用户名: 密码: 验证码:
热带亚热带表生铁氧化物的气候响应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大陆风化的气候响应是地球科学的基本问题,也是近年来临界带研究的热点。寻找发育于单一母质的大陆风化序列,开展区域化学风化的气候响应研究,对于完善大陆风化理论和评估大陆风化的环境效应有重要意义。表生铁氧化物是大陆风化的终极产物之一,广泛富集于地球表生环境中。表生铁氧化物按物理性质可划分为致色组分和致磁组分,两者的含量和比例被广泛应用于现代土壤分类和古气候重建中。然而,随着过去全球变化研究在时空方向上的拓展,铁氧化物在极端气候条件下的响应形式仍不明确。热带亚热带是表生铁氧化物最为富集的地区,系统开展该区域不同气候要素组合下表生铁氧化物的气候响应研究,对于准确评估区域化学风化程度和重建古气候有重要意义。
     基于此,本文选取了中国南部和非洲北部热带亚热带地区的8条不同温度和降水控制下的现代大陆风化序列,通过传统地球化学方法、光谱学方法和环境磁学方法实现了表生铁氧化物的鉴定和定量,探讨了热带亚热带地区表生铁氧化物总量及其相关组分的气候响应形式,明确了热带亚热带表生铁氧化物的富集和分配机制,得出了以下基本结论:
     1.赤铁矿和针铁矿是热带亚热带风化壳的主要致色矿物。赤铁矿相对针铁矿具有更高的染色效率。通过红度和一阶导数谱峰位等光谱指数可实现表生赤铁矿的快速定量,光谱指数对赤铁矿的敏感度与基底的石英含量有关。
     2.海南热带暖湿地区的玄武岩和花岗岩风化序列中,磁性组分随降水的增长存在1400-1500mm的拐点。拐点之下,磁性组分与区域降水呈正相关;拐点之上,磁性组分与区域降水呈反相关。该转换与过量降水驱动的致色铁氧化物的快速分配有关。
     3.云南热量相对不足地区表生铁氧化物及其致磁和致色组分的形成对温度变化敏感,但在低降水区(<1500mm)仍显示出对降水的绝对依赖作用。
     4.北非水分相对不足地区的表生铁氧化物及其致磁和致色组分的形成主要受降水控制。Redness/Fed可作为Hm/(Hm+Gt)的替代指标监测和重建干旱半干旱区水热条件的相对变化。
     5.热带亚热带表生铁氧化物总量与母质类型和化学风化有关。不考虑母质类型和成壤时间的情况下,区域化学风化控制的游离铁富集程度随水热积的增长而增长,但该过程在低水热积区响应敏感,在高水热积区响应迟钝。
     6.热带亚热带致色铁氧化物的分配过程独立于化学风化过程,与区域水热商有关。Hm/(Hm+Gt)随水热商的增长而降低,但该过程在低水热商区响应迟钝,在高水热商区响应敏感。此外,地形造成的区域水份条件的变化也会影响致色铁氧化物的分配。
     7.热带亚热带不同风化序列中的赤铁矿和成壤磁性矿物具有普遍相关性,证实了实验室中赤铁矿的老化路径。
     8.通过热带亚热带高磁和高铁母质风化序列的针对性研究,发现化学风化初期和末期磁化率与频率磁化率呈现反相关,前者与原生多畴磁性矿物的破坏有关,后者与成壤磁性矿物的颗粒增长有关,并由此提出了磁性矿物富集过程中的粒度演化模型。
     9.通过热带亚热带大陆风化序列的综合研究,表生铁氧化物的形成过程涉及总量富集、致色铁氧化物分配以及致色与致磁组分的耦合三个过程。不同过程的气候响应形式不同导致了单个铁氧化物相气候响应的区域性差异。控制不同纬度带赤铁矿和成壤磁性矿物分布的年降水转换点会随年平均温的增加而增加,从而形成连续的降水转换线,并由此提出了表生铁氧化物的二维气候响应模型。
Climatic response of continental chemical weathering is a basic theoretical question of earth science. It is a hot issue of the research on Critical Zone. Exploring the climate response of continental chemical weathering in regional scale can help strengthen the weathering theory and evaluate the environmental effect of continental chemical weathering accurately. Iron oxides are highly concentrated in the surface of the earth as the.main final product of continental chemical weathering. The iron oxides can be divided into a coloring group and a magnetic group according to their physical properties. The content and ratio of iron oxides have been widely employed in soil taxonomy and paleorainfall reconstruction. However, the climatic implication of iron oxides under extreme climate remains ambiguous. Exploring the climatic response style of iron oxides in subtropics and tropics with different combinations of temperature and rainfall can help understand the concentration and distrubtion mechanism of iron oxides systematically. More importantly, it lay the foundation for the paleoclimate reconstruction accurately in future.
     With the purpose of exploring the climate response style of pedogenic iron oxides in extremely warm regions, we chosed eight saprolitic climosequences with The content and ratio of pedogenic iron oxides is determined by magnetic and spectral method. The climatic response of total amout of iron oxides and earch gourp of iron oxides has also been systematically discussed. The main results of this study are listed as below:
     1. Hematite and goethite are the main coloring agents in subtroipical and tropical soils. Hematite has much stronger dying power than goethite in natural samples. Both the color index of redness and the peak position of of first derivative spectrum can be employed to determine the content of hematite in tropical and subtropical soils effectively. The response sensitivity of redness to hematite is dependent on the content of quartz in soil matrix.
     2. There is a rainfall inflection point around1400-1500mm controlling the relationship between ferrimagnets, hematite and rainfall in the soils derived from basalt and granite under tropical humid climate in Hainan Island. The ferrimagnets and hematite has positive correlation with rainfall below the point while they have negative correlation above the point.
     3. The formation of magnetic and coloring iron oxides is sensitive to the change of temperature in subtropical regions of Yunnan without sufficient heat. In addition, they show strong dependence on the rainfall in low rainfall (<1500mm) regions.
     4. The formation of magnetic and coloring iron oxides is senstive to the change of rainfall in North Africa without sufficient water. In addition, the index of Redness/Fed can act as a substitute for Hm/(Hm+Gt) to trace the relationship between rainfall and temperature in aerobic soils derived from different parent materials acoss arid and semi-arid regions
     5. The concentration of total amount of iron oxides is dependent on the parent material and chemical weathering intensity. The increasing of both temperature and rainfall can promote the chemical weathering and the concentration of iron oxides.The combinative index of RTIp can help understand the comprehensive effects of temperature and rainfall on the concentration process of iron oxides. The accumulation of iron oxides is more sensitive to the change of RTIp at a low level than at a high level.
     6. The distribution of coloring iron oxides including hematite and goethite is independent on chemical weathering and dependent on the relative supply of heat and water. High temperature and low rainfall favors the formation of hematite whereas low temperature and high rainfall favor the formation of goethite on a large spatical scale across subtropical and tropical regions. The combinative index of RTIq can be helpful to estimate the comprehensive effects of temperatrue and rainfall on the distribution of coloring iron oxide. The index of Hm/(Hm+Gt) is more sensitive to the change of RTIq at a high level than at a low level.
     7. The content of hematite and ferrimagnets has commonly positive correlation in saprolitic soils derived from granite and basalt across subtropical and tropical regions with different combination of temperature and rainfall. The widespread correlation verified the ageing path of hematite in laboratory experiments.
     8. Based on the specific climosequences and profiles with high ferrimagnets or high Fe-bearing primary minerals, it has been found that the magnetic susceptibility shows negative correlation with the frequency magnetic susceptibility in the early stage and late stage of chemical weathering. The former is attributed to the destruction of multi-domain magnetic particles derived from high magnetic parent material while the latter is attributed to the grainsize growth of magnetic particles with highly concentrated pedogenic ferrimagnets. A conceptual model has been established for the evolution of the grainsize distribution of ferrimagnets with increasing chemical weathering and pedogenic ferrimagnets.
     9. Based on the systematic research on the climosequences in subtropical and tropical regions, we propose that the formation process of pedogenic iron oxides in surfical environment involves in three processes including the concentration process of total amount of iron oxides, distribution process between hematite and geothite, and coupling process between hematite and maghemite. A2-D model considering rainfall and temperature is proposed to help understand the climate response of pedogenic iron oxides. It is suggested the rainfall inflection point controlling opposite patterns between rainfall and ferrimagnets across tropical and subtropical regions should increase with the temperature..
引文
[1]Thompson and Oldfield,严尧基编译,环境磁学,1995,北京:地质出版社,1-166
    [2]曹家欣,严润娥,王欢,山东庙岛群岛的红色风化壳与棕红土及其古气候意义,中国科学(B辑),24(2):217-224
    [3]陈静生,2006,河流水质原理及中国河流水质,北京:科学出版社
    [4]陈静生,倪绍祥,高金水,1963,我国华北地区和地中海地区褐色土形成的水热条件和相性差异,土壤学报,11(4):437-443
    [5]陈天虎,徐会芳,季峻峰等,2003,黄土中强磁性矿物透射电子显微镜观察和成因分析,科学通报,48(17):1883-1886
    [6]陈宗瑜,2001,云南气候总论,北京:气象出版社,1-196
    [7]邓成龙,刘青松,潘永信,朱日祥,2007,中国黄土环境磁学,27(2):193-209
    [8]地质矿产部宜昌地质矿产研究所,海南省地质矿产局,1991a,海南岛地质(二)岩浆岩,北京地质出版社:1-274
    [9]地质矿产部宜昌地质矿产研究所,海南省地质矿产局,1991b,海南岛地质(三)构造地质,北京地质出版社:1-140
    [10]丁仲礼,孙继敏,朱日祥,等.黄土高原红粘土成因及上新世北方干早问题,第四纪研究,1997,2:147—157
    [11]樊明辉,孙传敏,何政伟等,中国南方红壤演化的矿物学特征,1999,成都理工学院学报,26(3):313-316
    [12]樊祺诚,孙建中,1986,琼北第四纪玄武岩的岩石学和地球化学,科学通报,9(4):287-291
    [13]冯锦江,胡碧菇,1991,海南岛第四纪玄武岩风化壳中次生矿物转变与时间的关系,3,56-64
    [14]冯志刚,王世杰,2003,中国南方红土古环境重建中存在的几个问题,冯志刚,山地学报,21(6):641-646
    [15]高素华,黄增明,张统钦等,1988,海南岛气候,北京:气象出版社,1-189
    [16]葛同明,陈文寄,徐行等,1989,雷琼地区第四纪地磁极性年表火山岩钾-氩年龄及古地磁证据,32(5):550-558
    [17]龚子同,2000,我国土壤分类系统中富铁铝土壤的分类,土壤与环境,9(2):149-153
    [18]龚子同,黄成敏,2001,海南岛北部玄武岩分布区土壤-景观关系研究,1:13-17
    [19]龚子同等,中国土壤系统分类一理论方法实践,北京:科学出版社,1999,1-903
    [20]顾延生,肖春娥,章泽军,等,中国南方红土的研究进展,华东师范大学学报(自然科学版),2002, (1):69--75
    [2 1]郭斌,朱日祥,白立新等,200 1,.黄土沉积物的岩石磁学特征与土壤化作用的关系,中国科学(D辑),31(5):377-386.
    [22]韩家懋,HusJJ,刘东生等,1991,马兰黄土和离石黄土的磁学性质,第四纪研究,4,310-323
    [23]胡蒙育,B.Maher,2002,中国黄土堆积的磁性记录与古降雨量重建,地球科学进展,17(3):320-325
    [24]胡雪峰,2004,黄土古土壤序列中氧化铁和有机质对磁化率的影响,土壤学报,41(1):7-11
    [25]胡雪峰,龚子同,江西九江泰和第四纪红土成因的比较研究,土壤学报,2001,38(1):1-9
    [26]胡雪峰,龚子同,夏应菲,1999,安徽宣州黄棕色土和第四纪红土的比较研究及其古气候意义,土壤学报,36(3):301-307
    [27]胡雪峰,朱煜,沈铭能,南方网纹红土多元成因的粒度证据,科学通报,2005,50(9):918-925
    [28]黄成敏,龚子同,2000, 热带土壤发育过程中土壤磁化率特征研究,海洋地质与第四纪地质,20(4):63-68
    [29]黄成敏,龚子同,2000,海南岛北部玄武岩上土壤发育过程的定量研究Ⅰ,土壤形态特征,地理科学,20(4):337-342
    [30]黄成敏,龚子同,2000,海南岛尖峰岭地区山地土壤发生特征,山地学报,18(3):193-200
    [31]黄成敏,龚子同,热带土壤发育过程中土壤磁化率特征研究,海洋地质与第四纪地质,2000,20(4): 63-68
    [32]黄成敏,龚子同,杨德涌,2002,海南岛北部玄武岩上土壤发生研究Ⅱ铁氧化物特征,土壤学报,39(4):449-458
    [33]黄镇国,张伟强,陈俊鸿,中国红土与自然地带变迁,地理学报,1999,54(3):203-211
    [34]黄镇国,张伟强,陈俊鸿等,1996,中国南方红色风化壳,北京:海洋出版社,1-312
    [35]贾国栋,钟佐新,1999,铁的环境地球化学综述,环境科学进展,7(5),74-84
    [36]贾蓉芬,颜备战,李荣森等,1996,陕西段家坡黄土剖面中趋磁细菌特征与环境意义,中国科学D辑,26(5):411-416
    [37]蒋复初,吴锡浩,肖华国,等,九江地区网纹红土的时代,地质力学学报,1997,3(4):27-32
    [38]来红州,莫多闻,李新坡,2005,洞庭盆地第四纪红土地层及古气候研究,23(1):130-137
    [39]李长安,顾延生,江西修水第四系网纹红土的地层学研究,地层学杂志,1997,21(3): 226-232
    [40]李德文,崔之久,刘耕年,2002,湘桂黔滇藏红色岩溶风化壳的发育模式,地理学报,57(3):293-300
    [41]李德文,崔之久,刘耕年,风化壳研究的现状与展望,地球学报2002,23(3):283-288
    [42]李富春,李莎,杨用钊,2006,原生硅酸盐矿物风化产物的研究进展——以云母和长石为例,岩石矿物学杂志,25(5):440-448
    [43]李景阳,2005,两种典型碳酸盐岩红土风化剖面的物理化学特征,中国岩溶,24(1):28-34
    [44]李学垣,2001,土壤化学,北京:高等教育出版社,1-402
    [45]刘多森,1983,中国土壤分布与气候条件的联系,土壤学报,20(1):60-68
    [46]刘秀铭,安芷生,强小科等,2001,甘肃第三系红粘土磁学性质初步研究及古气候意义,31(3):192-205
    [47]刘秀铭,刘东生,John Shaw,1993,中国黄土磁性矿物特征及其古气候意义,第四纪研究,3,281-287.
    [48]刘秀铭,刘东生,Friedrich Heller,许同春,1991,中国黄土磁颗粒分析及其古气候意义,中国科学(B辑),6,639-644
    [49]刘秀铭,刘东生,HellerF等,1 990,黄土频率磁化率与古气候冷暖变换.第四纪研究,1,42-50
    [50]刘英俊,曹励明,李兆麟,等,元素地球化学,北京:科学出版社,1984,194-215
    [51]刘自清,龙成风,1990,大别山南坡土壤粘土矿物的垂直分布,?145-148
    [52]卢升高,2000,亚热带富铁土的磁学性质及其磁性矿物学,地球物理学报,43(4):498-504
    [53]卢升高,2003,中国土壤磁性与环境,北京:高等教育出版社,1-240
    [54]卢升高,2007,中国南方红土环境磁学,第四纪研究,27(6):1016-1022
    [55]卢升高,俞劲炎,1991,浙江省红壤和黄壤的磁性与成土因素的关系,土壤通报,22(7): 66-69
    [56]卢升高,俞劲炎,章明奎等,长江中下游第四纪沉积物发育土壤磁性增强的环境磁学机制,沉积学报,2000,18(3):336-340
    [57]陆景冈,1997,土壤地质学,北京:地质出版社,1-269,
    [58]鹿化煜,苗晓东,孙有斌,2002,前处理步骤与方法对风成红粘土粒度测量的影响,海洋地质与第四纪地质,22(3):129-135.
    [59]鹿世谨,1990,华南气候,北京:气象出版社,1-336
    [60]吕厚远,韩家懋,吴乃琴等1994,中国现代土壤磁化率分析及其古气候意义,中国科学(B辑),24(12):1290-1297
    [61]罗家贤,马毅杰,杨德涌等,1994,过渡性土壤的矿物风化和演变,5:241-247
    [62]罗攀,郑卓,杨小强,2006,海南岛双池玛珥湖全新世磁化率及其环境意义,热带地理,26(3),211-217
    [63]马毅杰,罗家贤,蒋梅茵等,1999,我国南方铁铝土矿物组成及其风化和演变沉积学报,17(增刊):681-686
    [64]马在平,1998,我国热带亚热带部分长石风化产物研究,石油大学学报(自然科学版),22(5):14-18
    [65]孟猛,倪健,张治国.2004,地理生态学的干燥度指数及其应用评述.植物生态学报,28(6):853-861
    [66]明庆忠,史正涛,2007,三江并流区干热河谷成因新探析,中国沙漠,27(1):99-104
    [67]强小科,安芷生,常宏,2003,佳县红粘土堆积序列频率磁化率的古气候意义,海洋地质与第四纪地质,23(3):91-96
    [68]强小科,安芷生,李华梅等,2004,佳县红粘土堆积的磁学性质及其古气候意义,中国科学(D辑),34(7):658-667
    [69]任垂祥,刘开瑜,李天杰,1996,中国东部季风区土壤地带分布与气候关系研究,土壤学报,33(4):385-390
    [70]尚彦军,岳中琦,王思敬等,2004,全风化花岗岩全岩和粘粒中粘土矿物含量变化对比,水文地质工程地质,3,7-12
    [71]沈振兴,张小曳,季峻峰等,自然科学进展,2004,中国北方粉尘气溶胶中铁氧化物矿物的光谱分析,14(8),910-916
    [72]师育新,戴雪荣,宋之光等,2005,我国不同气候带黄土中粘土矿物组合特征分析,沉积学报,23(4):690-695
    [73]苏世容,沈汝生,张耀增等,1983,非洲自然地理,北京:商务印书馆,1-398
    [74]苏文才,1980,论土壤分布的垂直地带性地理规律,河南师大学报,2,117-128
    [75]隋淑珍,姚小峰,中国南方第四纪红土地层,第四纪研究,2000,2:182-185
    [76]孙有斌,孙东怀,安芷生,灵台红粘土-黄土-古土壤序列频率磁化率的古气候意义,高校地质学报,2001,7(3):300-306
    [77]孙玉兵,陈天虎,谢巧勤,2009,西峰剖面高分辨记录指标研究及古气候重建,高校地质学报,15(1):126-134
    [78]汤艳杰,贾建业,谢先德,2002,粘土矿物的环境意义,地学前缘,9(2):337-344
    [79]王世杰,孙承兴,2002,引起红土表层硅铝比值增大原因的可能性探讨冯志刚地 质地球化学,30(4):7-14
    [80]王寿松,李康,韩秀玲,张汝凡,1983,海南岛第四纪玄武岩的红土化作用,地质科学,1:56-70
    [81]王彦华,谢先德,罗立峰,花岗岩中黑云母风化的矿物变化机制,地球化学,28(3):239-247
    [82]文启忠,刁桂仪,余素华,等,中国黄土地球化学,北京:科学出版社,1989,15-38
    [83]席承藩,论华南红色风化壳,第四纪研究,1991,(1):1-8
    [84]夏敦胜,陈发虎,马剑英等,2007,黄土高原-阿拉善高原典型断面表土磁学特征研究,第四纪研究,27(6):1001-1007
    [85]谢巧勤,陈天虎,孙玉兵等,2008,洛川黄土-红粘土序列铁氧化物组成及其古气候指示,矿物学报,28(4):389-396
    [86]谢巧勤,陈天虎,徐晓春等,2008,中国黄土中磁性矿物的赋存形式研究,中国科学(D辑)38(11):1404-1412
    [87]熊尚发,丁仲礼,刘东生,南方红土网纹:古森林植物根系的土壤学证据,科学通报,2000,45(12): 1317-1321
    [88]熊尚发,刘东生,丁仲礼,南方红土的剖面风化特征,山地学报,2000,18(1):7-12
    [89]熊毅,1983,土壤胶体,第一册(土壤胶体的物质基础),北京:科学出版社
    [90]熊毅,1985,土壤胶体,第二册(土壤胶体研究法),北京:科学出版社
    [91]熊毅,1990,土壤胶体,第三册(土壤胶体的性质),北京:科学出版社
    [92]熊毅,李庆逵,1989,中国土壤,北京:科学出版社,1-764
    [93]徐凤琳,李学垣,黄巧云,1992,鄂、湘两省土地土壤粘粒矿物的研究——Ⅱ.莽山北坡土壤中的粘粒矿物,土壤学报,29(1):48-56
    [94]徐义芳,朱照宇,文启忠等,1999,英峰岭剖面红土的粘土矿物和化学特征与成土环境关系,26(3):281-288
    [95]徐裕华,1991,西南气候,北京:气象出版社,1-298
    [96]徐则民,黄润秋,唐正光,2005,中国南方碳酸盐岩上覆红土形成机制研究进展,地球与环境,33(4):29-36
    [97]杨德涌,陈世俭,马毅杰,海南岛土壤粘粒矿物特征与土壤系统分类,2002,39(4),467-475
    [98]杨德涌,蒋梅茵,1991,我国东部花岗岩发育的红壤和黄壤的粘粒矿物组成及其演变,28(3),276-283
    [99]杨浩,夏应菲,赵其国,等,红土系列剖面的磁化率特征与古气候冷暖变换,土壤学报,1995,32(增刊2),195-196
    [100]杨浩,赵其国,李小平等,1996,安徽宣城风成沉积-红土系列剖面ESR年代研究,33(3):293-300
    [101]杨启军,徐义刚,黄小龙,2006,高黎贡构造带花岗岩的年代学和地球化学及其构造意义,岩石学报,22(4):817-834
    [102]杨石岭,丁仲礼,2000,7-0Ma以来中国北方风尘沉积的游离铁/全铁值变化及其古季风指示意义,2000,45(22):2453-2456
    [103]尧德中,俞劲炎,1989,气候因素对土壤磁性的影响,自然杂志,12(11):865-866
    [104]尧德中,俞劲炎,刘榜华,1989,红壤中磁性矿物的磁性与含量的穆斯堡尔谱研究,科学通报,16,1263-1265
    [105]尧德中,俞劲炎,刘榜华,应用穆斯堡尔谱研究土壤磁性的发生机理,土壤学报,27(4):361-367
    [106]尹秋珍,郭正堂,方小敏,2006,海南砖红壤的微形态特征以及南方网纹红土与砖红壤环境意义的差异,43(3):353-361
    [107]于天仁,陈志诚主编,土壤发生中的化学过程,北京:科学出版社,1990,67-95
    [108]于振江,黄多成,安徽省沿江地区网纹红土和下蜀土的形成环境及其年龄,安徽地质,1996,6(3):48-56
    [109]俞劲炎,1979,土壤磁学,土壤通报,78-81
    [1 10]俞劲炎,詹硕仁,1981,我国主要土类土壤磁化率的初步研究,土壤通报,第一期,35-38页,
    [1 11]俞劲炎,赵谓生,吴劳生,1986,亚热带和热带土壤的磁化率,土壤学报,23(1):50-56
    [112]俞劲炎,赵谓生,詹硕仁,1981,太湖流域水稻土的磁化剖面,土壤学报,18(4):376-382
    [113]虞光复,陈永森,论云南土壤的地理分布规律,云南大学学报(自然科学版),1998,20(1): 55-58
    [114]张建军,杨达源,李俊生等,长江中下游地区下蜀黄土磁化率曲线与环境变迁,沉积学报,2000, 18(1):18-21
    [115]张实,张惠芬,1992,关于长石-高岭石动态形成过程的讨论,矿物学报,12(4)373-380
    [116]张子玉,徐菊芬,俞劲炎,1996,西南农业学报,9(4):120-123
    [117]张子玉,俞劲炎,1996,红壤次生磁性矿物生成机理的研究,广西农业科学,5:236-239
    [118]赵景波,黄春长,岳应利,中国黄土中的风化壳研究,沉积学报,2001,19(1):90-95
    [119]赵其国,2002,红壤物质循环及其调控,北京:科学出版社,1-495
    [120]赵其国,2002,我国红壤退化时空变化、形成机理及调控,北京:科学出版社,1-352
    [121]赵其国,我国红壤现代成土过程和发育年龄的初步研究,第四纪研究,1992,4:341-351
    [122]赵其国,杨浩,中国南方红土与第四纪环境变迁的初步探讨,第四纪研究,1995,2:107-116
    [123]赵杏媛,张有瑜,1990,粘土矿物与粘土矿物分析。北京:海洋出版社。
    [124]中国科学院地球化学研究所,1981,铁的地球化学,北京:科学出版社,1-202
    [125]周乐福,1983,云南土壤分布的特点及地带性规律,山地研究,1(4):31-38
    [126]周性敦,庄卫民,王果,1995,福建三个垂直带谱中土壤氧化铁的研究,土壤学报,32(1):23-31
    [127]朱景郊,网纹红土的成因及其研究意义,地理研究,1988,7(4):12-20
    [128]朱立军,傅平秋,万国家,1997,贵州碳酸盐岩发育土壤磁学性质及其发生机理,34(2):212-220
    [129]朱立军,李景阳,2001,碳酸盐岩红色风化壳中的氧化铁矿物,地质科学,36(4):395-401
    [130]朱立军,李景阳,2001,碳酸盐岩红色风化壳中的氧化铁矿物,地质科学,36(4):395-401
    [131]朱立军,李景阳,2004,碳酸盐风化成土作用及其环境效应,北京:地质出版社,1-133
    [132]朱丽东,2006,金衢盆地第四纪红土沉积粒度组成特征,海洋地质与第四纪地质,26(4):111-116
    [133]朱日祥,潘永信,丁仲礼,1996,红粘土的磁学性质研究,第四纪研究,3,232-238
    [134]朱显谟,中国南方红土与红色风化壳,1995,水土保持研究,2(4):94-101
    [135]朱照宇,王俊达,黄宝林等,1995,红土-黄土-全球变化,第四纪研究,3:268-277
    [136]朱照宇,郑洪汉,张国梅等,华南热带红土期及风化矿物初步研究,第四纪研究,1991,1:18-22
    [137]Allan, J. E. M., et al. (1989), An Occurrence of a Fully-Oxidized Natural Titanomaghemite in Basalt, Mineralogical Magazine,55(371),299-304.
    [138]Amundson, R., and H. Jenny (1997), On a State Factor Model of Ecosystems, Bioscience, 47(8),536-543.
    [139]Anand, R., and R. Gilkes (1984), Weathering of hornblende, plagioclase and chlorite in meta-dolerite, Australia, Geoderma,34(3-4),261-280.
    [140]Anderson, S. P., et al. (2007), Physical and chemical controls on the Critical Zone, Elements, 3(5),315-319.
    [141]Anderson, S. P., et al. (2008), Critical Zone Observatories:Building a network to advance interdisciplinary study of Earth surface processes, Mineral Mag,72(1),7-10.
    [142]Balsam, W. (1981), Late Quaternary Sedimentation in the Western North-Atlantic Stratigraphy and Paleo-Oceanography, Palaeogeography Palaeoclimatology Palaeoecology, 35(2-4),215-240.
    [143]Balsam, W., et al. (2004), Climatic interpretation of the Luochuan and Lingtai loess sections, China, based on changing iron oxide mineralogy and magnetic susceptibility, Earth and Planetary Science Letters,223(3-4),335-348.
    [144]Balsam, W., et al. (2005), Direct correlation of the marine oxygen isotope record with the Chinese Loess Plateau iron oxide and magnetic susceptibility records, Palaeogeography Palaeoclimatology Palaeoecology,227(1-2),141-152.
    [145]Barron, V., and L. Montealegre (1986), Iron Oxides and Color of Triassic Sediments: Application of the Kubelka-Munk Theory, American Journal of Science,286(10),792.
    [146]Barron, V, and J. Torrent (1986), Use of the Kubelka-Munk Theory to Study the Influence of Iron-Oxides on Soil Color, J Soil Sci,37(4),499-510.
    [147]Barron, V, and J. Torrent (2002), Evidence for a simple pathway to maghemite in Earth and Mars soils, Geochimica et Cosmochimica Acta,66(15),2801-2806.
    [148]Barshad, I. (1966), The effect of a variation in precipitation on the nature of clay mineral formation in soils from acid and basic igneous rocks, Israel Program for Scientific Translations.
    [149]Bender Koch, C., et al. (1995), Iron-containing products of basalt in a cold-dry climate, Chemical Geology,122,109-119.
    [150]Berner, R., and E. Berner (1997), Silicate weathering and climate, Plenum Press, Plenum.N Y.
    [151]Berner, R., and Z. Kothavala (2001), GEOCARB Ⅲ:A revised model of atmospheric CO2 over Phanerozoic time, American Journal of Science,301(2),182.
    [152]Berner, R. A. (1995), Chemical weathering and its effect on atmospheric CO2 and climate, Chemical weathering rates of silicate minerals,31,565-583.
    [153]Berer, R. A., and M. F. Cochran (1998), Plant-induced weathering of Hawaiian basalts, JOURNAL OF SEDIMENTARY RESEARCH,68(5),723-726.
    [154]Berner, R. A. (2006), GEOCARBSULF:A combined model for Phanerozoic atmospheric O-2 and CO2, Geochimica et Cosmochimica Acta,70(23),5653-5664.
    [155]Berner, R. A. (2008), Strontium isotopes, basalt weathering and phanerozoic CO2, Geochimica et Cosmochimica Acta,72(12), A79-A79.
    [156]Blundell, A., et al. (2009), Controlling factors for the spatial variability of soil magnetic susceptibility across England and Wales, Earth-Science Reviews,95(3-4),158-188.
    [157]Bluth, G., and L. Kump (1994), Lithologie and climatologie controls of river chemistry, Geochim. Cosmochim. Acta,58,2341-2359.
    [158]Brady, P. V., and S. R. G (1997), Seafloor weathering controls on atmospheric CO2 and global climate, Geochimica et Cosmochimica Acta,61(5),965-973.
    [159]Brantley, S., et al. (2007), Crossing disciplines and scales to understand the Critical Zone, Elements,3(5),307.
    [160]Brantley, S. L., et al. (2004), Modeling depletion zones in weathering profiles and comparison with field data, Geochimica et Cosmochimica Acta,68(11), A417-A417.
    [161]Brantley, S. L., et al. (2006), Weathering from the soil profile to the watershed:what controls the weathering advance rate?, Geochimica et Cosmochimica Acta,70(18), A64-A64.
    [162]Brantley, S. L., et al. (2008), Modelling chemical depletion profiles in regolith, Geoderma, 145(3-4),494-504.
    [163]Brantley, S. L., and A. F. White (2009), Approaches to Modeling Weathered Regolith, Rev Mineral Geochem,70,435-484.
    [164]Brimhall, G., and W. Dietrich (1987), Constitutive mass balance relations between chemical composition, volume, density, porosity, and strain in metasomatic hydrochemical systems: Results on weathering and pedogenesis, Geochimica et Cosmochimica Acta,51(3),567-587.
    [165]Brimhall, G., et al. (1992), Deformational mass transport and invasive processes in soil evolution, science,255(5045),695.
    [166]Brimhall, G. H., et al. (1988), Metal Enrichment in Bauxites by Deposition of Chemically Mature Aeolian Dust, Nature, 333(6176),819-824.
    [167]Brimhall, G. H., et al. (1991), Quantitative Geochemical Approach to Pedogenesis Importance of Parent Material Reduction, Volumetric Expansion, and Eolian Influx in Lateritization, Geoderma,51(1-4),51-91.
    [168]Brownlow, A. (1979), Geochemistry, Prentice-Hall, Inc, New Jersey.
    [169]Carson, M., and M. Kirkby (1972), Hills lope form and process,475 pp., Cambridge Univ. Press, New York.
    [170]Chadwick, O. A., and J. O. Davis (1990), SOIL-FORMING INTERVALS CAUSED BY EOLIAN SEDIMENT PULSES IN THE LAHONTAN BASIN, NORTHWESTERN NEVADA, Geology,18(3),243-246.
    [171]Chadwick, O. A., et al. (1999), Changing sources of nutrients during four million years of ecosystem development, Nature,397(6719),491-497.
    [172]Chadwick, O. A., et al. (2009), Changing sources of strontium to soils and ecosystems across the Hawaiian Islands, Chemical Geology,267(1-2),64-76.
    [173]Chen, J. S., and M. Chen (1992), Chemical characteristics and genesis of major ions of the rivers in Hainan Island,,,. Tropical Geography(12),272-281.
    [174]Childs, C. (2007), Ferrihydrite:A review of structure, properties and occurrence in relation to soils, Zeilschrift f'r Pflanzenern hrung und Bodenkunde,155(5),441-448.
    [175]Cornell, R., and U. Schwertmann (2003a), The iron oxides:Structure, properties, reactions, occurrences, and uses, Vch Verlagsgesellschaft Mbh.
    [176]Cornell, R. M., and U. Schwertmann (2003b), The iron oxides:Structure, properties, reactions, occurrences, and uses, Wiley-VCH Verlag GmbH&Co.KGaA, Weinheim.
    [177]Da Costa, A., et al. (1999), Quantification and characterization of maghemite in soils derived from volcanic rocks in Southern Brazil, Clays and Clay Minerals,47,466-473.
    [178]Darwin, C. (1846), An account of the Fine Dust which often falls on Vessels in the Atlantic Ocean, Quarterly Journal of the Geological Society,2(1-2),26.
    [179]Das, A., et al. (2005), Chemical weathering in the Krishna Basin and Western Ghats of the Deccan Traps, India:Rates of basalt weathering and their controls, Geochimica et Cosmochimica Acta, 69(8),2067-2084.
    [180]Day, R., et al. (1977), Hysteresis properties of titanomagnetites:grain-size and compositional dependence, Physics of the Earth and Planetary Interiors,13(4),260-267.
    [181]Dearing, J. (1999), Magnetic susceptibility. Environmental magnetism:a practical guide,6, 35"C62.
    [182]Deaton, B. C., and W. L. Balsam (1991), Visible spectroscopy; a rapid method for determining hematite and goethite concentration in geological materials, JOURNAL OF SEDIMENTARY RESEARCH,61(4),628.
    [183]Dessert, C., et al. (2001), Erosion of Deccan Traps determined by river geochemistry:impact on the global climate and the Sr-87/Sr-86 ratio of seawater, Earth and Planetary Science Letters,188(3-4),459-474.
    [184]Dessert, C., et al. (2005), Basalt weathering laws and the impact of basalt weathering on the global carbon cycle, Geochimica et Cosmochimica Acta,69(10), A687-A687.
    [185]Ding, Z., et al. (2001), Iron geochemistry of loess and red clay deposits in the Chinese Loess Plateau and implications for long-term Asian monsoon evolution in the last 7.0 Ma, Earth and Planetary Science Letters,185(1-2),99-109.
    [186]Dixon, J. C., and C. E. Thorn (2005), Chemical weathering and landscape development in mid-latitude alpine environments, Geomorphology,67(1-2),127-145.
    [187]Dixon, J. L., et al. (2009), Climate-driven processes of hillslope weathering, Geology,37(11), 975-978.
    [188]Dokuchaev, V. (1880), Protocol of the meeting of the branch of geology and mineralogy of the St. Petersburg Society of Naturalists, Trans. St. Petersburg Soc. Nat,12,65"C97.
    [189]Dorn, R., and P. Brady (1995), Rock-based measurement of temperature-dependent plagioclase weathering, Geochimica et Cosmochimica Acta,59(13),2847-2852.
    [190]Drever, J., and J. Zobrist (1992), Chemical weathering of silicate rocks as a function of elevation in the southern Swiss Alps, Geochimica et Cosmochimica Acta,56,3209-3216.
    [191]Drever, J. I., and D. W. Clow (1995), Weathering rates in catchments. Chemical weathering rates of silicate minerals,31,463-483.
    [192]Dunlop, D. (2002a), Theory and application of the Day plot (Mrs/Ms versus Hcr/Hc) 2. Application to data for rocks, sediments, and soils,Jgeophys. Res,107(10.1029).
    [193]Dunlop, D. J. (2002b), Theory and application of the Day plot (Mrs/Ms versus Hcr/Hc) 1. Theoretical curves and tests using titanomagnetite data,J.geophys. Res, 107(10.1029).
    [194]Dupre, B., et al. (2003), Rivers, chemical weathering and Earth's climate, Cr Geosci,335(16), 1141-1160.
    [195]Edmond, J., and M. Palmer (1995), The fluvial geochemistry and denudation rate of the Guayana Shield in Venezuela, Colombia, and Brazil, Geochimica et Cosmochimica Acta, 59(16),3301-3325.
    [196]Eggleton, R., and G. Taylor (2008), Impact of fire on the Weipa Bauxite, northern Australia, Australian Journal of Earth Sciences,55,83-86.
    [197]Eiriksdottir, E. S., et al. (2008), Temporal variation of chemical and mechanical weathering in NE Iceland:Evaluation of a steady-state model of erosion, Earth and Planetary Science Letters,272(1-2),78-88.
    [198]Fassbinder, J., et al. (1990), Occurrence of magnetic bacteria in soil,343,161-163.
    [199]Felix-Henningsen, P. (2000), Paleosols on Pleistocene dunes as indicators of paleo-monsoon events in the Sahara of East Niger, CATENA,41(1-3),43-60.
    [200]Fine, P., et al. (1995), Pedogenic and lithogenic contributions to the magnetic susceptibility record of the Chinese loess/palaeosol sequence, Geophysical Journal International,122(1), 97-107.
    [201]Fitzpatrick, R. W., and U. Schwertmann (1982), Al-Substituted Goethite-an Indicator of Pedogenic and Other Weathering Environments in South-Africa, Geoderma,27(4),335-347.
    [202]Gabet, E. J., et al. (2006), Hydrological controls on chemical weathering rates at the soil-bedrock interface, Geology,34(12),1065-1068.
    [203]Gabet, E. J., and S. M. Mudd (2009), A theoretical model coupling chemical weathering rates with denudation rates, Geology,57(2),151-154.
    [204]Gislason, S. R., et al. (2008), The feedback between climate and weathering, Mineral Mag, 72(1),317-320.
    [205]Goldich, S. (1938), A study in rock-weathering, The journal of geology,46(1),17-58.
    [206]Goulart, A. T., et al. (1998), Iron oxides in a soil developed from basalt, Clays and Clay Minerals,46(4),369-378.
    [207]Han, J., et al. (1996), Magnetic susceptibility of modem soils in China and climate conditions, Stud Geophys. Geodet,40,262-275.
    [208]Hao, Q., et al. (2009), The record of changing hematite and goethite accumulation over the past 22 Myr on the Chinese Loess Plateau from magnetic measurements and diffuse reflectance spectroscopy, J. Geophys. Res,114.
    [209]Heider, F., et al. (1996), Magnetic susceptibility and remanent coercive force in grown magnetite crystals from 0.1 mm to 6 mm, Physics of the Earth and Planetary Interiors,93(3), 239-256.
    [210]Heller, F., et al. (1993), Quantitative estimates of pedogenic ferromagnetic mineral formation in Chinese loess and palaeoclimatic implications, Earth and Planetary Science Letters, 114(2-3),385-390.
    [211]Hochella Jr, M., et al. (2008), Nanominerals, Mineral Nanoparticles, and Earth Systems, Science,319,1631-1634.
    [212]Honeycutt, C., et al. (1990), Climatic and topographic relations of three Great Plains soils:I. Soil morphology, Soil Science Society of America Journal,54(2),469.
    [213]Huh, Y., et al. (1998), The fluvial geochemistry of the rivers of eastern Siberia:1. Tributaries of the Lena River draining the sedimentary platform of the Siberian Craton, Geochimica et Cosmochimica Acta,62(10),1657-1676.
    [214]Jackson, M., et al. (1971), Geomorphological relationships of tropospherically derived quartz in the soils of the Hawaiian Islands, Soil Science Society of America Journal,35(4),515.
    [215]Jenny, H., and C. Leonard (1934), Functional relationships between soil properties and rainfall, Soil Science,38(5),363.
    [216]Jenny, H. (1941), Factors of soil formation:A System of Quantitative Pedology,146 pp., McGraw-Hill, New York.
    [217]Ji, J. F., et al. (2001), Mineralogic and climatic interpretations of the Luochuan loess section (China) based on diffuse reflectance spectrophotometry, Quaternary Research,56(1),23-30.
    [218]Ji, J. F., et al. (2002), Rapid and quantitative measurement of hematite and goethite in the Chinese loess-paleosol sequence by diffuse reflectance spectroscopy, Clays and Clay Minerals, 50(2),208-216.
    [219]Ji, J. F., et al. (2004a), High resolution hematite/goethite records from Chinese loess sequences for the last glacial-interglacial cycle:Rapid climatic response of the East Asian Monsoon to the tropical Pacific, Geophysical Research Letters,31(3).
    [220]Ji, J. F., et al. (2004b), Relating magnetic susceptibility (MS) to the simulated thematic mapper (TM) bands of the Chinese loess:Application of TM image for soil MS mapping on Loess Plateau, Journal of Geophysical Research-Solid Earth,109(B5),-
    [221]Ji, J. F., et al. (2005), Asian monsoon oscillations in the northeastern Qinghai-Tibet Plateau since the late glacial as interpreted from visible reflectance of Qinghai Lake sediments, Earth and Planetary Science Letters,233(1-2),61-70.
    [222]Jickells, T. D., et al. (2005), Global iron connections between desert dust, ocean biogeochemistry, and climate, science,308(5718),67-71.
    [223]Judd, D. B., and G. Wyszecki (1975), Color in Business, Science, and Industry,553 pp., John Wiley & Sons, New York.
    [224]Kampf, N., and U. Schwertmann (1982), Quantitative-determination of goethite and hematite in kaolinitic soils by X-ray-fiffraction, Clay Minerals,17(3),359-363.
    [225]Kampf, N., and U. Schwertmann (1983), Goethite and Hematite in a Climosequence in Southern Brazil and Their Application in Classification of Kaolinitic Soils, Geoderma,29(1), 27-39.
    [226]Kappler, A., and K. Straub (2005), Geomicrobiological cycling of iron, Reviews in Mineralogy and Geochemistry,59(1),85.
    [227]Knoll, M., and W. James (1987), Effect of the advent and diversification of vascular land plants on mineral weathering through geologic time, Geology,75(12),1099.
    [228]Kosmas, C., et al. (1983), Characterization of Iron Oxide Minerals by Second-Derivative Visible Spectroscopy 1, Soil Science Society of America Journal,48(2),401.
    [229]Kosmas, C., et al. (1986), Relationship among derivative spectroscopy, color, crystalline dimensions, and Al substitution of synthetic goethites and hematites, Clays & Clay Minerals, 34,625-634.
    [230]Krauskopf, K., and D. Gird (1979), Introduction to geochemistry, McGraw-Hill, New York.
    [231]Kumaravel, V., et al. (2010), Interrelation of magnetic susceptibility, soil color and elemental mobility in the Pliocene-Pleistocene Siwalik paleosol sequences of the NW Himalaya, India, Geoderma,154(3-4),267-280.
    [232]Kump, L., et al. (2000), Chemical weathering, atmospheric CO2, and climate, Annual Review of Earth and Planetary Sciences,28(1),611-667.
    [233]Laidler, K. (1987), Chemical Kinetics,3rd, edited. New York:Harper and Row Publishers, Inc.
    [234]Lasaga, A. C., et al. (1994a), Chemical-Weathering Rate Laws and Global Geochemical Cycles, Geochimica et Cosmochimica Acta,55(10),2361-2386.
    [235]Lasaga, A. C., et al. (1994b), Chemical weathering rate laws and global geochemical cycles, Geochimica et Cosmochimica Acta,58(10),2361-2386.
    [2361 Leopold, L., et al. (1995), Fluvial processes in geomorphology, Dover Pubns.
    [237]Likens, G., and F. Bormann (1995), Biogeochemistry of a forested ecosystem, Springer Science & Business.
    [238]Liu, Q., et al. (2003a), An integrated study of the grain-size-dependent magnetic mineralogy of the Chinese loess/paleosol and its environmental significance, J. geophys. Res,108(B9), 2437.
    [239]Liu, Q., et al. (2004a), Grain size distribution of pedogenic magnetic particles in Chinese loess/paleosols, Geophys. Res. Lett,31, L22603.
    [240]Liu, Q. S., et al. (2004b), Grain size distribution of pedogenic magnetic particles in Chinese loess/paleosols, Geophysical Research Letters,31(22),
    [241]Liu, X., et al. (1995), Quantitative estimates of palaeoprecipitation at Xifeng, in the Loess Plateau of China, Palaeogeography, Palaeoclimatology, Palaeoecology,113(2-4),243-248.
    [242]Liu, X. M., et al. (2003b), Paleoclimatic significance of magnetic properties on the Red Clay underlying the loess and paleosols in China, Palaeogeography, Palaeoclimatology, Palaeoecology,199(1-2),153-166.
    [243]Lu, S. G., et al. (2008), Mineral magnetic properties of a weathering sequence of soils derived from basalt in Eastern China, CATENA,73(1),23-33.
    [244]Macedo, J., and R. Bryant (1989a), Preferential microbial reduction of hematite over goethite in a Brazilian Oxisol, Soil Sci. Soc. Am. J,53(4),1114-1118.
    [245]Macedo, J., and R. Bryant (1989b), Preferential microbial reduction of hematite over goethite in a Brazilian Oxisol, Soil Science Society of America Journal,53(4),1114.
    [246]Maher, B. A., and R. M. Taylor (1988), Formation of Ultrafine-Grained Magnetite in Soils, Nature,336(6197),368-370.
    [247]Maher, B. A., and R. Thompson (1992), Paleoclimatic Significance of the Mineral Magnetic Record of the Chinese Loess and Paleosols-Reply, Quaternary Research,38(2),268-268.
    [248]Maher, B. A., and R. Thompson (1995), Paleorainfall reconstructions from pedogenic magnetic susceptibility variations in the Chinese loess and paleosols, Quaternary Research, 44(3),383-391.
    [249]Maher, B. A. (1998), Magnetic properties of modern soils and Quaternary loessic paleosols: paleoclimatic implications, Palaeogeography, Palaeoclimatology. Palaeoecology,137(1-2), 25-54.
    [250]Maher, B. A., et al. (2002), Variation of soil magnetism across the Russian steppe:its significance for use of soil magnetism as a palaeorainfall proxy, QUATERNARY SCIENCE REVIEWS,21(14-15),1571-1576.
    [251]Mehra, O., and M. Jackson (1960), Iron oxide removal from soils and clays by a dithionite-citrate system with sodium bicarbonate buffer, Clays Clay Miner,7,311-321.
    [252]Merritts, D. J., et al. (1992), THE MASS BALANCE OF SOIL EVOLUTION ON LATE QUATERNARY MARINE TERRACES, NORTHERN CALIFORNIA, Geological Society of America Bulletin,104(11),1456-1470.
    [253]Meybeck, M. (1986), Composition chimique des ruisseaux non pollu"|s de France, Sci. G"|ol. Bull,39(1),3"C77.
    [254]Meybeck, M. (1994), Material Fluxes on the Surface of the Earth, edited, National Academy Press, Washington, DC.
    [255]Millot, R., et al. (2002), The global control of silicate weathering rates and the coupling with physical erosion:new insights from rivers of the Canadian Shield, Earth and Planetary Science Letters,196(1-2),83-98.
    [256]Muller, J. P., and G. Bocquier (1987), Textural and mineralogical relationships between ferruginous nodules and surrounding clayey matrices in a laterite from Cameroon, The Clay Minerals Society, Bloomington, Indiana.
    [257]Nakai, S., et al. (1993), Provenance of dust in the Pacific Ocean, Earth and Planetary Science Letters,119(1-2),143-157.
    [258]NationalResearchCouncil (2001), Basic Research Opportunities in Earth Science, National Academy Press, Washington.D.C.
    [259]Navrotsky, A., et al. (2008), Size-Driven Structural and Thermodynamic Complexity in Iron Oxides, science,319(5870),1635-1638.
    [260]Nesbitt, H., and G. Young (1982), Early Proterozoic climates and plate motions inferred from major element chemistry of lutites, Nature,290(5885),715-717.
    [261]Nie, J., et al. (2007), Enhancement mechanisms of magnetic susceptibility in the Chinese red-clay sequence, Geophysical Research Letters,34(19), L19705.
    [262]Ohta, S., et al. (1993), Ultisols of lowland dipterocarp forest in East Kalimantan, Indonesia, Soil Science Plant Nutrition,39,1-12.
    [263]Oliva, P., et al. (2003a), Chemical weathering in granitic environments, Chemical Geology, 202(3-4),225-256.
    [264]Oliva, P., et al. (2003b), Chemical weathering in granitic environments, Chemical Geology, 202(3-4),225-256.
    [265]Ollier, C. (1969), Weathering,304 pp., Longman Group Ltd., London.
    [266]Peters, C., and M. Dekkers (2003), Selected room temperature magnetic parameters as a function of mineralogy, concentration and grain size, Physics and Chemistry of the Earth, Parts A/B/C,28(16-19),659-667.
    [267]Peterschmitt, E., et al. (1996), Yellowing, bleaching and ferritisation processes in soil mantle of the Western Ghats, South India, Geoderma,74(3-4),235-253.
    [268]Peterson, F. (1980), Holocene desert soil formation under sodium salt influence in a playa-margin environment, Quaternary Research,13(2),172-186.
    [269]Raymo, M. E., et al. (1988), Influence of Late Cenozoic Mountain Building on Ocean Geochemical Cycles, Geology,16(1),649-653.
    [270]Raymo, M. E., and W. F. Ruddiman (1992), Tectonic Forcing of Late Cenozoic Climate, Nature,359(6391),117-122.
    [271]Rea, D. (1994), The paleoclimatic record provided by eolian deposition in the deep sea:The geologic history of wind, Reviews of Geophysics,32(2),159-196.
    [272]Riebe, C. S., et al. (2001), Strong tectonic and weak climatic control of long-term chemical weathering rates, Geology,29(6),511-514.
    [273]Riebe, C. S., et al. (2004), Erosional and climatic effects on long-term chemical weathering rates in granitic landscapes spanning diverse climate regimes, Earth and Planetary Science Letters,224(3-4),547-562.
    [274]Royer, D. (1999), Depth to pedogenic carbonate horizon as a paleoprecipitation indicator?, Geology,27(12),1123.
    [275]Ruxton, B. P. (1968), Measures of the degree of chemical weathering of rocks, The journal of geology,76(5),518-527.
    [276]Scheinost, A., et al. (1998), Use and Limitations of Second-Derivative Diffuse Reflectance Spectroscopy in the Visible to Near-Infrared Range to Identify and Quantity Fe Oxide Minerals in Soils, Clays and Clay Minerals,46(5),528-536.
    [277]Scheinost, A. C., et al. (1999), Diffuse Reflectance Spectra of A1 Substituted Goethite:A Ligand Field Approach, Clays and Clay Minerals,47(2),156-164.
    [278]Schwertmann, U., and B. Heinemann (1959), Uber Das Vorkommen Von Maghemit (Gamma-Fe2o3) in Mooren Nordwestdeutschlands Und Dessen Entstehung, Angew Chem Int Edit,71(21),676-676.
    [279]Schwertmann, U. (1971a), Transformation of hematite to goethite in soils.
    [280]Schwertmann, U. (1971b), Transformation of Hematite to Goethite in Soils, Nature,232(5313), 624-&.
    [281]Schwertmann, U. (1971c), Transformation of Hematite to Goethite in Soils, Nature,232, 624-625.
    [282]Schwertmann, U., and R. W. Fitzpatrick (1977), Occurrence of Lepidocrocite and Its Association with Goethite in Natal Soils, Soil Science Society of America Journal,41(5), 1013-1018.
    [283]Schwertmann, U., and H. Fechter (1984), The influence of aluminum on iron oxides:XI. Aluminum-substituted maghemite in soils and its formation, Soil Science Society of America Journal,48(6),1462.
    [284]Schwertmann, U., and M. Latham (1986), Properties of Iron-Oxides in Some New Caledonian Oxisols, Geoderma,39(2),105-123.
    [285]Schwertmann, U., et al. (1999), From Fe(Ⅲ) ions to ferrihydrite and then to hematite, Journal of Colloid and Interface Science,209(1),215-223.
    [286]Schwertmann, U., et al. (2000), The effect of clay minerals on the formation of goethite and hematite from ferrihydrite after 16 years' ageing at 25 degrees C and pH 4-7, Clay Minerals, 35(4),613-623.
    [287]Shen, Z. X., et al. (2006), Spectroscopic analysis of iron-oxide minerals in aerosol particles from northern China, Science of The Total Environment,367(2-3),899-907.
    [288]Singer, A. (1980), The paleoclimatic interpretation of clay minerals in soils and weathering profiles, Earth-Science Reviews,15(4),303-326.
    [289]Singer, A., et al. (1998), Iron oxide mineralogy of Terre Rosse and Rendzinas in relation to their moisture and temperature regimes, European Journal of Soil Science,49(3),385-395.
    [290]Singer, M., and P. Fine (1989), Pedogenic factors affecting magnetic susceptibility of northern California soils, Soil Science Society of America Journal,53(4),1119.
    [291]Singer, M., et al. (1996), A conceptual model for the enhancement of magnetic susceptibility in soils, Quaternary International,34,243-248.
    [292]Souza Junior, I. G. d., et al. (2010), Mineralogy and magnetic susceptibility of iron oxides of B horizon of Parana state soils, Cienc. Rural,40(3),513-519.
    [293]Stallard, R., and J. Edmond (1983), Geochemistry of the Amazon 2. The influence of geology and weathering environment on the dissolved load, Journal of Geophysical Research,88(C14), 9671-9688.
    [294]Stallard, R. F., and J. M. Edmond (1987), Geochemistry of the Amazon.3. Weathering Chemistry and Limits to Dissolved Inputs, J Geophys Res-Oceans,92(C8),8293-8302.
    [295]Stallard, R. F. (1995), Tectonic, Environmental, and Human Aspects of Weathering and Erosion-a Global Review Using a Steady-State Perspective, Annual Review of Earth and Planetary Sciences,23,11-39.
    [296]Strakhov, M. (1967), Principles of Lithogenesis I, Oliver and Boyd, Edinburge.
    [297]Stumm, W., and B. Sulzberger (1992), The cycling of iron in natural environments: Considerations based on laboratory studies of heterogeneous redox processes, Geochimica et Cosmochimica Acta,56(8),3233-3257.
    [298]Sutter, B., et al. (2002), The chemistry and mineralogy of Atacama Desert soils:a possible analog for Mars soils.
    [299]Swaddle, T., and P. Oltmann (1980), Kinetics of the magnetite"Cmaghemite"Chematite transformation, with special reference to hydrothermal systems, Canadian Journal of Chemistry,58(17),1763-1772.
    [300]Taylor, G., and R. Eggleton (2001), Regolith Geology and Geomorphology, John Wiley& Sons, Ltd, New York.
    [301]Taylor, R. M., and U. Schwertmann (1974), Maghemite in Soils and Its Origin.1. Properties and Observations on Soil Maghemites, Clay Minerals,10(4),289-298.
    [302]Torrent, J., et al. (1980)、 Iron-Oxide Mineralogy of Some Soils of 2 River Terrace Sequences in Spain, Geoderma,23(3),191-208.
    [303]Torrent, J., et al. (1982a), Influence of relative humidity on the crystallization of Fe (Ⅲ) oxides from ferrihydrite, Clays and Clay Minerals,30(5),337-340.
    [304]Torrent, J., et al. (1982b), Influence of Relative-Humidity on the Crystallization of Fe(Iii) Oxides from Ferrihydrite, Clays and Clay Minerals,30(5),337-340.
    [305]Torrent, J., et al. (1983), Quantitative relationships between soil color and hematite content. Soil Science,136(6),354.
    [306]Torrent, J., et al. (2006), Magnetic enhancement is linked to and precedes hematite formation in aerobic soil, Geophysical Research Letters,33(2), L02401.
    [307]Torrent, J., et al. (2007), Magnetic enhancement and iron oxides in the upper luochuan Loess-paleosol sequence, Chinese Loess plateau, Soil Science Society of America Journal, 71(5),1570-1578.
    [308]Trolard, F., and Y. Tardy (1987), The stabilities of gibbsite, boehmite, aluminous goethites and aluminous hematites in bauxites, ferricretes and laterites as a function of water activity, temperature and particle size, Geochimica et Cosmochimica Acta,51(4),945-957.
    [309]Van der Marel, H. (1951), Gamma ferric oxide in sediments, J Sediment Petrol,21,12C21.
    [310]Velbel, M. (1993), Temperature dependence of silicate weathering in nature:How strong a negative feedback on long-term accumulation of atmospheric CO2 and global greenhouse warming?, Geology,21(12),1059.
    [311]Viscarra Rossel, R. A., E. N. Bui, P. de Caritat, and N. J. McKenzie (2010) (2010), Mapping iron oxides and the color of Australian soil using visible-near-infrared reflectance spectra, J. Geophys. Res.,115, F04031.
    [312]Vitousek, P., et al. (1997), Soil and ecosystem development across the Hawaiian Islands, GSA Today,7(9),1-8.
    [313]West, A. J., et al. (2005), Tectonic and climatic controls on silicate weathering, Earth and Planetary Science Letters,235(1-2),211-228.
    [314]White, A. (2003), Natural weathering rates of silicate minerals, Treatise on Geochemistry,5, 133-168.
    [315]White, A. F., and A. E. Blum (1995), Effects of climate on chemical weathering in watersheds, Geochimica et Cosmochimica Acta,59(9),1729-1747.
    [316]White, A. F., and S. L. Brantley (2003), The effect of time on the weathering of silicate minerals:why do weathering rates differ in the laboratory and field?, Chemical Geology Controls on Chemical Weathering,202(3-4),479-506.
    [317]WRB, I. W. G. (2007), World Reference Base for Soil Resources 2006, first update 2007, World Soil Resources Reports No.103, FAO, Rome.
    [318]Zhang, W., et al. (2009a), East Asian summer monsoon intensity inferred from iron oxide mineralogy in the Xiashu Loess in southern China, Quaternary Science Reviews,28(3-4), 345-353.
    [319]Zhang, Y. G., et al. (2007), High resolution hematite and goethite records from ODP 1143, South China Sea:Co-evolution of monsoonal precipitation and El Ni o over the past 600,000 years, Earth and Planetary Science Letters,264(1-2),136-150.
    [320]Zhang, Y. G., et al. (2009b), Mid-Pliocene Asian monsoon intensification and the onset of Northern Hemisphere glaciation, Geology,37(1),599-602.
    [321]Zhao, L., et al. (2005), Variations of illite/chlorite ratio in Chinese loess sections during the last glacial and interglacial cycle:Implications for monsoon reconstruction, Geophysical Research Letters, 32(20).
    [322]Zhou, L., et al. (1990), Partly pedogenic origin of magnetic variations in Chinese loess.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700