et al, Direct exfoliation of graphene in methanesulfonic acid and facile synthesis of graphene/polybenzimidazole nanocomposites, Journal of Material Chemistry,2011,21:505-512
    [152]S. Liu, X. Liu, Z. Li, et al, Fabrication of free-standing graphene/polyaniline nanofibers composite paper via electrostatic adsorption for electrochemical supercapacitors, New J. Chem.2011,35:369-374
    [153]S. Biswas, H. Fukushima, L.T. Drzal, Mechanical and electrical property enhancement in exfoliated graphene nanoplatelet/liquid crystalline polymer nanocomposites, Composites:Part A,2011,42:371-375
    [154]J. Liang, Y Huang, L. Zhang, et al, Molecular-level dispersion of graphene into poly(vinyl alcohol) and effective reinforcement of their nanocomposites. Adv. Funct. Mater.,2009,19:2297-302
    [155]X. Zhao, Q. Zhang, D. Chen, Enhanced Mechanical Properties of Graphene-Based Poly(vinyl alcohol) Composites, Macromolecules,2010,43:2357-2363
    [156]Y Xu, W. Hong, H. Bai, et al, Strong and ductile poly(vinyl alcohol)/graphene oxide composite films with a layered structure, Carbon,2009,47:3538-3543
    [157]李冬杰,碳基复合材料制备及性能研究:[博士学位论文],天津;天津大学,2009
    [158]R. Verdejo, F.B. Bujans, M.A. Rodriguez, Functionalized graphene sheet filled silicone foam nanocomposites, Mater. Chem.,2008,18:2221-2226
    [159]T. Ramanathan, A.A. Abdala, S. Stankovich, Functionalized graphene sheets for polymer nanocomposites, Nature nanotechnology,2008,3:327-331
    [160]D. Han, L. Yan, W. Chen, et al, Preparation of chitosan/graphene oxide composite film with enhanced mechanical strength in the wet state, Carbohydrate Polymers,2011,83:653-658
    [161]P.J. Kovtyukhova, B.R. Ollivier, Layer-by-layer assembly of ultrathin composite films from micron-sized graphite oxide sheets and polycations, Chem. Mater.,1999,11:77-778
    [162]A. Lerf, A. Buchsteiner, J. Pieper, et al, Hydration behavior and dynamics of water molecules in graphite oxide, Journal of Physics and Chemistry of Solids,2006,67:1106-1110
    [163]四川大学工科基础化学教学中心、分析测试中心,分析化学,北京:科学出版社,2001
    [164]S.J. Park, K.S. Lee, G. Bozoklu, Graphene oxide papers modified by divalent ions-Enhancing mechanical properties via chemical cross-linking, ACS Nano, 2008,23:572-578
    [165]Y.X. Xu, H. Bai, G.W. Lu, et al, Flexible Graphene Films via the Filtration of Water-Soluble Noncovalent Functionalized Graphene Sheets, J. Am. Chem. Soc.2008,130:5856-5857
    [166]C. Nethravathi, M. Rajamathi, Chemically modified graphene sheets produced by the solvothermal reduction of colloidal dispersions of graphite oxide, Carbon,2008,46:1994-1998
    [167]R.K. Layek, S. Samanta, D.P. Chatterjee, et al, Physical and mechanical properties of poly(methyl methacrylate)-functionalized graphene/poly (vinylidine fluoride) nanocomposites:Piezoelectric polymorph formation, Polymer,2010,51:5846-5856
    [168]H.L. Tang, M. Pan, S.P Jiang, et al, Highly durable proton exchange membranes for low temperature fuel cells, Electrochimica Acta,2007,52:3895-3900
    [169]C. Yang, S. Srinivasan, A.B. Bocarsly, et al, A comparison of physical properties and fuel cell performance of Nafion and zirconium phosphate/Nafion composite membranes, J. Membr. Sci.,2004,237:145-161
    [170]Y.T. Kim, K. Kim, M. Song, et al, Nafion/ZrSPP composite membrane for high temperature operation of proton exchange membrane fuel cells, Current Applied Physics,2006,6:612-615
    [171]Y.L. Chen, Y.Z. Meng, S.J. Wang, et al, Sulfonated poly(fluorenyl ether ketone) membrane prepared via direct polymerization for PEM fuel cell application, J. Membr. Sci.,2006,280:433-441
    [172]B.J. Liu, D.S. Kim, J. Murphy, et al, Fluorenyl-containing sulfonated poly(aryl ether ether ketone ketone)s for fuel cell applications, J. Membr. Sci.,2006,280:54-64
    [173]N.P. Chen, H. Liang, Proton-conducting membrane composed of sulfonated polystyrene microspheres, poly(vinylpyrrolidone) and poly(vinylidene fluoride), Solid State Ionics,2002,146:377-385
    [174]R.W. Kopitzke, C.A. Linkous, H.R. Anderson, Conductivity and water uptake of aromatic-based proton exchange membrane electrolytes, J. Electrochem. Soc,2000,147:1677-1681
    [175]J.F. Blanco, Q.T. Nguyen, P. Schaetzel, Sulfonation of polysulfones:suitability of the sulfonated materials for asymmetric membrane preparation, J. Appl. Polym. Sci.,2002,84:2461-2473
    [176]邓会宁,许莉,王宇新,磺化杂萘联苯聚醚砜膜的制备及其阻醇和质子导电性能,膜科学与技术,2005,25(4):13-17
    [177]M.H. Chen, T.C. Chiao, T.W. Tseng, Preparation of sulfonated polysulfone/polysulfone and aminated polysulfone/polysulfone blend membranes, J. Appl. Polym. Sci.,1996,61:1205-1209
    [178]V. Deimede, G.A. Voyiatzis, J.K. Kallitsis, et al, Miscibility behavior of polybenzimidazole/sulfonated polysulfone blends for use in fuel cell applications, Macromolecules,2000,33:7609-7617
    [179]C. Hasiotis, V. Deimede, C.K. Kontoyannis, New polymer electrolytes based on blends of sulfonated polysulfones with polybenzimidazole, Electrochimica Acta,2001,46:2401-2406
    [180]G.P. Robertson, D. Serguei, S.D. Mikhailenko, et al, Casting solvent interactions with sulfonated poly(ether ether ketone) during proton exchange membrane fabrication, J. Membr. Sci.,2003,219:113-121
    [181]V.S. Silva, B. Ruffmann, S. Vetter, et al, Characterization and application of composite membranes in DMFC, Catalysis Today,2005,104:205-212
    [182]S.G. Thomas, B. Jochen, F. Georg, et al, Method for producing a membrane used to operate fuel cells and electrolyzers, US Patent, US6355149,2002-03-12
    [183]D.J. Jones, J. Roziere, Recent advances in the functionalisation of polybenzimidazole and polyetherketone for fuel cell applications, J. Membr. Sci.,2001,185:41-58
    [184]Y. Yin, J.H. Fang, YF. Cui, et al, Synthesis, proton conductivity and methanol permeability of a novel sulfonated polyimide from3-(2',4'-diamiphenoxy) propane sulfonic acid, polymer,2003,44:4509-4518
    [185]J.M. Bae, I. Honma, M. Murata, et al, Properties of selected sulfonated polymers as proton-conducting electrolytes for polymer electrolyte fuel cells, Solid State Jonics,2002,147:189-194
    [186]R. Wycisk, P.N. Pintauro, Sulfonated polyphosphazene ion-exchange membranes, J. Membr. Sci,1996,119:155-160
    [187]H.R. Allcock, M.A. Hofmann, C.M. Ambler, et al, Phenyl phosphonic acid functionalized poly(aryloxyphosphazenes) as proton-conducting membranes for direct methanol fuel cells, J. Membr. Sci.,2002,201:47-54
    [188]I. Honma, S. Hirakawa, K. Yamada, et al, Synthesis of organic/inorganic nanocomposites protonic conducting membrane through sol-gel processes, Solid State Ionics,1999,118(1-2):29-36
    [189]H. Nakajima, I. Honrna, Proton-conducting hybrid solid electrolytes for intermediate temperature fuel cells, Solid State Ionics,2002,148:607-610
    [190]蔡雨泉,黄绵延,王宇新等,DMFC用磺化聚醚醚酮/聚苯胺共混型质子交换膜的研究,高分子材料科学与工程,2007,1:246-249
    [191]于景荣,衣宝廉,邢丹敏等,燃料电池用磺化聚苯乙烯膜降解机理及其复合膜的初步研究,高等学校化学学报,2002,23(9):1792-1796
    [192]蒋中林,燃料电池用质子交换膜PAMPS的制备与性能:[硕士学位论文],武汉;武汉理工大学,2005
    [193]J. Kim, B. Kim, B. Jung, Proton conductivities and methanol permeabilities of membranes made from partially sulfonated polystyrene-block-poly (ethylene-ran-butylene)-block-polystyrene copolymers, J. Membr. Sci.,2002,207(1):129-137
    [194]J. Won, S.W. Choi, Y.S. Kang, et al, Structural characterization and surface modification of sulfonated polystyrene-(ethylene-butylene)-styrene triblock proton exchange membranes, J. Membr. Sci.,2003,214(2):245-257
    [195]A. Mokrini, J.L. Acosta, Studies of sulfonated block copolymer and its blends, Polymer,2001,42(1):9-15
    [196]杨洪迁,钱晓良,索进平,燃料电池用质子交换膜,化学通报,2003,6:w034
    [197]X. Zhou, J. Weston, E. Chalkova, et al, High temperature transport properties of polyphosphazene membranes for direct methanol fuel cells, Electrochimica Acta,2003,48:2173-2180
    [198]H.R. Allcock, M.A. Hofmann, C.M. Ambler, et al, Phenyl phosphonic acid functionalized poly(aryloxyphosphazenes) as proton-conducting membranes for direct methanol fuel cells, J. Membr. Sci.,2002,201:47-54
    [199]Q.H. Guo, P.N. Pintauro, H. Tang, et al, Sulfonated and crosslinked polyphosphazene-bases proton-exchange membranes, J. Membr. Sci.,1999,154:175-181
    [200]Y. Tetsuya, K. Kazuhiro, A. Masaharu, Preparation of proton exchange membranes based on crosslinked polytetrafluoroethylene for fuel cell applications, Polymer,2004,45:6569-6573
    [201]P.J. Evans, R.C.T. Slade, J.R. Varcoe, et al, Realisation of siloxane ionomers by mild oxidation of alkylmercaptosiloxanes, J. Mater. Chem.,1999,9:3015-3021
    [202]Q.F. Li, R.H. He, R.W Berg, et al, Water uptake and acid doping of polybenzimidazoles as electrolyte membranes for fuel cells, Solid State Ionics,2004,168:177-185
    [203]R.H. He, Q.F. Li, G. Xiao, et al, Proton conductivity of phosphoric acid doped polybenzimidazole and its composites with inorganic proton conductors, J. Membr. Sci.,2003,226:169-184
    [204]M. David, G. Hans, M. Oscar, Porous polybenzimidazole membranes doped with phosphoric acid:highly proton-conducting solid electrolytes, Chem. Mater.,2004,16:604-607
    [205]R. Bouchet, E. Siebert, Proton conduction in acid doped polybenzimidazole, Solid State Ionics,1999,118:287-299
    [206]O. Nakamura, T. Kodama, I. Ogino, et al, High-conductivity solid proton conductors:dodecamolybdophosphoric acid and dodecatungstophosphoric acid crystals, Chem. Lett.,1979,85:17-18
    [207]K.D. Kreuer, M. Hampele, K. Dolde, et al, Proton transport in some heteropolyacidhydrates:A single crystal PFG-NMR and conductivity study, Solid State Ionics,1988,28&30:589-593
    [208]李俊刚,李源勋,高分子材料,北京:化学工业出版社,2002
    [209]C. Manea, M. Mulder, Characterization of polymer blends of polyethersulfone/sulfonated polysulfone and polyethersulfone/sulfonated polyetheretherketone for direct methanol fuel cell applications, J. Membr. Sci.,2002,206(12):443-453
    [210]J. Kerres, A. Ullrich, F. Meier, et al, Synthesis and characterization of novel acid-base polymer blends for application in membrane fuel cells, Solid State Ionics,1999,125(1-4):243-249
    [211]J. Kerres, Development of ionomer membrane for fuel cells, J. Membr. Sci.,2001,185(1):3-27
    [212]M. Walker, Proton conducting polymers with reduced methanol permeation, J. Appl. Polym. Sci.,1999,74(1):67-73
    [213]吴雪梅,贺高红,顾爽等,化学交联法在质子交换膜中的应用,高分子材料科学与工程,2006,22(4):28-35
    [214]G.D.F. Alelio, Production of synthetic polymeric compositions comprising sulphonated polymerizates of poly-vinyl aryl compounds and treatment of liquid media therewith, US Patent, US2366007,1944-12-26
    [215]J.L. Qiao, N. Yoshimoto, M. Ishikawa, et al, Acetic acid-doped poly(ethylene oxide)-modified poly(methacrylate):a new proton conducting polymeric gel electrolyte, Electrochimica Acta,2002,47:3441-3446
    [216]J.L. Qiao, N. Yoshimoto, M. Ishikawa, Proton conducting behavior of a novel polymeric gel membrane based on poly(ethylene oxide)-grafted-poly(methacrylate),Journal of Power Sources,2002,105:45-51
    [217]B. Bauer, D.J. Jones, J. Roziere, Electrochemical characterisation of sulfonated polyetherketone membranes, J. New Mat. Electrochem. Systems,2000,3:93-98
    [218]G.P. Robertson, S.D. Mikhailenko, W. Keping, Casting solvent interactions with sulfonated poly(ether ether ketone) during proton exchange membrane fabrication, Journal of Membrane Science,2003,219:113-121
    [219]V.S. Silva, B. Ruffmann, S. Vetter, et al, Mass transport of direct methanol fuel cell species insulfonated poly(ether ether ketone) membranes, Electrochimica Acta,2006,51:3699-3706
    [220]V.S. Silva, S. Weisshaar, R. Reissner, et al, Performance and efficiency of a DMFC using non-fluorinated composite membranes operating at low/medium temperatures, Journal of Power Sources,2005,145:485-494
    [221]H.L. Wu, C.M. Chen, F.Y. Liu, et al, Preparation and characterization of poly(ether sulfone)/sulfonated poly(ether ether ketone) blend membranes, European Polymer Journal,2006,42:1688-1695
    [222]S. Kaliaguine, S.D. Mikhailenko, K.P. Wang, et al, Properties of SPEEK based PEMs for fuel cell application, Catalysis Today,2003,82:213-222
    [223]S.M.J. Zaidi, S.D. Mikhailenko, G. Robertson, Proton conducting composite membranes from polyether ether ketone and heteropolyacids for fuel cell applications, Journal of Membrane Science,2000,173:17-34
    [224]H.L. Wu, C.M. Chen, C.H. Li, et al, Sulfonated poly(ether ether ketone)/poly(amide imide) polymer blends for proton conducting membrane, Journal of Membrane Science,2006,280:501-508
    [225]R.K. Nagarale, G.S. Gohil, K. Vinod, Sulfonated poly(ether ether ketone)/polyaniline composite proton-exchange membrane, Journal of Membrane Science,2006,280:389-396
    [226]P. Krishnan, J.S. Park, T.H. Yang, et al, Sulfonated poly(ether ether ketone)-based composite membrane for polymer electrolyte membrane fuel cells, Journal of Power Sources,2006,163(1):2-8
    [227]R.T.S.L. Muthu, M.H. Jochen, K. Schlenstedt, et al, Sulphonated poly(ether ether ketone) copolymers:Synthesis,characterisation and membrane properties, Journal of Membrane Science,2005,261:27-35
    [228]黄绵延,DMFC用改性磺化聚芳醚酮质子交换膜的研究:[博士学位论文],天津;天津大学,2006
    [229]S.M.J. Zaidi, S.D. Mikhailenko, GP. Robertson, et al, Proton conducting composite membranes from polyether ether ketone and heteropolyacids for fuel cell applications, J. Membr. Sci,2000,173:17-34
    [230]M.L. Ponce, L. Prado, B. Ruffmann, et al, Reduction of methanol permeability in polyetherketone-heteropolyacid membranes, J. Membr. Sci.,2003,217:5-15
    [231]GW. Zhang, Z.T. Zhou, Organic/inorganic composite membranes for applicationin in DMFC, J. Membr. Sci.,2005,261:107-113
    [232]C.H. Rhee, H.K. Kim, H. Chang, et al, Nafion/sulfonated montmorillonite composite:a new concept electrolyte membrane for direct methanol fuel Cells, Chem. Mater.,2005,17:1691-1697
    [233]Z.G Shao, H.F. Xu, M.Q. Li, et al, Hybrid Nafion-inorganic oxides membrane doped with heteropolyacids for high temperature operation of proton exchange membrane fuel cell, Solid State Ionics,2006,177:779-785
    [234]高启军,DMFC用改性磺化聚醚醚酮质子交换膜的研究:[博士学位论文],天津;天津大学,2009
    [235]X. Jin, M.T. Bishop, T.S. Ellis, et al, A sulphonated poly(aryl ether ketone), Br. Polym. J.,1985,17:4-10
    [236]吴洪,王宇新,王世昌,聚偏氟乙烯-Nafion共混膜的制备及阻醇质子导电性能研究,高分子学报,2002,4:540-543
    [237]邓会宁,含有杂萘联苯的聚芳醚电解质膜研究:[博士学位论文],天津;天津大学,2004
    [238]M. Mulder, Basic Principles of Membrane Technology, Kluwer Academic Publishers, Netherlands,1996
    [239]徐又一,徐志康,高分子膜材料,北京:化学工业出版社,2005
    [240]吕晓龙,刘惠玉,多孔膜的污染及其控制方法,天津工业大学学报,2004,23(1):18-22
    [241]郑成,膜的污染及其防治,膜科学与技术,1997,17(2):5-14
    [242]陆晓峰,卞晓锴,超滤膜的改性研究及应用,膜科学与技术,2003,23(4):97-102
    [243]G. Morel, N. Qllazzanj, A. Graciaa, et al, Surfactant modified ultrafiltration for nitrate ion removal, J. Membr. Sci.,1997,134:47-57
    [244]D.S. Wavhal, E.R. Fisher, Hydrophilic modification of polyethersulfone membranes by low temperature plasma-induced graft polymerization, J. Membr. Sci.,2002,209:255-269
    [245]M. Taniguchi, J.E. Killduff, G. Belfort, Low fouling synthetic membranes by UV-assisted graft polymerization:monomer selection to mitigate fouling by natural organic matter, J. Membr. Sci.,2003,222:59-70
    [246]J.J. Qin, Y.M. Cao, Y.Q. Li, et al, Hollow fiber ultrafiltration membranes made from blends of PAN and PVP, Separation and Purification Technology,2004,36:149-155
    [247]Q.-Z. Zheng, P. Wang, Y.-N. Yang, Rheological and thermodynamic variation in polysulfone solution by PEG introduction and its effect on kinetics of membrane formation via phase-inversion process, J. Membr. Sci.,2006,279:230-237
    [248]Y. Liu, G.H. Koops, H. Strathmann, Characterization of morphology controlled polyethersulfone hollow fiber membranes by the addition of polyethylene glycol to the dope and bore liquid solution, J. Membr. Sci.,2003,223:187-199
    [249]M.L. Luo, J.Q. Zhao, W. Tang, et al, Hydrophilic modification of poly(ether sulfone) ultrafiltration membrane surface by self-assembly of TiO2nanoparticles, Applied Surface Science,2005,249:76-84
    [250]T.H. Bae, T.M. Tak, Effect of TiO2nanoparticles on fouling mitigation of ultrafiltration membranes for activated sludge filtration, J. Membr. Sci.,2005,249:1-8
    [251]J.J. Qin, Y.M. Cao, Y.Q. Li, et al, Hollow fiber ultrafiltration membranes made from blends of PAN and PVP, Separation and Purification Technology,2004,36:149-155
    [252]H. Matsuyama, T. Maki, M. Teramoto, et al, Effect of PVP additive on porous polysulfone membrane formation by immersion precipitation method, Sep. Sci. Technol.,2003,38:3449-3458
    [253]Y. Q. Wang, Y. L. Su, Q. Sun, et al, Improved permeation performance of Pluronic F127-polyethersulfone blend ultrafiltration membranes, J. Membr. Sci.,2006,282:44-51
    [254]W.R. Bowen, T.A. Doneva, H.B. Yin, Polysulfone-sulfonated poly(ether ether) ketone blend membranes:systematic synthesis and characterization, J. Membr. Sci.181(2001)253-263
    [255]G. Arthanareeswaran, D. Mohan, M. Raajenthiren, Preparation and performance of polysulfone-sulfonated poly(ether ether ketone) blend ultrafiltration membranes. Part I, Appl. Surf. Sci.,2007,253:8705-8712
    [256]G. Arthanareeswaran, K. Srinivasan, R. Mahendran, et al, Studies on cellulose acetate and sulfonated poly(ether ether ketone) blend ultrafiltration membranes, Eur. Polym. J.,2004,40:751-762
    [257]G. Arthanareeswaran, P. Thanikaivelan, M. Raajenthiren, Fabrication and Characterization of CA/PSf/SPEEK Ternary Blend Ultrafiltration Membranes, Ind. Eng. Chem. Res.2008,47:1488-1494
    [258]G. Arthanareeswaran, P. Thanikaivelan, M. Raajenthiren, Preparation and characterization of poly (methyl methacrylate) and sulfonated poly(ether ether ketone) blend ultrafiltration membranes for protein separation applications, Materials Science and Engineering C,2009,29(1):246-252
    [259]L. Li, J. Zhang, Y Wang, Sulfonated poly(ether ether ketone) membranes for direct methanol fuel cell, J. Membr. Sci.,2003,226:159-167
    [260]Z. Fan, Z. Wang, M. Duan, et al, Preparation and characterization of polyaniline/polysulfone nanocomposite ultrafiltration membrane, J. Membr. Sci.,2008,310:402-408
    [261]J. Chen, J. Li, Z.-P. Zhao, et al, Nanofiltration membrane prepared from polyacrylonitrile ultrafiltration membrane by low-temperature plasma:5. Grafting of styrene in vapor phase and its application, Surf. Coat. Technol.2007,201:6789-6792
    [262]武少华,何宏,袁淑琴,等,氯化钡法及其在聚砜超滤膜性能测定中的应用,水处理技术,1995,21(4):193-197
    [263] C.A. Smolders, A.J. Reuvers, R.M. Boom, I.M. Wienk, Microstructures inphase inversion membranes. Part1. Formation of macrovoids, J. Membr. Sci.1992,73:259-275
    [264] L. Li, J. Zhang, Y. Wang, Sulfonated poly(ether ether ketone) membranes fordirect methanol fuel cell, J. Membr. Sci.,2003,226:159-167
    [265] C.J. Sajitha, R. Mahendran, D. Mohan, Studies on cellulose acetate-carboxylated polysulfone blend ultrafiltration membranes-Part I, Eur. Polym. J.2002,38:2507-2511
    [266] S.T. Kelly, A.L. Zydney, Mechanisms for BSA fouling during microfiltration, J.Membr. Sci.,1995,107:115-127
    [267] M.R. Teixeira, M.J. Rosa, The impact of the water background inorganic matrixon the natural organic matter removal by nanofiltration, J. Membr. Sci.,2006,279:513-520
    [268] D.-X. Wang, X.-L. Wang, Y. Tomi, et al, Modeling the separation performanceof nanofiltration membranes for the mixed salts solution, J. Membr. Sci.,2006,280:734-743
    [269] A. Akbari, S. Desclaux, J.C. Rouch, et al, Application of nanofiltration hollowfibre membranes, developed by photografting, to treatment of anionic dyesolutions, J. Membr. Sci.,2007,297:243-252
    [270] A. Favre-Réguillon, G. Lebuzit, D. Murat,et al, Selective removal of dissolveduranium in drinking water by nanofiltration, Water Res.,2008,42:1160-1166
    [271] K. Moons, B.V. Bruggen, Removal of micropollutants during drinking waterproduction from surface water with nanofiltration, Desalination,2006,199:245-247
    [272] R. Ferrarini, A. Versari, S. Galassi, A preliminary comparison betweennanofiltration and reverse osmosis membranes for grape juice treatment, J.Food. Eng.,2001,50:113-116
    [273] K.Y. Wang, Y. Xiao, T.-S. Chung, Chemically modified polybenzimidazolenanofiltration membrane for the separation of electrolytes and cephalexin,Chem. Eng. Sci.,2006,61:5807-5817
    [274] Y.J. Jung, Y. Kiso, R.A.A.B. Othman, et al, Rejection propertied of aromaticpesticides with a hollow-fiber NF membrane, Desalination,2005,180:63-71
    [275] P. Ahmadiannamini, X. Li, W. Goyens, et al, Multilayered PEC nanofiltrationmembranes based on SPEEK/PDDA for anion separation, J. Membr. Sci.360(2010)250-258
    [276] J. Wang, Y. Yao, Z. Yue, et al, Preparation of polyelectrolyte multilayer filmsconsisting of sulfonated poly (ether ether ketone) alternating with selectedanionic layers, J. Membr. Sci.,2009,337:200-207
    [277] L. Li, B. Wang, H. Tan, et al, A novel nanofiltration membrane prepared withPAMAM and TMC by in situ interfacial polymerization on PEK-Cultrafiltration membrane, J. Membr. Sci.,2006,269:84-93
    [278] B. Tang, Z. Huo, P. Wu, Study on a novel polyester composite nanofiltrationmembrane by interfacial polymerization of triethanolamine (TEOA) andtrimesoyl chloride (TMC): I. Preparation, characterization and nanofiltrationproperties test of membrane, J. Membr. Sci.,2008,320:198-205
    [279] L. Li, S. Zhang, X. Zhang, Preparation and characterization ofpoly(piperazineamide) composite nanofiltration membrane by interfacialpolymerization of3,3′,5,5′-biphenyl tetraacyl chloride and piperazine, J.Membr. Sci.,2009,335:133-139
    [280] Z.-P. Zhao, J. Li, D. Wang, et al, Nanofiltration membrane prepared frompolyacrylonitrile ultrafiltration membrane by low-temperature plasma:4.grafting of N-vinylpyrrolidone in aqueous solution, Desalination,2005,184:37-44
    [281] H. Deng, Y. Xu, Q. Chen, et al, High flux positively charged nanofiltrationmembranes prepared by UV-initiated graft polymerization of methacrylatoethyltrimethyl ammonium chloride (DMC) onto polysulfone membranes, J. Membr.Sci.,2011,366:363-372
    [282] C. Qiu, F. Xu, Q.T. Nguyen, et al, Nanofiltration membrane prepared fromcardo polyetherketone ultrafiltration membrane by UV-induced graftingmethod, J. Membr. Sci.,2005,255:107-115
    [283] W.-J. Lau, A.F. Ismail, Effect of SPEEK content on the morphological andelectrical properties of PES/SPEEK blend nanofiltration membranes,Desalination,2009,249:996-1005
    [284] W.R. Bowen, T.A. Doneva, H.B. Yin, Separation of humic acid from a modelsurface water with PSU/SPEEK blend UF/NF membranes, J. Membr. Sci.,2002,206:417-429
    [285] X.F. Li, S.D. Feyter, I.F.J. Vankelecoma, Poly(sulfone)/sulfonated poly(etherether ketone) blend membranes: Morphology study and application in thefiltration of alcohol based feeds, J. Membr. Sci.,2008,324:67-75
    [286] W.J. Lau, A.F. Ismail, Theoretical studies on the morphological and electricalproperties of blended PES/SPEEK nanofiltration membranes using differentsulfonation degree of SPEEK, J. Membr. Sci.,2009,334:30-42
    [287] F.G. Wilhelm, I.G.M. Pünt, N.F.A. van der Vegt, et al, Cation permeablemembranes from blends of sulfonated poly(ether ether ketone) and poly(ethersulfone), J. Membr. Sci.,2002,199:167-176
    [288] W.R. Bowen, S.Y. Cheng, T.A. Doneva, et al, Manufacture andcharacterisation of polyetherimide/sulfonated poly(ether ether ketone) blendmembranes, J. Membr. Sci.,2005,250:1-10
    [289] L. Li, J. Zhang, Y. Wang, Sulfonated poly(ether ether ketone) membranes fordirect methanol fuel cell, J. Membr. Sci.,2003,226:159-167
    [290] R.Y.M. Huang, P. Shao, C.M. Burns, et al, Sulfonation of poly(ether etherketone)(PEEK): Kinetic study and characterization, J. Appl. Polym. Sci.,2001,82:2651-2660
    [291] K. Boussu, C. Vandecasteele, B.V. Bruggen, Study of the characteristics andthe performance of self-made nanoporous polyethersulfone membranes,Polymer,2006,47:3464-3476
    [292] C. Wu, S. Zhang, C. Liu,et al, Preparation, characterization and performance ofthermal stable poly(phthalazinone ether amide) UF membranes, J. Membr. Sci.2008,311:360-370
    [293] W.-L. Chou, M.-C. Yang, Effect of coagulant temperature and composition onsurface morphology and mass transfer properties of cellulose acetate hollowfiber membranes, Polym. Adv. Technol.2005,16:524-532
    [294] C. Wu, S. Zhang, C. Liu, et al, Preparation, characterization and performance ofthermal stable poly(phthalazinone ether amide) UF membranes, J. Membr. Sci.2008,311:360-370
    [295] S.-C. Fan, Y.-C. Wang, C.-L. Li, et al, Effect of coagulation media on membraneformation and vapor permeation performance of novel aromatic polyamidemembrane, J. Membr. Sci.,2002,204:67-79
    [296] S.P. Deshmukh, K. Li, Effect of ethanol composition in water coagulation bathon morphology of PVDF hollow fiber membrane, J. Membr. Sci.1998,150:75-85
    [297] S. Yang, Z. Liu, Preparation and characterization of polyacrylonitrileultrafiltration membranes, J. Membr. Sci.,2003,222:87-98
    [298] X. Jian, Y. Dai, G. He, et al, Preparation of UF and NF poly (phthalazine ethersulfone ketone) membranes for high temperature application, J. Membr. Sci.1999,161:185-191

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700