用户名: 密码: 验证码:
苯并噁唑类金属离子探针及金催化的氧化加成反应机理的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
荧光分子开关作为超分子化学的重要组成部分,近年来得到了快速发展并成为各国化学家的研究热点。本论文旨在合成苯并噁唑荧光受体,在该类物质的功能性分子设计、金属离子识别方面开展研究。
     合成了一系列含有苯并噁唑荧光基团的氧杂和氮杂18-冠-6醚以及开链聚醚分子探针,通过金属离子滴定测试了它们的荧光光谱变化,测试结果表明,这两个冠醚化合物对常见金属阳离子虽然都有一定的络合作用,但是没有特定的选择性。
     金催化下的有机化学反应近几年成为研究的热点,近年来,随着对金催化剂研究的逐步深入,发现金催化剂在催化反应中具有的较高催化活性和较高的反应选择性,例如在氢化反应,氧化反应,以及环化反应中,都表现出了与传统催化剂不一样的特点。
     我们通过应用密度泛函理论(DFT),在B3LYP水平下,探讨了配体对于Au(Ⅰ)配合物和芳卤进行氧化加成反应的影响,为设计合成高催化活性的Au(Ⅰ)催化剂提供理论依据。我们设计了Au(Ⅰ)配合物和芳卤氧化加成的反应模型并计算了它们反应势能图。在芳卤和三个Au(Ⅰ)配合物[Au(ppy)]、[Au(dpe)]+和[Au(NHC)Cl]的氧化加成反应中,与[Au(ppy)]的反应能垒最低。这主要是由于富电子的N原子在氧化加成过程中可以与金原子中心配合,大大稳定了反应的过渡态TSppy(2-3)和氧化加成产物3ppy。对于阳离子Au(Ⅰ)配合物[Au(dpe)]+,由于它的缺电子性质,导致了它和芳卤进行氧化加成时要经历的过渡态TSdpe(2-3)和氧化加成产物3dpe的相对吉布斯自由能都比较高,使得氧化加成反应的能垒和产物的稳定性大大降低,不利于反应的顺利进行。由于线性的[Au(NHC)Cl]与芳卤进行氧化加成反应时需要一个很大的变形能,使得反应的能垒急剧升高,阻碍了反应的进行。
As an important branch of the supermolecular chemistry, the fluorescence mo-lecular switch has developed rapidly and attracted interests by the chemists. In thisdissertation, the functional design and the molecular recognition of benzoxazole fluo-rescent receptors were studied.
     A series of fluorescent probes with double benzoxazole fluorescen groups linkedcrown ether or open chain polyester were designed and synthesed. According to themetal ion titration test, it was found that there is no good selectivity to the particularmetal ion and the further identification was given up.
     Gold catalysts have attracted considerable interests in recent years because oftheir high activity and selectivity in catalyzed reactions. They showed different chrac-teristics in many reactions, such as hydrogenation, oxidation and cycloaddition reac-tions, etc.
     Here, DFT calculations under B3LYP were performed to investigated the role theligands affecting the oxidative addition reaction of the aryl halides to Au(Ⅰ) complexes.We provide a theoretical basis for the catalysts designing. The results show that thecomplex [Au (ppy)] is prefer to the oxidative addition reactions of aryl halide com-pared to the complexes [Au(dpe)]+and [Au(NHC)Cl]. The coordination of elec-tron-rich nitrogen to gold center play a key role to stabilize the transition stateTSppy(2-3)and the oxidative addition products3ppy. The electron-deficient feature ofcomplex [Au(dpe)]~+increase the relative energies of the transition states TSdpe(2-3)andthe oxidative additive products3dpe. For the complex [Au(NHC)Cl], the great defor-mation-energies result in the very high barriers for the oxidative addition reactions ofaryl halide.
引文
[1] Cram, D.J.; Cram, J.M. Host-Guest Chemistry, Science,1974,183,803-809.
    [2] Pedersen, C. J.; Frensdorff, H. K. Macrocyclic Polyethers and Their Complexes,Angew. Chem. Int. Ed.,1972,11,16-25.
    [3] Lehn, J. M.; Sauvage, J. P. Cryptates. XVI.[2]-Cryptates. Stability and selec-tivity of alKcali and alkcaline-earth macrobicyclic complexes, J. Am. Chem.Soc.,1975,97,6700-6707.
    [4] Dietrich, B.; Lehn, J. M.; Sauvage, J. P. Les Cryptates, Tetrahedron Lett.,1969,10,2889-2892.
    [5]刘育,尤长城,张衡益,超分子化学:合成受体的分子识别与组装,天津:南开大学出版社,2001.
    [6] Lehn, J. M. Supramolecular chemistry, Science,1993,260,1762-1763.
    [7] Baker, M. D.; Godber, J.; Ozin, G. A. Watching silver clusters grow in zeolites:direct probe Fourier transform-far-infrared spectroscopy of the red form of fullysilver ion exchanged zeolite A, J. Phys. Chem.,1985,89,2299-2304.
    [8] Müller, A.; Reuter, H.; Dillinger S. Supramolecular Inorganic Chemistry: SmallGuests in Small and Large Hosts, Angew. Chem. Int. Ed.,1995,34,2328-2361.
    [9] Baizani, V.; Scandola, F. Supramolecular Photochenistry, New York: EllisHorwood, I990.
    [10] Lehn, J. M. Supramolecular chemistry-Concept and Perspective, Germany:VCH,1995.
    [11] de Silva, A. P.; Gunatatne, H. Q. N.; Gunnlauggson, T. et al., Signaling Rec-ognition events with fluorescent sensors and switches, Chem. Rev.,1997,97,1515-1566.
    [12] Balzani, V. Supermolecular photochemistry-Forword, New J. Chem.,1996,20,723-724.
    [13] Ramamurthy, V.; Schanze, K. S. Optical Sensors and Switches, Molecular andSupermolecular Photochemistry, New York, Marcel Dekker, Inc.,2001.
    [14] Trautwein, A. X. Bioorganic chemistry, Wiley-VCH, Weinheim,1997.
    [15] Merian, E. Metals and their compounds in the environment, Wiley-VCH,Weinheim,1991.
    [16] Haugland, R. P. Handbook of Fluorescent Probes and Research Products, NinthEdition, Molecular Probes, Inc.,2002,827-848.
    [17] Klein, G.; Kaufmann, D.; Schürch, S. et al. A fluorescent metal sensor based onmacrocyclic chelation, Chem. Commun.,2001,561-562.
    [18]黄晓峰,张远强,张英起,荧光探针技术,北京:人民军医出版社,2004,1–3.
    [19]许金钩,王尊本,荧光分析法,北京:科学出版社,2006,6–7.
    [20]陈国珍等,荧光分析法,北京:科学出版社,1990,1–3.
    [21] Schulman, S. G. Fluorescence and Phosphorescence Spectroscopy, Physico-chemical Principles and Practice, New York: Oxford,1977.
    [22]张华山,王红,赵媛媛,分子探针与检测试剂,北京:科学出版社,2002,163–165.
    [23]许金钩,王尊本,荧光分析法,北京:科学出版社,2006,21–36.
    [24]西川泰治,平木敬三,分析化学译刊,1987,5–6,157.
    [25] Berlman, I. B. Handbook of Fluorescence Spectra of Aromatic Molecules, NewYork: Acad. Press,1965.
    [26] Markuszewski, R.; Diehl, H. Talanta.,1987,34,739.
    [27] Ates, S.; Yildiz, Y. et al. J. Chem. Soc. Farady Trans. I.,1983,79,2857.
    [28] Wehry, E. L. Ed. Modern Fluorescence Spectroscopy, Vol.1. New York: Ple-num Press,1976.
    [29] Lakowicz, J. R. Principles of Fluorescence Spectroscopy, New York: PlenumPress,1983.
    [30] Lakowicz, J. R. Topics in Fluorescence Spectroscopy: Probe Design andChemical Sensing, Vol.4. New York: Plenum Press,1994.
    [31] Baeyens, W. R. G.; De Keukeleire, D.; Korkidis, K. Luminescence Techniquesin Chemical and Biochemical Analysis, New York: Marcel Dekker,1991.
    [32] Wolfbeis, O. S. Fluorescence Spectroscopy: New Methods and Applic.ations,Berlin Heidelberg: Springer-Verlag,1993.
    [33]郭尧君,荧光实验技术及其在分子生物学中的应用,北京:科学出版社,1983,16–20.
    [34]赵文峰,陈朗星,何锡文,杯芳烃荧光识别试剂研究进展,化学试剂,2006,28,269–273.
    [35] Trautwein, A. X. Bioorganic Chemistry, Wiley-VCH, Weinheim,1997.
    [36] Bissell, R. A.; de Silva, A. P.; Gunaratne, H. Q. N.; Lynch, P. L. M.; Maguire, G.E. M.; Sandanayake, K. R. A. S. Molecular fluorescent signaling with“fluor–spacer–receptor” systems: approaches to sensing and switching devicesvia supramolecular photophysics, Chem. Soc. Rev.,1992,21,187–195.
    [37] Wiskur, S. L.; Ait-Haddou, H.; Lavigne, J. J.; Anslyn, E. V. Teaching old in-dicators new tricks, Acc. Chem. Res.,2001,34,963–972.
    [38] Cram, D. J. The design of molecular hosts, guests and their complexes, Angew.Chem. Int. Ed.,1988,27,1009–1020.
    [39] Hartley, J. H.; James, T. D.; Ward, C. J. Sythetic receptors, J. Chem. Soc.,Perking Trans. I,2000,3155–3184.
    [40] Inouye, M. Artificial-signaling receptors for biologically important chemicalspecies, Coord. Chem. Rev.,1996,148,265–283.
    [41] Linton, B.; Hamilton, A. D. Formation of artificial receptors by me-tal–templated self–assembly, Chem. Rev.,1997,97,1669–1680.
    [42] Wong, C. H. Mimics of complex carbohydrates recognized receptors, Acc.Chem. Res.,1999,32,376–385.
    [43] Lavigne, J. J.; Anslyn, E. V. Sensing a paradigm shift in the field of molecularrecognition from selective to diferential receptors, Angew. Chem. Int. Ed.,2001,40,3118–3130.
    [44] Gale, P. A.; Anzenbacher, J. P.; Sessler, J. L. Calixpyrroles II, Coord. Chem.Rev.,2001,222,57–102.
    [45] Kovbasyuk, L.; Kramer, R. Allosteric supermolecular recptors and catalysts,Chem. Rev.,2004,104,3161–3187.
    [46] Nishikiori, S. I.; Yoshikawa, H.; Sano, Y. et al. Inorganic–organic hybrid mo-lecular architectures of cyanometalate host and organic guest systems: specificbehavior of the guests, Acc. Chem. Res.,2005,38,227–234.
    [47] Ueno, A. Review of fluorescent cyclodextrins for molecular sensing, Su-pramolecular Science,1996,3,31–36.
    [48]吴寿昌,冠醚化学,北京:科学出版社,1992.
    [49]小田良平,庄野利之,田夫盐夫,冠醚化学,北京:原子能出版社,2002,198,5.
    [50] Bradshaw, J. S.; Izat, R. M. Crown ethers: the search for selective ion ligatingagents, Acc. Chem. Res.,1997,30,338–345.
    [51] Schmidtchen, F. P.; Berger, M. Artificial organic host molecules for anions,Chem. Rev.,1997,97,1609–1646.
    [52] Beer, P. D. Transition–metal receptor systems for the selective recognition andsensing of anionic guest species, Acc. Chem. Res.,1998,31,71–80.
    [53] Tobey, S. L.; Anslyn, E. V. Synthetic receptors for anion recognition, J.Am.Chem. Soc. Natl. Meet. Chicago, USA, Aug.,2001,26–31.
    [54] Beer, P. D.; Gale, P. A. Anion recognition and sensing: the state of the art andfuture perspectives, Angew. Chem. Int. Ed.,2001,40,486–516.
    [55] Schmidtchen, F. P. Artificial host molecules for the sensing of anions, Top. Curr.Chem.,2005,255,1–29.
    [56] Stibor, I. Chiral recognition of anions, Top. Curr. Chem.,2005,255,31–63.
    [57] Lhotlah, P. Anion receptors based on calixarenes, Top. Curr. Chem.,2005,255,65–95.
    [58] Beer, P. D.; Bayly, S. R. Anion sensing by metal–based receptors, Top. Curr.Chem.,2005,255,125–162.
    [59] Suksai, C.; Tuntulani, T. Chromogenic anion sensors, Top. Curr. Chem.,2005,255,163–198.
    [60] Book, R. J. T.; Tobey, S. L.; Anslyn, E. V. Abiotic guanidinium receptors foranion molecular recognition and sensing, Top. Curr. Chem.,2005,255,199–229.
    [61] Zhang, X. X.; Bradshaw, J. S.; Lzatt, R. M. Enantiomeric recognition of aminecompounds by chiral macrocyclic receptors, Chem. Rev.,1997,97,3313–3361.
    [62] Ogoshi, H.; Mizutani, T. Multifunctional and chiral porphyrins: model receptorsfor chiral recognition, Acc. Chem. Res.,1998,31,81–89.
    [63] Yang, D.; Li, X.; Fan, Y. F. et al. Enantioselective recognition of carboxylates: areceptor derived from α-aminoxy acids functions as a chiral shift reagent forcarboxylic acids, J. Am. Chem. Soc.,2005,127,7996–7997.
    [64] Kim, J. S.; Quang, D. T. Calixarene-derived fluorescent probes, Chem. Rev.,2007,107,3780–3799.
    [65] Marcus, R. A. Electron transfer reactions in chemistry: theory and experiment,Angew. Chem. Int. Ed.,1993,32,1111–1121.
    [66] Grampp, G. The marcous inverted region from theory to experiment, Angew.Chem. Int. Ed.,1993,32,691–693.
    [67] Wasielewski, M. R. Photoinduced electron transfer in supremolecular systemsfor artificial photosynthesis, Chem. Rev.,1992,92,435–461.
    [68] Kavarnos, G. J. Fundamental of photoinduced electron transfer, New York:VCH; Weinheim,1993.
    [69] Kavarnos, G. J.; Turro, N. J. Photosensitization by reversible electron transfer:theories, experimental evidence, and example, Chem. Rev.,1986,86,401–449.
    [70] de Silva, A. P.; de Silva, S. A. Fluorescent signaling crown ethers;‘switchingon’ of fluorescence by alKcali metal ion recognition and binding in situ, J. Chem.Soc. Chem. Commun.,1986,1709-1710.
    [71] de Silva, A. P.; Sandanayake, K. R. A. S. Fluorescence off-on signalling uponlinear recognition and binding of α, ω-alkanediyldiammonium ions by9,10-Bis{(1-aza-4,7,10,13,16-pentaoxacyclooctadecyl)methyl}anthracene, Angew.Chem. Int. Ed.,1990,29,1173–1175.
    [72] Wang, Y. C.; Morawetz, H. Studies of intramolecular excimer formation indibenzyl ether, dibenzylamine, and its derivatives, J. Am. Chem. Soc.,1976,98,3611–3615.
    [73] Shizuka, H.; Nakamura, M.; Morita, T. Intramolecular fluorescence quenchingof phenylalkylamines, J. Phys. Chem.,1979,83,2019–2024.
    [74] Nakaya, T.; Tomomoto, T.; Imoto, M. Plastic scintillators. III. The synthesis ofsome anthracene derivatives as wavelength shifters in plastic scintillators, Bull.Chem. Soc. Jpn.,1966,39,1551–1556.
    [75] Selinger, B. K. Fluorescence quenching of excited state donor-acceptor pairs insurfactant micelles during a pH titration, Aust. J. Chem.,1977,30,2087–2090.
    [76] James, T. D.; Sandanayake, K. R. A. S.; Shinkai, S. A glucose-selective mo-lecular fluorescence sensor, Angew. Chem. Int. Ed.,1994,33,2207–2209.
    [77] James, T. D.; Sandanayake, K. R. A. S.; Shinkai, S. Novel photoinduced elec-tron-transfer sensor for saccharides based on the interaction of boronic acid andamine, J. Chem. Soc., Chem. Commun.,1994,4,477–478.
    [78] Tsien, R. Y. In optical methods in cell physiology, New York: Wiley,1986.
    [79] Delmond, S.; Létard, J. F.; Lapouyade, R. et al. Cation-triggering intramolecularcharge transfer and fluorescence red-shift in intrinsic fluorescence probes, NewJ. Chem.,1996,20,861-869.
    [80] Rurack, K.; Danel, A.; Rotkiewicz, K. et al.,1,3-Diphenyl-1H-pyrazolo [3,4-benzen] quinoline: A Versatile Fluorophore for the Design of Brightly Emis-sive Molecular Sensors, Org. Lett.,2002,4,4647-4650.
    [81] Kolimannsberger, M.; Rurack, K.; Resch-Genger, U. et al., Ultrafast chargetransfer in amino-substituted boron dipyrromethene dyes and its inhibition bycation complexation: a new design concept for highly sensitive fluorescentprobes, J. Phys. Chem. A.,1998,102,10211-10220.
    [82] Harootunian, A. T.; Kao, J. P.; Eckert, B. K.; Tsien, R. Y. Fluorescence ratioimaging of cytosolic free Na+in individual fibroblasts and lymphocytes, J. Biol.Chem.,1989,264,19458–19467.
    [83] Maruyama, S.; Kikuchi, K.; Hirano, T. et al. A novel, cell-permeable, fluores-cent probe for ratiometric imaging of Zinc ion, J. Am. Chem. Soc.,2002,124,10650–10651.
    [84] Delmond, S; Letard, J. F.; Lapouyade, R. et al. Cation-triggered photoinducedintramolecular charge transfer and fluorescence red-shift in fluorescence probes,New J. Chem.,1996,20,861–869.
    [85] Shionoya, M.; Furuta, H.; Lynch, V.; Harriman, A.; Sessler, J. L. Diprotonatedsapphyrin: a fluoride selective halide anion receptor, J. Am. Chem. Soc.,1992,114,5714–5722.
    [86] Ramachandram, B.; Joseph, R. L.; Chris, D. G. Enhanced fluorescence cyanidedetection at physiologically lethal levels: reduced ICT-based signal transduction,J. Am. Chem. Soc.,2005,127,3635–3641.
    [87] Grabowski, Z. R.; Dobkowski, J. Twisted intramolecular charge transfer (TICT)excited states: energy and molecular structure, Pure Appl. Chem.,1983,55,245-252.
    [88] Rettig, W. Charge seperation in excited states of decoupled system-TICTcompounds and implications regarding the development of new laser dyes andthe primary processes of vision and photosynthesis, Angew. Chem. Int. Ed.,1986,25,971-988.
    [89] Beer, P. D.; Kocian, O.; Mortimer, R. J.; Ridgway, C. Syntheses, coordination,spectroscopy and electropolymerisation studies of new alkynyl and vinyl linkedbenzo-and aza-crown ether–bipyridyl ruthenium(II) complexes. Spectro-chemical recognition of group IA/IIA metal cations, J. Chem. Soc., Chem.Commun.,1991,20,1460–1463.
    [90] Shen, Y.; Sullivan, B. P. A versatile preparative route to5-substituted-1,10-phenanthroline ligands via1,10-phenanthroline5,6-epoxide, Inorg. Chem.,1995,34,6235–6236.
    [91] Parker, D.; Willams, J. A. G. Luminescence behaviour of cadmium, lead, zinc,copper, nickel and lanthanide complexes of octadentate macrocyclic ligandsbearing naphthyl chromophores, J. Chem. Soc., Perkin Trans.2,1995,7,1305-1314.
    [92] Yang, J. S.; Lin, C. S.; Hwang, C. Y. Cu2+-Induced blue shift of the pyreneexcimer emission: a new signal transduction mode of pyrene probes, Org. Lett.,2001,3,889–892.
    [93] Latham, H. G.; May, Jr. E. L.; Mosettig, E. Studies in the Anthracene Series. VI.Derivatives of1,2,3,4-Tetrahydroanthracene, J. Am. Chem. Soc.,1948,70,1079-1081.
    [94]刘育,张衡益等,冠醚的分子设计及其识别性质研究进展,有机化学,2002,22,91-100.
    [95]胡旭波,钟振林,卢雪然等,杯环冠醚研究进展,化学通报,1997,4,18-25.
    [96]高明章,杨奕群等,手性冠醚的研究进展,有机化学,2001,21,477-484.
    [97]李卫平,刘秀芳,徐汉生等,硒杂冠醚的研究进展,化学通报,1995,7,7-14.
    [98] Stock, H. T., Kellogg R. M., Syntheses of enantiomerically pure thiocrownethers derived from1,1'-binaphthalene-2,2'-diol, J. Org. Chem.,1996,61,3093-3105.
    [99]徐汉生,李卫平,刘秀芳等,碲杂冠醚及其铂配合物的合成,化学学报,1994,52,386-390.
    [100] Pedersen, C. J., Frenssdorff, H. K., Macrocyclic polyethers and their complexes,Angew. Chem. Int. Ed.,1972,11,16-25.
    [101] Dietrich B, Viout P, Lehn J-M., Macrocyclic chemistry-aspects of organic andinorganic supramolecular chemistry, New York, VCH,1993.
    [102]韩建荣,张衡益和刘育,双臂式苯并-15-冠-5的合成及其对金属离子的选择键合,高等学校化学学报,2005,26,1273-1276.
    [103] C. J. Pedersen, Cyclic polyethers and their complexes with metal salts, J. Am.Chem. Soc.,1967,89,2495-2496.
    [104] Michael D. Brown, William Levason and David C. Murray, Primary and sec-ondary coordination of crown ethers to scandium (III). Synthesis, properties andstructures of the reaction products of ScCl3(thf)3, ScCl3·6H2O andSc(NO3)3·5H2O with crown ethers, J.Chem. Soc., Dalton Trans.,2003,5,857-865.
    [105] Timko J. M., Moore s. s., Walba D.M. et al., Host-guest complexation.2.Structural units that control association constants between polyethers andtert-butylammonium salts, J. Am. Chem. Soc.,1977,99,4207-4219.
    [106]张伯生,魏俊发,光谱实验室,二苯并18-冠-6配合物[NH4(DB18-C-6)]2[Pd(SCN)4]的合成与结构分析,2003,4,73-76.
    [107]董文魁,杨汝栋,稀土(Ш)(4',5'-二溴苯并-15-冠-5)配合物的制备及表征,兰州大学学报(自然科学版),2000,36,48-53.
    [108]贺媛,魏俊发,窦建民,光谱实验室,[Na(15-C-5)]2[Pd(SCN)4]配合物的合成结构分析,2003,5,86-88.
    [109] Jianmin Dou, Xike Gao and Fengying Dong, One-or two-dimensional2,3-naphtho crown ether complexes [Na(N15C5)]2[M(SCN)4] and [K(N18C6)]2[M(SCN)4](M=Pd, Pt) constructed by π-πstacking interactions, J. Chem. Soc.,Dalton Trans.,2004,18,2918-2922.
    [110] Neier, R. and C.Trojanowski, Reduces polyoxomolybdates with the Keggin andDawson structures: preparation and crystal structures of two-electron re duced
    [K(18-crown-6)]2[N(Pph3)2]2[HPMo12O40]8MeCN·18-crown-6and fourelec-tron reduced [NBuN4]5-[H3S2Mo18O62]·4MeCN(18-crown-6=1,4,7,10,13,16-hexaoxacyclooctade cane), J. Chem. Soc., Dalton Trans.,1995,15,2521-2533.
    [111] You, W. S.; Wang, E. B. and Zhang, H., Synthesis and structural characteri-zation of a new supermolecular compound: H3PW12O40·6C14H20O5·16H2O(C14H20O5=benzo-15-crown-5), J. Mol. Struct.,2000,554,141-147.
    [112] You, W. S. and Wang, E. B., Sythesis and crystal structure of a new supermo-lecularcompound:[C12H24O6][H3PMo12O40]·22H2O (C12H24O6=18-crown-6),J. Mol. Struct.,2000,524,133-139.
    [113]鲁晓明,宗瑞发,刘顺成等,苯基氮杂-15-冠-5对钼同多酸以及钨钼杂多酸阴离子的选择,高等学校化学学报[J],1997,18,1911-1916.
    [114] Green R. N.,18-crown-6: a strong complexing agent for alKcali metal cations,Tetrahedron Lett.,1972,13,1793-1796.
    [115]吴成泰,鲁天保,中国化学会第一届应用化学学术讨论会,北京,1985.
    [116] Linnane, P. and Shinkai, S. J., Calix-aza-crowns-a novel class of calixcrownbinds cooperatively to metal-cations and diammonium cations, Tetrahedron Lett.1995,36,3865-3866.
    [117] Mac, M.; Uchacz, T. and Wrobel, T., New Fluorescent Sensors Based on1H-pyrazolo-[3,4-b] quinoline Skeleton, J. Fluoresc.,2010,20,525-532.
    [118] Pedersen C. J., Macrocyclic polyether sulfides, J. Org. Chem.,1971,36,254-257.
    [119] Tu, C. Q.; Surowicc, K. and Bartsch, R. A. Novel calix[4]arene-thiacrown etherfor selective and efficient extraction of Ba(II), Pb(II), and Hg(II),2007,58,361-366.
    [120] Higuchi H., Tani K. and Otsubl T., New synthetic method of [2.2] cyclophanesvia diselena [3.3] cyclophanes, Bull. Chem. Soc. Jpn.,1987,60,4027-4036.
    [121] T. Kumagai., Preparation of novel selenacrown ethers and their complexingabililties with transition metal and heavy matal cations, Chem. lett.,1989,213,1667-1670.
    [122]徐汉生,李卫平,刘秀芳等,硒杂冠醚的合成及其络合性能研究,有机化学,1993,13,52-57.
    [123]周红军,苯并噁唑类化合物的微波辐射合成与性质研究,广西师范大学,2003.
    [124]张文勤,周一民,2-(4-联苯基)苯并噁唑衍生物的合成及其光学性能,应用化学,1996,13,29-32.
    [125] Koyama, E.; Tokuhisa, H.; Nagawa, Y.; Yang, G.; and Hiratani, K., Synthesis ofMacrocyclic Bis(phenylbenzoxazole) Derivatives via Tandem Claisen Rear-rangement and Their Fluorescence Behavior, J. Heterocyclic Chem.,2001,38,1353-1360.
    [126] Mac, M.; Tokarczyk, B.; Uchacz, T. and Danel, A., Charge transfer fluorescenceof benzoxazol derivatives, J. Photochem. Photobiol, A,2007,191,32-41.
    [127] Hashem Sharghi, Khodabakhsh Niknam and Maryam Pooyan, The halo-gen–med-iated opening of epoxides in the presence of pyridine-containingmacrocycles, Tetrahedron,2001,57,6057-6064.
    [128] Charles J. Pedersen, Cyclic polyethers and their complexes with metal salts, J.Am. Chem. Soc.,1967,89,7017-7036.
    [129] Julia L. Bricks, Anton Kovalchuk, Christian Trieflinger et al., On the devel-opment of sensor molecules that display FeШ-amplified fluorescence, J. Am.Chem. Soc.,2005,127,13522-13529.
    [130] Junichi Ishikama, Hidefumr Sakamoto and Tamao Mizuno, Hydrazones derivedfrom dithiamonoaza and tetrathiamonoaza analogs of polyethers as silver ionselective ionophore: Syntheses, Proton-Dissociation fehaviors, and metal ioncomplexing properties in1,4-dioxane-water acidic solution, Bull. Chem. Soc.Jpn.,1995,68,3071-3076.
    [131] Shohreh Ghorbanian, Lina K. Mehta and John Parrick, Synthesis of some24-membered tetralactam derivatives by an unexpectedly simple route, andsome macrocyclic polyether dilactams, Tetrahedron,1999,55,14467-14478.
    [132]庄俊鹏,杂芳基乙烯类化合物光化学性质及其相关配合物的研究,博士学位论文,天津大学,2002.
    [133]张运申,赵瑜藏,ε-溴代季膦盐的相转移W ittig反应研究,华夏医学,2000,13,446-448.
    [134] Carl G. Krespan, Oxetane function spiro to polyoxaaza macroheterocycles, J.Org. Chem.,1975,40,1205-1209.
    [135] Hidefumi Sakamoto, Junichi Ishikawa and Makoto Otomo, Silver ion selectiveextraction with dithiaza-, tetrathiaza-, and tetrathiadiazacrown ether derivatives,Bull. Chem. Soc.Jpn.,1995,68,2831-2836.
    [136] Brian D. Palmer, William R. Wilson, Susan M. Pullen, Hypoxia-selective an-titumor agents.3. Relationships between structure and cytotoxicity againstcultured tumor cells for substituted N, N-bis (2-chloroethyl) anilines, J. Med.Chem.,1990,33,112-121.
    [137] Tomoya Hirano, Kazuya Kikuchi and Yasuteru Urano, Novel zinc fluorescentprobes excitable with visible light for biological applications, Angew. Chem.,2000,112,1094-1096.
    [138] Li-Juan Zhang, Hua-Kuan Lin and Xian-He Bu, Studies of the cation com-plexing ability of crowns Part. Synthesis, characterization and crystal structureof diazacrow-ns and their barium complexes, Inorg. Chim. Acta,1995,240,257-262.
    [139] Mikio O., Yoshihisa I., Convenient and efficient tosylation of oligoethyleneglycols and the related alcohols in tetrahydrofuran-water in the presence of so-dium hydroxide, Bull. Chem. Soc.Jpn.,1990,63,1260-1262.
    [140] E. Sonveaux, The influence of side-chains on the complexation of cations bycrowns, synthesis and Cu(II) complexation of n,n'-diaryl-diaza-18-crown-6,Tetrahedron,1984,40,793-797.
    [141] SCHERING CORP, Monocyclic macrocyclic compounds and complexesthereof, US3966766,1976-06-29.
    [142]张玲,焦天权,王彦博,对氯苯胺为端基的酰胺型开链冠醚的合成,兰州大学学报(自然科学版),2002,3872-75.
    [143] B. Dietrich, J. M. Lehn, J. P. Sauvage, Cryptates-X: Syntheses etc proprietesphysiques de systemes diaza-polyoxa-macrobicycliques, Tetrahedron,1973,29,1629-1645.
    [144] Johannes Kaulen and Hans J. Sch fer, Oxidation of alcohols by electrochemi-call-y regenerated nickel oxide hydroxide, selective oxidation of hydroxyster-oids, Tetrahedron,1982,38,3299-3308.
    [145] E. Sonveaux, The influence of side-chains on the complexation of cations bycrowns, synthesis and Cu(II) complexation of N, N’-diaryl-diaza-18-crown-6,Tetrahedron,1984,40,793-797.
    [146] Herbert C. Brown, Peter Heim, Selective reductions. XVIII. Fast reaction ofprimary, secondary, and tertiary amides with diborane. Simple, convenientprocedure for the conversion of amides to the corresponding amines, J. Org.Chem.,1973,38,912-916.
    [147] Kostova, I. Gold Coordination Complexes as Anticancer Agents, Anti-CancerAgents Med. Chem.,2006,6,19-32.
    [148]麻生明,金属参与的现代有机合成反应,广东科技出版社,2003,10-34.
    [149] Stephen, A.; Hashmi, K. Gold-Catalyzed Organic Reactions, Chem. Rev.,2007,107,3180-3211.
    [150] Fürstner, A.; Davies, P. W., Catalytic Carbophilic Activation: Catalysis byPlatinum and Gold π Acids, Angew. Chem. Int. Ed.,2007,46,3410-3449.
    [151] Baker, R. T.; Calabrese, J. C.; Westcott, S. A. Coinage metal-catalyzed hy-droboration of imines, J. Organomet. Chem.,1995,498,109-117.
    [152] González-Arellano, C.; Corma, A. Iglesias, M.; Sánchez, F. Enantioselectivehydrogenation of alkenes and imines by a gold catalyst, Chem. Commun.,2005,3451-3453.
    [153] Ito, H.; Takagi, K.; Miyahara, T.; Sawamura, M. Gold (I) Phosphine Catalystfor the Highly Chemoselective Dehydrogenative Silylation of Alcohols, Org.Lett.,2005,7,3001-3004.
    [154] Ito, H.; Yajima, T.; Tateiwa, J.; Hosomi, A. An unprecedented catalytic reactionusing gold (I) complexes, Tetrahedron Lett.,1999,40,7807-7810.
    [155] Porcel, S.; Lopez-Carrillo, V.; Garcia-Yebra, C.; Echavarren, A. M.Gold-Catalyzed Allyl–Allyl Coupling, Angew. Chem. Int. Ed.,2008,47,1883-1886.
    [156] Guan, B. T.; Xing, D.; Cai, G. X.; Wan, X. B.; Yu, N.; Fang, Z; Yang, L. P.; Shi,Z. J. Highly Selective Aerobic Oxidation of Alcohol Catalyzed by a Gold (I)Complex with an Anionic Ligand, J. Am. Chem. Soc.,2005,127,18004-18005.
    [157] Shul'pin, G. B.; Shilov, A. E.; Süss-Fink, G. Alkane oxygenation catalysed bygold complexes, Tetrahedron Lett.,2001,42,7253-7256.
    [158] Markham, J. P.; Staben, S. T.; Toste, F. D. Gold(I)-Catalyzed Ring Expansion ofCyclopropanols and Cyclobutanolstry, J. Am. Chem. Soc.,2005,127,9708-9709.
    [159] Robles-Machin, R.; Adrio, J.; Carretero, J. C. Gold-Catalyzed Synthesis ofAlkylidene2-Oxazolidinones and1,3-Oxazin-2-ones, J. Org. Chem.,2006,71,5023-5206.
    [160] Teles, J. H.; Brode, S.; Chabanas, M. Cationic Gold (I) Complexes: Highly Ef-ficient Catalysts for the Addition of Alcohols to Alkynes, Angew. Chem. Int.Ed.,1998,37,1415-1418.
    [161] Zhou, C. Y.; Chan P. W. H.; Che, C. M. Gold (III) Porphyrin-Catalyzed Cyc-loisomerization of Allenones, Org. Lett.,2006,8,325-328.
    [162] Nieto-Oberhuber, C.; Pérez-Galán, A.; Herrero-Gómez, E.; Lauterbach, T.;Rodríguez, C.; López, S.; Bour, C.; Roselón, A.; Cárdenas, D. J.; Echavarren, A.M. Gold(I)-Catalyzed Intramolecular [4+2] Cycloadditions of Arylalkynes or1,3-Enynes with Alkenes: Scope and Mechanism, J. Am. Chem. Soc.,2008,130,269-279.
    [163] Cinellu, M. A.; Minghetti, G.; Cocco, F.; Stoccoro, S.; Zucca, A. Reactions ofGold (III) Oxo Complexes with Cyclic Alkenes, Angew. Chem. Int. Ed.,2005,44,6892-6895.
    [164] Norman, R. O. C.; Parr, W. J. E.; Thomas, C. B. The reactions of alkynes,cyclopropanes, and benzene derivatives with gold (III), J. Chem. Soc. PerkinTrans.1,1976,1983-1987.
    [165] Nkosi, B.; Coville, N. J.; Hutchings, G. J. Journal of the Chemical Society,Chemical Communications, J. Chem. Soc. Chem. Commun.,1988,71-72.
    [166] Fukuda, Y.; Utimoto, K.; Nozaki, H. Preparation of2,3,4,5-tetrahydropyridines from5-alkynylamines under the catalytic action ofAu(III), Heterocycles,1987,25,297-300.
    [167] Muller, T. E. Intramolecular catalytic addition of amines to alkynes, Tetrahe-dron Lett.,1998,39,5961-5962.
    [168] Mizushima, E.; Hayashi, T.; Tanaka, M. Au (I)-Catalyzed Highly Efficient In-termolecular Hydroamination of Alkynes, Org. Lett.,2003,5,3349-3352.
    [169] Fukuda, Y.; Utimoto, K. Effective transformation of unactivated alkynes intoketones or acetals with a gold(III) catalyst, J. Org. Chem.,1991,56,3729-3731.
    [170] Fukuda, Y.; Utimoto, K. Efficient Transformation of Methyl Propargyl Ethersinto α,β-Unsaturated Ketones, Bull. Chem. Soc. Jpn.,1991,64,2013-2015.
    [171] Teles, J. H.; Brode, S.; Chabanas, M. Cationic Gold (I) Complexes: Highly Ef-ficient Catalysts for the Addition of Alcohols to Alkynes, Angew. Chem. Int.Ed.,1998,37,1415-1418.
    [172] Roithová, J.; Hrusák, J.; Schr der, D.; Schwarz, H. A gas-phase study of thegold-catalyzed coupling of alkynes and alcohols, Inorg. Chim. Acta,2005,358,4287-4292.
    [173] Mizushima, E.; Sato, K.; Hayashi, T.; Tanaka, M. Highly EfficientAu(I)-Catalyzed Hydration of Alkynes, Angew. Chem. Int. Ed.,2002,41,4563-4565.
    [174] Hashmi, A. S. K.; Schwarz, L.; Choi, J.-H.; Frost, T. M. A New Gold-CatalyzedC C Bond Formation, Angew. Chem. Int. Ed.,2000,39,2285-2288.
    [175] Antoniotti, S.; Genin, E.; Michelet, V.; Genêt, J.-P. Highly Efficient Access toStrained Bicyclic Ketals via Gold-Catalyzed Cycloisomerization ofBis-homopropargylic Diols, J. Am. Chem. Soc.,2005,127,9976-9977.
    [176][176] Belting, V.; Krause, N. Gold Catalyzed Tandem CycloisomerizationHydroalkoxylation of Homopropargylic Alcohols, Org. Lett.,2006,8,4489-4492.
    [177] Barluenga, J.; Diéguez, A.; Fernéndez, A.; Rodríguez, F.; Fanana′s, F. J. Gold-or Platinum-Catalyzed Tandem Cycloisomerization/Prins-Type CyclizationReactions, Angew. Chem. Int. Ed.,2006,45,2091-2093.
    [178] Dubé, P.; Toste, F. D. Synthesis of Indenyl Ethers by Gold(I)-Catalyzed In-tramolecular Carboalkoxylation of Alkynes, J. Am. Chem. Soc.,2006,128,12062-12063.
    [179] Genin, E.; Tullec, P. Y.; Antoniotti, S.; Brancour, C.; Genêt, J.-P.; Michelet, V.Room Temperature Au(I)-Catalyzed exo-Selective Cycloisomerization ofAcetylenic Acids: An Entry to Functionalized γ-Lactones, J. Am. Chem. Soc.,2006,128,3112-3113.
    [180] Kirsch, S. F.; Binder, J. T.; Liébert, C.; Menz, H. Gold(III)-and Plati-num(II)-Catalyzed Domino Reaction Consisting of Heterocyclization and1,2-Migration: Efficient Synthesis of Highly Substituted3(2H)-Furanones,Angew. Chem. Int. Ed.,2006,45,5878-5880.
    [181] Seregin, I. V.; Gevorgyan, V. Gold-Catalyzed1,2-Migration of Silicon, Tin, andGermanium en Route to C-2Substituted Fused Pyrrole-Containing Heterocy-cles, J. Am. Chem. Soc.,2006,128,12050-12051.
    [182] Harrison, T. J.; Kozak, J. A.; Corbella-Pané, M.; Dake, G. R. Pyrrole SynthesisCatalyzed by AgOTf or Cationic Au(I) Complexes, J. Org. Chem.,2006,71,4525-4529.
    [183] Hoffmann-R der, A.; Krause, N. Gold(III) Chloride Catalyzed Cyclization ofα-Hydroxyallenes to2,5-Dihydrofurans, Org. Lett.,2001,3,2537-2538.
    [184] Morita, N.; Krause, N. Gold Catalysis in Organic Synthesis: Efficient Cycloi-somerization of α-Aminoallenes to3-Pyrrolines, Org. Lett.,2004,6,4121-4123.
    [185] Morita, N.; Krause, N. The First Gold-Catalyzed C=S Bond Formation: Cyc-loisomerization of α-Thioallenes to2,5-Dihydrothiophenes, Angew.Chem., Int.Ed.,2006,45,1897-1899.
    [186] Kobayashi, S.; Kakumoto, K.; Sugiura, M. Transition Metal Salts-CatalyzedAza-Michael Reactions of Enones with Carbamates, Org. Lett.,2002,4,1319-1322.
    [187] Han, X.; Widenhoefer, R. A. Gold (I)-Catalyzed Intramolecular Hydroamina-tion of Alkenyl Carbamates, Angew. Chem. Int. Ed.,2006,118,1779-1781.
    [188] Jung, H. H.; Floreancig, P. E. Gold-Catalyzed Heterocycle Synthesis UsingHomopropargylic Ethers as Latent Electrophiles, Org. Lett.,2006,8,1949-1951.
    [189] Hashmi, B.; Hazarkhami, H.; Zareyee, D. Trimethylchlorosilane (TMSCl) andCyanuric Chloride (CC) Catalyzed Efficient Oxidative Coupling of Thiols withDimethylsulfoxide, Synthesis,2002,7,2513~2516.
    [190] Ito, Y.; Sawamura, M.; Hayashi, T. Catalytic asymmetric aldol reaction: reac-tion of aldehydes with isocyanoacetate catalyzed by a chiral ferro-cephosphine-gold (I) complex, J. Am. Chem. Soc.,1986,108,6405-6406.
    [191] Arcadi, A.; Bianchi, G.; Di Giuseppe, S.; Marinelli, F. Gold catalysis in thereactions of1,3-dicarbonyls with nucleophiles, Green Chem.,2003,5,64-67.
    [192] Nair, V.; Vidya, N.; Abhilash, K. G. Highly Efficient Condensation Reactions ofElectron Rich Arenes with Aldehydes and indoles, Tetrahedron Lett.,2006,47,2871-2783.
    [193] Wei, C.; Li, C.-J. A Highly Efficient Three-Component Coupling of Aldehyde,Alkyne, and Amines via C H Activation Catalyzed by Gold in Water, J. Am.Chem. Soc.,2003,125,9584-9585.
    [194] Bone, W. A.; Wheeler, R. V. Phil. Trans. Ser. A.1906,206,45-50.
    [195] Erkelens, J.; Kemball, C.; Galway, A. K. Some reactions of cyclohexene withhydrogen and deuterium on evaporated gold films, Trans. Faraday Soc.,1963,59,1181-1191.
    [196] Chambers, R. P.; Boudart, M. Selectivity of gold for hydrogenation and dehy-drogenation of cyclohexene, J. Catal.,1966,5,517-528.
    [197] Bond, G. C.; Sermon, P. A.; Webb, G.; Buchanan, D. A.; Wells, P. B.Hydrogenation over supported gold catalysts, J. Chem. Soc. Chem. Commun.,1973,444-445.
    [198] Claus, P. Hetero-geneously catalysed hydrogenation using gold catalysts, Appl.Catal. A,2005,291,222-229.
    [199] Boxhoorn, G.(Shell Internationale Research Maatschappij B. V., Netherlands).Application: EP255975,1988;8-9.
    [200] Vaughan, O. P. H.; Kyriakou, G.; Macleod, N.; Tikhov, M.; Lambert, R. M.Copper as a selective catalyst for the epoxidation of propene, J. Catal.,2005,236,401-404.
    [201] Prati, L.; Porta, F. Oxidation of alcohols and sugars using Au/C catalysts: Part1.Alcohols, Appl Catal. A,2005,291,199-203.
    [202] Biella, S.; Rossi, M. Gas phase oxidation of alcohols to aldehydes or ketonescatalysed by supported gold, Chem. Commun.,2003,378-379.
    [203] Comotti, M.; Della Pina, C.; Falletta, E.; Rossi, M. Aerobic Oxidation of Glu-cose with Gold Catalyst: Hydrogen Peroxide as Intermediate and Reagent, AdV.Synth. Catal.,2006,348,313-316.
    [204] Hill, C. L.; Weinstock, I. A. Homogeneous catalysis: On the trail of dioxygenactivation, Nature,1997,388,332-333.
    [205] Xu, Y.-J.; Landon, P.; Enache, D.; Carley, A. F.; Roberts, M. W.;Hutchings, G.J. Selective conversion of cyclohexane to cyclohexanol and cyclohexanoneusing a gold catalyst under mild conditions, Catal. Lett.,2005,101,175-179.
    [206] González-Arellano, C.; Abad, A.; Corma, A.; Garc a, H.; Iglesias, M.; Sánchez,F. Catalysis by Gold (I) and Gold (III): A Parallelism between Homo-and Het-erogeneous Catalysts for Copper-Free Sonogashira Cross-Coupling Reactions,Angew. Chem. Int. Ed.,2007,46,1536-1538.
    [207] González-Arellano, C.; Corma, A.; Iglesias, M.; Sánchez, F. Gold (I) and (III)catalyze Suzuki cross-coupling and homocoupling, respectively, J. Catal.,2006,238,497-501.
    [208] Schuster, O.; Schmidbaur, H. The course of oxidative addition reactions ofhaloalkynes and haloalkenes to dimethyl-and dialkynylaurate (I) anions
    [RAuR], Inorg. Chim. Acta,2006,359,3769-3775.
    [209] Schneider, D; Schier, A.; Schmidbaur, H. Governing the oxidative addition ofiodine to gold(I) complexes by ligand tuning, J. Chem. Soc. Dalton Trans.,2004,1995-2005.
    [210] Peris, E.; Crabtree, R. H. Recent homogeneous catalytic applications of chelateand pincer N-heterocyclic carbenes, Coord. Chem. Rev.,2004,248,2239-2246.
    [211] O'Brien, C. J.; Kantchev, E. A. B.; Chass, G. A.; Hadei, N.; Hopkinson, A. C.;Organ, M. G.; Setiadi, D. H.; Tang, T. H.; Fang, D. C. Towards the rationaldesign of palladium-N-heterocyclic carbene catalysts by a combined experi-mental and computational approach, Tetrahedron,2005,61,9723-9735.
    [212] Herrmann, W. A. N-Heterocyclic Carbenes: A New Concept in OrganometallicCatalysis, Angew. Chem. Int. Ed.,2002,41,1290-1309.
    [213] Kantchev, E. A. B.; óBrien, C. J.; Organ, M. G. Palladium Complexes ofN-Heterocyclic Carbenes as Catalysts for Cross-Coupling Reactions—A Syn-thetic Chemist's Perspective, Angew. Chem. Int. Ed.,2007,46,2768-2813.
    [214] Diefenbach, A.; Bickelhaupt, F. M. Activation of H H, C H, C C, and C ClBonds by Pd (0) Insight from the Activation Strain Model, J. Phys. Chem. A,2004,108,8460-8466.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700