用户名: 密码: 验证码:
裂隙岩体冻融损伤力学特性试验及破坏机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在寒区由于反复的冻融作用而诱发冻胀融沉、泥石流、滑坡、塌陷等一系列的冻融灾害。节理裂隙岩体是坝基、边坡、地下硐室等寒区岩体工程中普遍存在的一类复杂介质,由于反复冻融而引起其强度损伤劣化、变形的不断增大,将直接影响岩体工程的设计与施工,以及投入使用后的正常运营。随着大量兴起的西部寒区工程建设,越来越多的冻融岩土工程问题亟待解决。本文紧密围绕裂隙岩体冻融损伤力学特性以及断裂破坏机理开展研究,采用在模型材料中预制裂隙的方法来模拟节理岩体,通过冻融循环试验和单轴以及三轴压缩试验,探讨裂隙岩体的冻融损伤力学特性,分析在冻融-荷载耦合作用下裂隙岩体中微裂纹的萌生、扩展、搭接、贯通及相互作用的演化过程及力学损伤演化机理,建立裂隙岩体在冻融和荷载耦合作用下的损伤演化方程和本构关系,提出冻融裂隙岩体损伤断裂准则和起裂判据,以新疆天山公路冻融岩质边坡工程为背景,结合试验成果和理论推导进行边坡工程实例的计算分析。本文主要研究研究工作与获得的有益认识如下:
     (1)根据相似理论,结合现场岩体力学特性,成功配制类岩石相似模型材料-水泥硅粉砂浆材料;采用在模型材料中预制裂隙的方法来模拟节理岩体,共制作完整岩样以及具有不同几何特征的裂隙岩样10种。
     (2)对预制裂隙岩样进行不同冻融循环次数的冻融试验和单轴压缩试验,分析裂隙几何参数(裂隙长度、裂隙倾角、裂隙数目)对冻融裂隙岩体力学性能的影响,并对冻融裂隙岩样的破坏机制进行探讨,总结归纳出裂隙岩体的三种损伤模式:颗粒散落模式、龟裂模式和沿预制裂隙断裂模式。
     (3)分析裂隙岩体冻融损伤的影响因素,将其分为外因、内因和其它因素;基于细观损伤理论和宏观统计损伤模型,建立了由三部分损伤(冻融引起的损伤、外荷引起的损伤和冻融与荷载耦合作用引起的损伤)引起的冻融裂隙岩体损伤演化方程,探讨在冻融和荷载耦合作用下裂隙岩体的损伤劣化机制,推导出裂隙岩体在经历冻融和荷载双重作用下的损伤本构模型。
     (4)通过冻融裂隙试验进行三轴压缩试验,研究经历不同冻融循环次数的裂隙岩样在不同围压下的力学特性,分析不同冻融循环次数,不同围压下裂隙的分布对岩样力学性质的影响规律。
     (5)基于损伤断裂力学基本理论,推导出拉剪和压剪复合作用下冻融裂隙岩体裂纹扩展准则,建立在冻胀和围压共同作用下裂纹起裂的条件、扩展方向和扩展长度的计算公式,提出冻融作用下裂隙岩体的应力强度因子。
     (6)结合裂隙岩样室内冻融循环试验和力学试验的研究成果,对天山公路一段典型的岩质边坡进行数值模拟计算,分析在经过数次冻融循环次数后,此岩质边坡的位移、最大主应力以及塑性区的发展变化情况,研究裂隙岩质边坡受冻融循环后,其力学性质的改变对边坡稳定性带来的影响,为冻融循环条件下山区边坡防护关键技术的研究提供基础技术支持。
It always induces geological disasters such as frost heaving and thawing settlement, mud-rock flows, landslide, collapse and so on by repeated freeze-thaw effect in the cold region. The joint fractured rock mass is a kind of complicated medium which exist everywhere in rock engineering, for example, dam foundation, slope and underground cavern, due to repeated freeze-thaw, its strength becomes damaged and weaken, and growing deformation in the rock mass. These problems will directly affect the design and construction of rock engineering and normal operation after the engineering was finished. As the rise of engineering construction in western cold region, a number of freeze-thaw problems of geotechnical are urgent to be solved. The paper closely research on damage mechanics of joint fractured rock mass under freeze-thaw condition, we prefabricated fissure in model material to simulate jointed rock mass, then freeze-thaw cycling test and uniaxial and triaxial compression test were conducted of fracture rock samples, freeze-thaw damage mechanics characteristics of fractured rock mass was discussed, and revealed the evolution process of crack initiation, crack propagation and failure of rock mass, damage evolution equation and the constitutive relation under the effect of freezing and thawing and load coupling of freeze-thaw fractured rock mass were established. the main research contents and results are as follows:
     (1) According to the similarity theory, combined with the rock's mechanics properties of the scene, the similar modeling material similar to rock-cement silica fume mortar was prepared successful; the method of prefabricating crack in the modeling material was used to simulate the jointed rock mass, ten kinds of integrated rock specimens and fractured rock samples with different geometric characteristics were made totally.
     (2) The freeze-thaw tests of different freeze-thaw cycles and uniaxial compression test on the prefabricated fractured rock samples were carried out, then analyzed the fracture geometry parameters (crack length, crack dip, the number of cracks) on the effects of the mechanical properties of the freeze-thaw fractured rock, and discussed the failure mechanism of the freeze-thaw fractured rock samples; the paper also summarized the three damage modes of the fractured rock:particles shattered mode, crack mode and fracture along the prefabricated crack mode.
     (3) The affecting factors of freeze-thaw damage were divided into external factors, internal factors and other factors. Based on mesoscopic damage theory and macroscopic statistical damage model, the freeze and thaw damage evolution, the external load damage evolution and the freeze-load coupling damage evolution were developed. The damage evolutions aim at researching the damage mechanism of jointed rock mass under the load condition of freeze-thaw and external load, then building damage constitutive models of rock.
     (4) Triaxial compression test was carried out of rock specimens, by this way, the mechanical character with different confining pressure, the influence law of fracture spacing with different freeze-thaw cycles, different confining pressure was analyzed.
     (5) Based on the theory of the damage fracture mechanics, new computing formulas about the crack condition, extending direction and the length of the wing crack are deduced. Analyze the three different fracture penetration modes of stretch-draw, shear and tensile-shear. Take the initial damage caused by native fissure and freeze thawing and the additional damage caused by crack growth of fractured rock mass into consideration, From the view of crack propagation of damage equivalence, Research on the equivalent model of crack extension of the rock mass under freezing and thawing cycle.
     (6) Combined with the results of rocklike samples under freeze-thaw cycle and mechanical test, the digital simulation has been taken to the typical rock slope of the Tianshan highway. Computes and analyzes the changes of the displacement, the maximum principal stress and the plastic zone development of rock slope after several freeze-thaw cycles. Research the impacts on slope stability brought by the changes of the mechanical properties under freeze-thaw cycles. Basic and key technologies of slope protection will be provided for the slope of mountainous area in freezing and thawing cycle conditions.
引文
[1]陈仁升,康尔泗,吴立宗,等.中国寒区分布探讨[J].冰川冻土.2005(04):469-475.
    [2]李宁,程国栋,徐学祖,等.冻土力学的研究进展与思考[J].力学进展.2001(01):95-102.
    [3]朱元林,吴紫汪,何平,等.我国冻土力学研究新进展及展望[J].冰川冻土.1995(S1):6-14.
    [4]安玉科,佴磊.冻融循环作用下节理岩体锚固性能退化机理和模式[J].吉林大学学报(地球科学版).2012(02):462-467.
    [5]赖远明,吴紫汪,朱元林.大坂山隧道围岩冻融损伤的CT分析[J].冰川冻土.2000,22(3):206.
    [6]Aoki K, Hibiya K, Yoshida T. Storage of refrigerated liquefied gases in rock caverns: characteristics of rock under very low temperatures[J]. Tunnelling and Underground Space Technology.1990,5(4):319-325.
    [7]Chen T C, Yeung M R, Mori N. Effect of water saturation on deterioration of welded tuff due to freeze-thaw action[J]. COLD REGIONS SCIENCE AND TECHNOLOGY.2004,38(2-3): 127-136.
    [8]吴刚,何国梁,张磊,等.大理岩循环冻融试验研究[J].岩石力学与工程学报.2006(S1):2930-2938.
    [9]何国梁,张磊,吴刚.循环冻融条件下岩石物理特性的试验研究[J].岩土力学.2004(S2):52-56.
    [10]刘华,牛富俊,徐志英,等.循环冻融条件下安山岩和花岗岩的物理力学特性试验研究[J].冰川冻土.2011,33(3):557-563.
    [11]周科平,许玉娟,李杰林,等.冻融循环对风化花岗岩物理特性影响的实验研究[J].煤炭学报.2012(S1):70-74.
    [12]Inada Y, Yokota K. Some studies of low temperature rock strength[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts.1984,21(3):145-153.
    [13]Yamabe T, Neaupane K M. Determination of some thermo-mechanical properties of Sirahama sandstone under subzero temperature condition[J]. International Journal of Rock Mechanics and Mining Sciences.2001,38(7):1029-1034.
    [14]Yavuz H, Altindag R, Sarac S, et al. Estimating the index properties of deteriorated carbonate rocks due to freeze-thaw and thermal shock weathering[J]. INTERNATIONAL JOURNAL OF ROCK MECHANICS AND MINING SCIENCES.2006,43(5):767-775.
    [15]杨更社,奚家米.煤矿立井冻结设计理论的研究现状与展望分析[J].地下空间与工程学报.2010(03):627-635.
    [16]杨更社,奚家米,李慧军,等.三向受力条件下冻结岩石力学特性试验研究[J].岩石力学与工程学报.2010(03):459-464.
    [17]杨更社,奚家米,邵学敏,等.冻结条件下岩石强度特性的试验[J].西安科技大学学报.2010(01):14-18.
    [18]杨更社.冻结岩石力学的研究现状与展望分析[J].力学与实践.2009(06):9-16.
    [19]杨史社,周春华,田应国,等.软岩材料冻融过程中的水热迁移实验研究[J].煤炭学报.2006(05):566-570.
    [20]杨史社,张全胜,蒲毅彬.冻结温度对岩石细观损伤扩展特性影响研究初探[J].岩土力学.2004(09):1409-1412.
    [21]王开林,杨圣奇,苏承东.冻结状态多级应变速率下凝灰岩力学特性的试验研究[Z].中国云南昆明:20065.
    [22]林战举,牛富俊,刘华,等.循环冻融对冻土路基护坡块石物理力学特性的影响[J].岩土力学.2011(05):1369-1376.
    [23]赵永红,黄杰藩,王仁.岩石微破裂发育的扫描电镜即时观测研究[J].岩石力学与工程学报.1992(03):284-294.
    [24]de Argandona V G R, Rey A R, Celorio C, et al. Characterization by computed X-ray tomography of the evolution of the pore structure of a dolomite rock during freeze-thaw cyclic tests[J]. Physics and Chemistry of the Earth, Part A:Solid Earth and Geodesy.1999,24(7): 633-637.
    [25]Inigo A C, Vicente M A, Rives V. Weathering and decay of granitic rocks:its relation to their pore network[J]. Mechanics of Materials.2000,32(9):555-560.
    [26]任建喜.冻结裂隙岩石加卸载破坏机理CT实时试验[J].岩土工程学报.2004,26(5):641-644.
    [27]任建喜.冻结裂隙砂岩单轴压缩损伤特性CT试验[Z].中国湖北武汉市武昌:20054.
    [28]杨更社,张全胜,任建喜,等.冻结速度对铜川砂岩损伤CT数变化规律研究[J].岩石力学与工程学报.2004(24):4099-4104.
    [29]李杰林,周科平,张亚民,等.基于核磁共振技术的岩石孔隙结构冻融损伤试验研究[J].岩石力学与工程学报.2012,31(6):1208-1214.
    [30]许玉娟,周科平,李杰林,等.冻融岩石核磁共振检测及冻融损伤机制分析[J].岩土力学.2012(10):3001-3005.
    [31]母剑桥,裴向军,黄勇,等.冻融岩体力学特性实验研究[J].工程地质学报.2013(01):103-108.
    [32]N M. Mechanisms of rock breakdown by frost action:an experimental approach[J]. Cold Regions Science and Technology.1990,17(3):253-270.
    [33]Bellanger M, Homand F, Remy J M. Water behaviour in limestones as a function of pores structure:Application to frost resistance of some Lorraine limestones[J]. Engineering Geology. 1993,36(1-2):99-108.
    [34]Altindag R, Alyildiz I S, Onargan T. Mechanical property degradation of ignimbrite subjected to recurrent freeze-thaw cycles[J]. INTERNATIONAL JOURNAL OF ROCK MECHANICS AND MINING SCIENCES.2004,41(6):1023-1028.
    [35]Saad A, Guedon S, Martineau F. Microstructural weathering of sedimentary rocks by freeze-thaw cycles:Experimental study of state and transfer parameters[J]. COMPTES RENDUS GEOSCIENCE.2010,342(3):197-203.
    [36]Tugrul A. The effect of weathering on pore geometry and compressive strength of selected rock types from Turkey[J]. ENGINEERING GEOLOGY.2004,75(3-4):215-227.
    [37]王俐,杨春和.不同初始饱水状态红砂岩冻融损伤差异性研究[J].岩土力学.2006(10):1772-1776.
    [38]徐光苗,刘泉声.岩石冻融破坏机理分析及冻融力学试验研究[J].岩石力学与工程学报.2005,24(17):3076-3082.
    [39]张慧梅,杨更社.冻融环境下红砂岩力学特性试验及损伤分析[J].力学与实践.2013(03):57-61.
    [40]陈有亮,代明星,刘明亮,等.含初始损伤岩石的冻融损伤试验研究[J].力学季刊.2013(01):74-80.
    [41]张继周,缪林昌,杨振峰.冻融条件下岩石损伤劣化机制和力学特性研究[J].岩石力学与工程学报.2008(08):1688-1694.
    [42]刘泉声,康永水,刘小燕.冻结岩体单裂隙应力场分析及热-力耦合模拟[J].岩石力学与工程学报.2011(02):217-223.
    [43]李宁,张平,程国栋.冻结裂隙砂岩低周循环动力特性试验研究[J].自然科学进展.2001,11(11):1175-1180.
    [44]徐光苗,刘泉声,张秀丽.冻结温度下岩体THM完全耦合的理论初步分析[J].岩石力学与工程学报.2004(21):3709-3713.
    [45]张慧梅,杨更社.冻融与荷载耦合作用下岩石损伤模型的研究[J].岩石力学与工程学报.2010(03):471-476.
    [46]刘泉声,康永水,刘滨,等.裂隙岩体水-冰相变及低温温度场-渗流场-应力场耦合研究[J].岩石力学与工程学报.2011(11):2181-2188.
    [47]杨更社,周春华,田应国,等.软岩类材料冻融过程水热迁移的实验研究初探[J].岩石力学与工程学报.2006(09):1765-1770.
    [48]谭贤君,陈卫忠,贾善坡,等.含相变低温岩体水热耦合模型研究[J].岩石力学与工程学报.2008(07):1455-1461.
    [49]谭贤君陈卫忠伍国军郑朋强.低温冻融条件下岩体温度-渗流-应力-损伤(THMD)耦合模型研究及其在寒区隧道中的应用[J].岩石力学与工程学报.2013,32(2):239-250.
    [50]马静嵘,杨更社.软岩冻融损伤的水-热-力耦合研究初探[J].岩石力学与工程学报.2004(S1):4373-4377.
    [51]张慧梅,杨更社,刘慧.冻融环境下岩体隧道水热耦合模型及数值分析[J].西安科技大学学报.2009(03):305-309.
    [52]陈天城,魏炳乾.冻结融解作用对岩石边坡稳定的影响[J].西北水力发电.2003(03):5-7.
    [53]杨艳霞,祝艳波,李才,等.南方极端冰雪灾害条件下边坡崩塌机理初步研究[J].人民长江.2012,43(2):46-49.
    [54]尹玉秋.高寒地区路堑边坡稳定性分析及治理方法研究[D].天津大学,2007.
    [55]黄勇.高寒山区岩体冻融力学行为及崩塌机制研究--以天山公路边坡为例[D].成都理工大学,2012.
    [56]Shen B. The mechanism of fracture coalescence in compression—experimental study and numerical simulation[J]. Engineering Fracture Mechanics.1995,51(1):73-85.
    [57]Wong R H C, Chau K T, Tang C A, et al. Analysis of crack coalescence in rock-like materials containing three flaws—Part Ⅰ:experimental approach[J]. International Journal of Rock Mechanics and Mining Sciences.2001,38(7):909-924.
    [58]Tang C A, Lin P, Wong R H C, et al. Analysis of crack coalescence in rock-like materials containing three flaws—Part Ⅱ:numerical approach[J]. International Journal of Rock Mechanics and Mining Sciences.2001,38(7):925-939.
    [59]赵淑萍,马巍,焦贵德,等.寒区工程动荷载模型试验系统设计[J].冰川冻土.2011(04):826-832.
    [60]李宁,张平,陈蕴生.裂隙岩体试验研究进展与思考[Z].中国西安:20027.
    [61]张伟,周国庆,张海波,等.倾角对裂隙岩体力学特性影响试验模拟研究[J].中国矿业大学学报.2009(01):30-33.
    [62]刘刚.非连续岩体破裂机理及其工程稳定性研究[J].中国矿业大学学报.2009(05):757-758.
    [63]张平,李宁,贺若兰,等.动载下3条断续裂隙岩样的裂缝贯通机制[J].岩土力学.2006(09):1457-1464.
    [64]左宇军,唐春安,梁正召,等.含两条表面闭合裂纹的岩石类介质裂隙贯通机制的三维数值分析[Z].中国辽宁沈阳:20066.
    [65]邵伟,陈有亮,周有成,等.单轴压缩条件下含闭合双裂纹体岩石类材料的破坏机理[J].上海大学学报(自然科学版).2011(02):216-220.
    [66]陈卫忠,李术才,邱祥波,等.岩石裂纹扩展的实验与数值分析研究[J].岩石力学与工程学报.2003(01):18-23.
    [67]H R O E H. Failure mechanism of fractured rock, a fracture coalescence model[C]. Aachen, Germany:A.A.Balkema:1991.
    [68]O S B S. Numerical analysis of mixed model Ⅰ and model Ⅱ propagation of fractures[J]. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts. 1993,30(7):861-867.
    [69]Al W R H C. Crack propagation from 3D surface fractures in PMMA and marble specimens under uniaxial compression[J]. International Journal of Rock Mechanics and Mining Sciences. 2004,41(3):37-72.
    [70]马立新.非贯通节理介质波传播特性和损伤特性研究[D].西安理工大学,2006.
    [71]郭彦双.脆性材料中三维裂隙断裂试验、理论与数值模拟研究[D].山东大学,2007.
    [72]Farmer I W. engineering properties of rocks[M]. london:2nd Ed. Chapman & hall,1983.
    [73]李晓红.岩石力学实验模拟技术[M].北京:科学出版社,2007.
    [74]Lai Y M, Wu Z W, Zhu Y L, et al. Nonlinear analysis for the coupled problem of temperature, seepage and stress fields in cold-region tunnels[J]. Tunnelling and Underground Space Technology.1998,13(4):435-440.
    [75]谭贤君.高海拔寒区隧道冻胀机理及其保温技术研究[D].中国科学院研究生院(武汉岩土力学研究所),2010.
    [76]刘红岩,王根旺,陈福刚.以损伤变量为特征的岩石损伤理论研究进展[J].爆破.2004(01):9-12.
    [77]Kachanov L M. On subcritical crack growth[J]. Mechanics Research Communications.1976, 3(1):51-54.
    [78]Kachanov L M. On the solution of problems of non-stationary creep[J]. Journal of Applied Mathematics and Mechanics.1961,25(1):234-237.
    [79]Rabotnov Y N, Suvorova J V. The non-linear hereditary-type stress-strain relation for metals[J]. International Journal of Solids and Structures.1978,14(3):173-185.
    [80]Rabotnov Y N, Suvorova J V. Dynamic problems for elastic-plastic solids with delayed yielding[J]. International Journal of Solids and Structures.1971,7(2):143-159.
    [81]Lemaitre J. Local approach of fracture[J]. Engineering Fracture Mechanics.1986,25(5-6): 523-537.
    [82]Lemaitre J. How to use damage mechanics[J]. Nuclear Engineering and Design.1984,80(2): 233-245.
    [83]Lemaitre J. Coupled elasto-plasticity and damage constitutive equations[J]. Computer Methods in Applied Mechanics and Engineering.1985,51(1-3):31-49.
    [84]Hult J. A note on stationary stress distributions during nonlinear creep[J]. Mechanics Research Communications.1983,10(6):379-384.
    [85]Hult J A H. Fatigue crack propagation in torsion[J]. Journal of the Mechanics and Physics of Solids.1957,6(1):47-52.
    [86]Leckie F A, Hayhurst D R. Constitutive equations for creep rupture[J]. Acta Metallurgica.1977, 25(9):1059-1070.
    [87]Leckie F A, Wojewodzki W. Estimates of rupture life-constant load[J]. International Journal of Solids and Structures.1975,11(12):1357-1365.
    [88]Leckie F A, Wojewodzki W. Estimates of the rupture life of structural components subjected to proportional cyclic loading[J]. Journal of the Mechanics and Physics of Solids.1976,24(4): 239-250.
    [89]Dougill A. Sustaining the Soil:Indigenous soil and water conservation in Africa:C. Reij, I. Scoones and C. Toulmin (eds) Earthscan, London (1996) 260 pp. £12.50 paperback[J]. Applied Geography.1997,17(3):247-248.
    [90]Dougill J W. Some observations on failure of quasi brittle materials under thermal stress[J]. Cement and Concrete Research.1973,3(4):469-474.
    [91]Cai M, Kaiser P K, Tasaka Y, et al. Generalized crack initiation and crack damage stress thresholds of brittle rock masses near underground excavations[J]. International Journal of Rock Mechanics and Mining Sciences.2004,41(5):833-847.
    [92]张慧梅,杨更社.岩石冻融力学实验及损伤扩展特性[J].中国矿业大学学报.2011,40(1):140-145,151.
    [93]陈有亮,代明星,刘明亮,等.含初始损伤岩石的冻融损伤试验研究[J].力学季刊.2013(01):74-80.
    [94]任建喜.冻结裂隙砂岩单轴压缩损伤特性CT试验[Z].中国湖北武汉市武昌:20054.
    [95]郑孝军.寒区裂隙岩石损伤破坏规律试验及数值模拟研究初探[D].西安科技大学,2006.
    [96]王俐,杨春和.不同初始饱水状态红砂岩冻融损伤差异性研究[J].岩土力学.2006(10):1772-1776.
    [97]林战举,牛富俊,刘华,等.循环冻融对冻土路基护坡块石物理力学特性的影响[J].岩土 力学.2011(05):1369-1376.
    [98]徐光苗,刘泉声.岩石冻融破坏机理分析及冻融力学试验研究[J].岩石力学与工程学报.2005(17):3076-3082.
    [99]周科平,许玉娟,李杰林,等.冻融循环对风化花岗岩物理特性影响的实验研究[J].煤炭学报.2012(S1):70-74.
    [100]张全胜.寒区隧道围岩损伤试验研究和水热迁移分析[D].同济大学,2006.
    [101]朱立平,wbwhalley,王家澄.寒冻条件下花岗岩小块体的风化模拟实验及其分析[J].冰川冻土.1997(04):24-32.
    [102]霍润科,李宁,张浩博.酸性环境下类砂岩材料物理性质的试验研究[J].岩土力学.2006(09):1541-1544.
    [103]兰常玉.冻融循环与列车动载耦合作用下高速铁路地基沉降规律研究[D].辽宁工程技术大学,2009.
    [104]韩利民,杨永平,魏庆朝.地震和断裂活动对青藏铁路高原多年冻土区铁路影响分析[J].中国安全科学学报.2005(04):6-10.
    [105]陈星.云冈石窟砂岩表层温度效应及劣化机理研究[D].中国地质大学,2012.
    [106]刘殉.极端冰雪灾害条件下岩体与支护结构相互作用试验研究[D].中国地质大学,2010.
    [107]Setzer M J. Action of frost and deicing chemicals:basic phenomena and testing[M]. London:E & FN Spon,1997,1-22.
    [108]徐光苗.寒区岩体低温、冻融损伤力学特性及多场耦合研究[D].中国科学院武汉岩土力学研究所,2006.
    [109]李杰林.基于核磁共振技术的寒区岩石冻融损伤机理试验研究[D].中南大学,2012.
    [110]吴政,张承娟.单向荷载作用下岩石损伤模型及其力学特性研究[J].岩石力学与工程学报.1996(01):55-61.
    [111]Bobet A, Einstein H H. Fracture coalescence in rock-type materials under uniaxial and biaxial compression[J]. International Journal of Rock Mechanics and Mining Sciences.1998,35(7): 863-888.
    [112]Bobet A. The initiation of secondary cracks in compression[J]. Engineering Fracture Mechanics. 2000,66(2):187-219.
    [113]张黎明.加卸荷条件下岩体宏细观破坏机理的试验与理论研究[D].西安建筑科技大学,2009.
    [114]杨圣奇,温森,李良权.不同围压下断续预制裂纹粗晶大理岩变形和强度特性的试验研究[J].岩石力学与工程学报.2007(08):1572-1587.
    [115]任建喜,冯晓光,刘慧.三轴压缩单一裂隙砂岩细观损伤破坏特性CT分析[J].西安科技大学学报.2009(03):300-304.
    [116]李宏哲,夏才初,王晓东,等.含节理大理岩变形和强度特性的试验研究[J].岩石力学与工程学报.2008(10):2118-2123.
    [117]Martin C D, Chandler N A. The progressive fracture of Lac du Bonnet granite[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts.1994,31(6): 643-659.
    [118]Alkan H, Cinar Y, Pusch G. Rock salt dilatancy boundary from combined acoustic emission and triaxial compression tests[J]. International Journal of Rock Mechanics and Mining Sciences. 2007,44(1):108-119.
    [119]Martin C D, Chandler N A. Stress heterogeneity and geological structures[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts.1993,30(7): 993-999.
    [120]Hallbauer D K, Wagner H, Cook N G W. Some observations concerning the microscopic and mechanical behaviour of quartzite specimens in stiff, triaxial compression tests[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts.1973,10(6): 713-726.
    [121]Brace W F. Experimental studies of seismic behavior of rocks under crustal conditions[J]. Engineering Geology.1974,8(1-2):109-127.
    [122]Jaeger J C, Gay N C. Behaviour of lightly confined granular material[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts.1974,11(8):295-301.
    [123]Jaeger C. Engineering problems and rock mechanics:some examples[J]. Engineering Geology. 1973,7(4):333-358.
    [124]Yang S Q, Jiang Y Z, Xu W Y, et al. Experimental investigation on strength and failure behavior of pre-cracked marble under conventional triaxial compression[J]. International Journal of Solids and Structures.2008,45(17):4796-4819.
    [125]Bagde M N, Petros V. Fatigue properties of intact sandstone samples subjected to dynamic uniaxial cyclical loading[J]. International Journal of Rock Mechanics and Mining Sciences.2005, 42(2):237-250.
    [126]任建喜,杨更社,葛修润.裂隙花岗岩卸围压作用下损伤破坏机理CT检测[J].长安大学学报(自然科学版).2002(06):46-49.
    [127]刘小红,晏鄂川,朱杰兵,等.三轴加卸载条件下岩石损伤破坏机理CT试验分析[J].长江科学院院报.2010(12):42-46.
    [128]李新平,刘金焕,彭元平,彭新辉.压应力作用下裂隙岩体的断裂模式与强度特性[J].岩石力学与工程学报.2002,21(z1):1942-1945.
    [129]黄达,金华辉,黄润秋.拉剪应力状态下岩体裂隙扩展的断裂力学机制及物理模型试验[J].岩土力学.2011(04):997-1002.
    [130]周家文,杨兴国,符文熹,等.脆性岩石单轴循环加卸载试验及断裂损伤力学特性研究[J].岩石力学与工程学报.2010,29(6):1172-1183.
    [131]王国艳,李树忱,杨磊.单裂隙岩石损伤断裂过程的试验研究[J].辽宁工程技术大学学报(自然科学版).2009(04):581-584.
    [132]李新平,朱瑞赓,朱维申.裂隙岩体的损伤断裂理论与应用[J].岩石力学与工程学报.1995(03):236-245.
    [133]朱维申,张强勇,李术才.三维脆弹塑性断裂损伤模型在裂隙岩体工程中的应用[J].固体力学学报.1999(02):72-78.
    [134]袁小平,刘红岩,王志乔.单轴压缩非贯通节理岩石尖端塑性区及弹塑性断裂模型研究[J].岩土力学.2012(06):1679-1688.
    [135]李新平,朱维申.多裂隙岩体的损伤断裂分析及工程应用[J].岩土工程学报.1992(04):1-8.
    [136]曾国柱,张世雄,齐添,等.Ⅰ-Ⅱ型裂纹发展的剪应力准则研究[J].工程地球物理学报.2009(01):43-47.
    [137]周家文,徐卫亚,石崇.基于破坏准则的岩石压剪断裂判据研究[J].岩石力学与工程学报.2007(06):1194-1201.
    [138]高赛红,曹平,汪胜莲.水压力作用下岩石中Ⅰ和Ⅱ型裂纹断裂准则[J].中南大学学报(自然科学版).2012(03):1087-1091.
    [139]李明田,李术才,张敦福,等.类岩石材料表面裂纹复合型断裂准则探讨[J].岩石力学与工程学报.2011(S1):3326-3333.
    [140]杨慧,曹平,江学良,等.闭合裂纹断裂的有效剪应力准则[J].岩土力学.2008(S1):470-474.
    [141]李世愚.岩石断裂力学导论[M].安徽合肥:中国科学技术大学出版社,2010.
    [142]Sammis C G, Ashby M F. The failure of brittle porous solids under compressive stress states[J]. Acta Metallurgica.1986,34(3):511-526.
    [143]Horii H, Nemat-Nasser S. Elastic fields of interacting inhomogeneities[J]. International Journal of Solids and Structures.1985,21(7):731-745.
    [144]Sammis C G, Ashby M F. The failure of brittle porous solids under compressive stress states[J]. Acta Metallurgica.1986,34(3):511-526.
    [145]赵延林,曹平,林杭,等.渗透压作用下压剪岩石裂纹流变断裂贯通机制及破坏准则探讨[J].岩土工程学报.2008(04):511-517.
    [146]徐靖南,朱维申,白世伟.压剪应力作用下多裂隙岩体的力学特性——断裂损伤演化方程及试验验证[J].岩土力学.1994(02):1-12.
    [147]吴紫汪马巍.冻土强度与蠕变[M].兰州:兰州大学出版社,1994:1-2.
    [148]邱国庆程国栋.中国冻土[M].北京:科学出版社,2000:261-262.
    [149]吴玮江.季节性冻融作用与斜坡整体变形破坏[J].中国地质灾害与防治学报.1996(04):59-64.
    [150]王治华.青藏公路和铁路沿线的滑坡研究[J].现代地质.2003(04):355-362.
    [151]王慧.长白山天池地区泥石流形成条件及危险度研究[D].吉林大学,2004.
    [152]刘铁良.略论寒区斜坡石流田.路基工程.2001(04):15-17.
    [153]申可立,司小良.故县水库边坡防护工程SNS防护网新技术应用[J].大坝与安全.2006(01):50-52.
    [154]贺咏梅,彭伟,阳友奎.边坡柔性防护系统的典型工程应用[J].岩石力学与工程学报.2006(02):323-328.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700