用户名: 密码: 验证码:
潮间带地形遥感动态监测体系研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
潮间带处于海陆交界,是研究现代海岸动态和环境变迁的参照物,同时也是开发利用海洋资源的主要地带。潮间带除受海陆双重动力影响外,受人类活动的影响也越来越多,地形复杂的潮间带变化更为频繁。在此情况下,对潮间带地形进行动态监测、及时掌握潮间带地形的变化情况非常重要。
     传统地形测量方法周期长、范围小、消耗大且获取的地形资料有限,无法满足潮间带地形动态监测需求;而遥感监测方法具有快速大面积同步监测的特点,能够提供较长时间跨度和短时间周期的地形变化。遥感技术已被广泛用于潮间带地形动态监测研究并成为主要的动态监测手段,但是目前多局限于对某个遥感监测方法的研究。
     潮间带地形变化有潮流作用带来的长期变化,也有开发利用带来的中期变化,更有突发气象事件如风暴潮等带来的短时变化;对潮间带地形的动态监测有大空间尺度的监测如对辐射沙脊群的动态变化监测,有中尺度空间的监测如对港口航道附近地形变化的监测,也有小尺度微地貌的监测如对最小地貌单元纳潮盆地的动态监测。单一的遥感监测方法无法获取这些不同尺度的地形变化,也无法得到完整和全面的动态变化信息。
     本文提出建立潮间带地形遥感动态监测体系来解决这一问题,即通过分析不同监测方法的特点,借助系统科学理论,建立潮间带地形遥感动态监测体系,从多维度、多视角监测潮滩,以期获得潮间带地形的动态变化情况,掌握潮间带的地形演变规律,为潮间带开发利用提供实时的地形数据,提供宏观和微观不同比例的监测,在港口航道水下地形监测、滩涂围垦工程监测和生态环境保护中提供数据支持和技术支持,为主管部门进行分析、做出决策提供重要的依据。
     本文根据潮间带的特点,研究不同的遥感监测方法和方法组合,并针对遥感监测方法评价建立子体系,从而建立适合潮间带地形的遥感动态监测体系,达到对潮间带地形的全面动态监测。
     研究结论如下:
     ①潮间带地形遥感动态监测体系的主要要素为监测对象、监测方法、监测结果和评价子体系,体系研究过程为:监测对象分析、监测方法分析、监测体系技术研究和评价子体系研究。
     ②从地貌特点、空间尺度和时间尺度三个方面进行了适用对象分析,从数据源、技术成熟度和监测结果处理程序三个角度总结了各遥感监测方法的使用成本。结果表明:可见光水深法适合大范围水下地形的长期动态监测,含水量法适合小范围出露潮滩的短期动态监测,沙脊特征线法适合中范围沙脊的各时间尺度动态监测,潮汐水道中轴线法适合中范围潮汐水道各时间尺度动态监测,纳潮盆法适合小范围出露潮滩短期动态监测;纳潮盆法使用成本较高,可见光水深法和含水量法使用成本中等,沙脊特征线法和潮汐水道中轴线法使用成本较低。
     ③提出用方法组合来弥补单一方法的局限,获得更全面和更详细的监测结果。方法组合有互补型组合和优化型组合两种。互补型方法组合有:可见光水深法和含水量法组合,沙脊特征线法和潮汐水道中轴线法组合;优化型方法组合有:含水量法和纳潮盆地法组合,含水量法和沙脊特征线法组合,可见光水深法和潮汐水道中轴线法组合
     ④建立了潮间带地形遥感动态监测体系的评价子体系,对整个体系进行质量控制和精度评价,内容包括:增补了遥感类技术规范,补充了遥感监测方法的技术依据;提出自然因子和经济因子两个评价指标用来对遥感监测方法选择进行评价,确保监测方法选择的合理;针对不同的遥感监测方法,提出不同的精度评价指标控制遥感监测方法的应用质量,也给出了各方法的精度范围;从监测对象地貌特征出发,提出了适用的动态监测指标,从三维和二维的角度对地形变化进行分析。
     ⑤对潮间带地形遥感动态监测体系进行了应用分析,提出了可以提高精度和控制经济成本的遥感影像的选择方法,即综合考虑影像的空间分辨率和光谱分辨率;提出了适合潮间带这一特殊地貌的遥感影像预处理方法,包括FLAASH辐射校正方法和LGCP法几何校正。
     ⑥在监测具体的某一潮间带时,对于近岸浅海地形,运用可见光水深法和含水量法的方法组合;对于近岸滩涂,运用含水量法和纳潮盆法的方法组合;对于沙脊群,运用沙脊特征线法和潮汐水道中轴线法。并选择南黄海辐射沙脊群为监测对象进行具体的案例分析,流程为监测对象分析、监测方法选择与执行、精度评价、最后得到监测结果,系统地完成了体系应用,证实了该体系具有较强的实际操作性和较广的应用范围。
Intertidal zone is an interactive area of land and sea and it is the reference object for the research of modern coastal dynamics and environmental changes and the main strip of development and utilization of marine resources. Intertidal zone is constantly affected by tide and undergoes exposure and submergence alternately. In addition of more and more impacts of human activities, the evolution of intertidal zone becomes more complicated and more frequently. In this case, it is very important to dynamic monitoring the intertidal terrain and accquiring the evolution.
     Traditional topographic survey methods cannot meet the monitoring requirements because they have long cycle, small range, huge costs and limited terrain data. Remote sensing monitring methods have characteristics such as short cycle, large range, small costs and simultaneous monitoring. And they are able to provide the topography evolution of a long time span or a short period of time. So they have been widely applied to the intertidal terrain remote sensing dynamic monitoring and become a major means of dynamic monitoring.
     Intertidal topographic changes include long-term changes brought by the tidal currents, medium-term changes brought by the developments and utilizations, and short-term changes brought by unexpected weather events such as storm surges. Dynamic monitoring of the intertidal terrain include large spatial scales monitoring such as monitoring the dynamic changes of the radial sand ridges, and medium spatial scales monitoring such as monitoring the topography around the ports and channels, and small-scale moniroring such as moitoring of tidal basin. Single remote sensing monitoring method is not suitable for the environmental complexity.
     This thesis proposed an intertidal terrain remote sensing dynamic monitoring system (ITRSDMS) to monitor the intertidal zone with multi-dimensions and multi-perspectives by integrating with the theory of systems science as well as absorbing advantages of several monitoring methods. Remote sensing monitoring system is different from research of a separate remote sensing monitor method. Based on the holism, it combined partial description and overall description, qualitative description and quantitative description. The system could provide different proportions topographic monitoring comprhensivly. And it will provided data and technical support for the monitoring underwater topography of ports and channels, the monitoring of beach reclamation and Environment Protection.
     This thesis aims to architecture of ITRSDMS which proposed different combination of remote sensing monitoring methods based on the charactristics of different intertidal topography and create a evaluation sub-system for ITRSDMS.
     The conclusion of this thesis are as follows:
     ①Lucubrate the principles and methods of ITRSDMS based on the theory of systems science and systems methodology. Then the architecture of ITRSDMS was determined and it encompasses four elements, which are monitoring objects, monitoring methods, monitoring results and evaluation system. The process of the study of ITRSDMS are as follows:monitoring object analysis, monitoring methods, monitoring system technology research and evaluation sub-system research.
     ②Considering the particularities of the intertidal geomorphology and the goals of the system, we analyzed the suitable objects of those methods from geomorphological features, space and time scales and analyzed their costs from the data source, the technical maturity and monitoring results handler. It showed that:Visible-Light Bathymetry method is suitable for a wide range of long-term dynamic monitoring of the underwater terrain, Moisture-Content method is suitable for small outcrop short-term dynamic monitoring of tidal flat, Sand Ridge-Line is suitable for the middle-term dynamic monitoring of the range of sand ridges, Axial-Wire method is suitable for the middle-term dynamic monitoring in the various time scales in the range of tidal chennels, Tidal-Basin method is suitable for small-scale outcrop the tidal flat short-term dynamic monitoring.
     ③According to the basic concepts of evalutaion system and the content of ITRSDMS, technical specifications were proposed. The evaluation system of ITRSDMS was set up for quality control and accuracy evaluation. Each monitoring methods had its own monitoring objiects, data requirements and costs and was suit for a special geomorphic types. Combination of methods could be used to compensate for the limitations of a single method. There are two kinds of combination, one is a complementary combination and another is a optimized combination. The complementary combination of methods include: Visible-Light Bathymetry and Moisture-Content, Sand Ridge-Line and Axial-Wire. The optimized combination of methods include:Moisture-Content and Tidal-Basin, Moisture-Content and Sand Ridge-Line, Visible-Light Bathymetry and Axial-Wire.
     ④The evaluation system of ITRSDMS includes technical specifications, evaluation of remote sensing monitoring method selection, accuracy assessment and dynamic monitoring indicators. As a result, this evaluation subsystem showed evidences in practical applications and provided indicators supporting judgments when remote sensing technology applied for intertidal dynamic monitoring.
     ⑤Considering the spatial resolution and spectral resolution of the image, selection method can improve the precision and control of the economic costs of remote sensing images. FLAASH Radiation correction method and LGCP geometric correction are good remote sensing image preprocessing methods for intertidal topography.
     ⑥Based on the research of ITRSDMS, several combinations of remote sensing methods were proposed to achieve different monitoring purposes by taking into account the differences of locally topographic characteristics of intertidal zone. One example of the application of ITRSDMS was shown as a demonstration. ITRSDMS has a wide range of applications and could dynamic monitors a variety of intertidal terrain.
引文
[1]江苏近海海洋综合调查与评价总报告/江苏省908专项办公室.北京:科学出版社.2012.
    [2]江苏沿海滩涂围垦开发利用规划纲要.江苏省发展改革委,江苏省沿海办.2010.
    [3]梁开龙.水下地形测量[M].北京:测绘出版社.1995.
    [4]Donoghe, D.N.M., Thomas, D.C.R. and Zong, Y. Mapping and Monitoring the intertidal zone of the east coast of England using remote sensing techniques and a coastal monitoring GIS [J]. Marine technology society journal,1994,28:19-29.
    [5]Frihy, O.E., Dewidar, K.H.M., Nasr, S.M. and El Raey, M.M. Change detection of the northeastern Nile Delta of Egypt:shorelinechanges, Spit evolution, margin changes of Manzalalagoon [J]. International journal of remote sensing,1998,19(10):1901-1912.
    [6]EI-Raey,M.M., EI-Din, S.H.,Khafagy,A.A and Labo, Z. A. Remote sensing of beach erosion/accretion patterns along Damietta-Port Said shoreline[J]. International journal of remote sensing,1999,20(6):1087-1106.
    [7]陆惠文,杨裕利.烟台市海岸带遥感研究[J].武测科技,1995,4:39-41.
    [8]张鹰,王文,丁贤荣.GIS在海岸工程规划设计中的应用[J].河海大学学报(自然科学版),1998,26(4):103-106.
    [9]韩震,恽才兴,蒋雪中等.温州地区淤泥质潮滩冲淤遥感反演研究[J].地理与地理科学进展,2003,19(6):31-34.
    [10]黄海军.南黄海辐射沙洲主要潮沟的变迁[J].海洋地质与第四纪地质,2004,24(02):1-8.
    [11]黄海军,樊辉.1976年黄河改道以来三角洲近岸区变化遥感监测[J].海洋与湖沼,2004,5(4):306-314.
    [12]张鹰,顾燕,龚明劫等.遥感技术用于南黄海沙脊群地形变化测量与分析.中国科技论文在线,2010.
    [13]丁贤荣,康彦彦,葛小平等.辐射沙脊群条子泥动力地貌演变遥感分析[J].河海大学学报(自然科学版),2011,39(2):231-236.
    [14]John, M.P., Robert, E.S., Water depth mapping from passive remote sensing data under a generalized ratio assumption [J]. Applied optics,1983,22(8):1134-1135.
    [15]Stove, G. C. Use of high resolution satellite imagery in optical and infrared wavebands as an aid to hydrographic and coastal enginEFring [C]. ProcEFdings conference on electronics in Soil and Gas, London,1985:509-530.
    [16]Cracknell A.P., Ibrahim M., Bathymetry studies on the coastal waters (Red Sea) of Jeddah, Saudi Arabia, using Shuttle MOMS-01 data [J]. International journal of remote sensing,1988,9(6): 1161-1165.
    [17]Wei J.et al. Satellite remote bathymetry:a new mechanism for modeling [J]. Photogrammetric enginEFring & remote sensing,1992,58(5):545-549.
    [18]Bierwirth, P.N., LEF, T.J. shallow sea-floor reflectance and water depth derive by unmixing multisPFctral imagery [J]. Photogrammetric enginEFr and remote sensing,1993,59:331-338.
    [19]Dirks A., Shallow sea-floor reflectance and water depth derived by unmixing multisPFctral imagery [J]. Photogrammetric enginEFring & remote sensing,1987,59(2):221-228.
    [20]Clark,R.K. Comparison of Models for remote sensed bathymetry [J]. International journal of remote sensing,1987,87:1973-1979.
    [21]Mgengel V., Spitzer R. J. Application of remote sensing data to mapping of shallow sea-floor nearby Netherlands[J]. International journal of remote sensing,1991,7:473-479.
    [22]Tripathi, N.K., RAO, A.M., Bathymetric mapping in Kakinada Bay, India, using RS-1D LISS-III data [J]. International journal of remote sensing,2002,23(6):1013-1025.
    [23]Legleiter C.J.,Roberts,D.A.,et al.Passive optical remote sensing of river channel morphology and in-stream habitat:physical basis and feasibility [J]. Remote sensing of environment,2004,93: 493-510.
    [24]Legleiter C.J., Roberts, D.A.A forward image model for passive optical remote sensing of river bathymetry [J]. Remote sensing of environment,2009,113:1025-1045.
    [25]Ceyhun, O., Yalcin, A. Remote sensing of water depths in shallow waters via artificial neural networks[J]. Estuarine, coastal and shelf science,2010,89:89-96.
    [26]Lafon, V.,Foridefond.M.J. SPOT shallow water bathymetry of a moderately turbid tidal inlet based on field measurements [J]. Remote sensing of environment,2002,81:136-148.
    [27]平仲良.可见光遥感测深的数学模型[J].海洋与湖沼,1982,13(3):225-229.
    [28]梁顺林,陈丙咸.MSS可见光波段的水体透视深度研究[J].环境遥感,1989,(3):56-62.
    [29]李铁芳等.浅海水下地形地貌遥感信息提取与应用[J].环境遥感,1991,6(1):22-29.
    [30]许殿元.黄河口海域水深分布的遥感研究[J].遥感技术与应用,1992,7(3):17-23.
    [31]肖永茂,李秉秋.珊瑚礁海域遥感水深分层研究[J].遥感技术与应用,1995,5(2):25-27.
    [32]邸凯昌等.南沙群岛海域浅海水深提取及影像海图制作技术[J].国土资源遥感,1999,(3):59-64.
    [33]沈芳,匡定波.青海湖最近25年变化的遥感调查与研究[J].湖泊科学,2003,15(4):289-296.
    [34]丁贤荣,张鹰,黄志良.长江口北支水下地形遥感测量研究[J].中国港湾建设,1997(4):6-10.
    [35]王艳姣,张鹰.基于悬浮泥沙影响的水深遥感方法研究[D].南京:南京师范大学,2006.
    [36]张芸,张鹰等.基于北京一号和MODIS影像的烂沙洋水域水深遥感研究(硕士学位论 文)[D].南京:南京师范大学,2008.
    [37]Ying, Z., Jay, G.,Yan,G., A simple method for mapping bathymetry over turbid coastal from MODIS data:possibilities and limitations [J]. International journal of remote sensing,2011,32: 7575-7590.
    [38]Baltsavias E P. A comparison betwEFn photogrammetry and laser scanning [J]. International journal of photogrammetry and remote sensing,1999,54:83-94.
    [39]Behan A. On the matching accuracy of rasterised scanning laser altimeter data[C]. International archives of photogrammetry and remote sensing,2000,33:75-82.
    [40]Favey E, et al. Some examples of EuroPFan activities in airborne laser techniques and an application in glaciology [J]. Geodynamics,2002.34(3):347-355.
    [41]Brock J. C., et al. L IDAR optical rugosity of coral rEFf in Biscayne National Park, Florida [J]. Coral rEFfs,2004,23 (1):48-59.
    [42]Andersen H.E, et al. A comparison of forest canopy models derived from LIDAR and INSAR data in a Pacific Northwest conifer forest[C]. International archives of photogrammetry and remote sensing,2003,34:211-217.
    [43]Dowman, I., Integration of LIDAR and IFSAR for mapping [J]. International archives of photogrammetry and remote sensing,2004,30:90-100.
    [44]梁欣廉,张继贤,李海涛等.激光雷达数据特点[J].遥感信息,2005,3:71-76.
    [45]张小红.机载激光扫描测高数据滤波及地物提取[D].武汉:武汉大学,2004.
    [46]朱昂.潮水沟LIDAR地形神经网络插补方法[D].南京:河海大学,2010
    [47]张晓浩,娄全胜,张春雨.基于机载激光雷达的海岸带三维景观仿真模拟[J].热带海洋学报,2010,29(5):44-48.
    [48]于建涛,李雪萍.利用LiDAR技术获取数字正射影像应用研究[J].黄河水利职业技术学院学报,2010,22(4):26-29.
    [49]郭清风,张峰,范巍.关于Lidar数据的滩涂、海岸带主要地物提取方法[J].地理空间信息,2011,9(4):25-27.
    [50]蒋旭惠,张汉德,韩磊等.精密单点定位技术在海岛海岸带航空遥感调查中的应用[J].海洋技术,2011,30(2):18-21.
    [51]杜国庆等.LIDAR技术在江苏沿海滩涂测绘中的应用研究[J].城市勘测,2007(5):23-26.
    [52]ZHANG Liang, MA Hongchao, WU Jianwei. Utilization of LiDAR and tidal gauge data for automatic extracting high and low tide lines[J]. Journal of Remote Sensing,2012,16(2):405-410.
    [53]De Loor, GP., Radar Methods, in Remote Sensing for Environmental Science[M]. edited by E. Schanda, Springer-verlag,1976, New York.147-186.
    [54]De Loor, GP., Brunsveld van Hultan.H.W.. Microwave measurements over the North Sea[J]. Boundary-Layer Meteorology,1978,13:113-131.
    [55]De Loor, G.P.. The observation of tidal patterns, currents and bathymetry with SLAR imagery of the sea[J]. IEFE Journal of Oceanic EnginEFring,1981,6:124-129.
    [56]AlPFrs W,Hennings I. A Theory of the Imaging Mechanism of Underwater Bottom Topography by Real and Synthetic APFrture Radar[J]. J.Geophys.Res.,1984,89:10529-10546.
    [57]Harris P T, Ashley G M,Collins M B. Topograpphic Features of the Bristol Channel Sea-bed:A Comparison of SEASAT(SAR) and Side-scan Sonar Images[J].Int.J.Remote Sens-ing,1986,7:119-136.
    [58]Romeiser R, AIPFrs W. An Improved Composite Surface Model of the Radar Backscattering Corss Section of the Ocean Surface 1.Theory of the Model and Optimization/Validation by Scatterometer Data[J]. J. Geophys. Res..1997,102:25238-25250.
    [59]Hennings I, Doerffer R and AIPFrs W. Comparison of submarine relief features on a radar satellite image and on a skylab satellite photograph[J]. Int. J. Remote Sensing,1998,9(1):45-67.
    [60]Vogelzang J, Wensink G J, Calkoen C J and Van der KOoij M W A. Mapping submarine sand waves with multiband imaging radar-ExPFrimental results and model comparison[J]. J.Gepohys. Res.,1997,102(C1):1183-1192.
    [61]Vogelzang. The Mapping of Bottom Topography with Imaging Rdar-A Comparison of the Hydordynamic Modulation in Some Exiting Models[J]. Int. J. Remote Sensing,1989,10: 1503-1518.
    [62]Vogelzang J, Wensink G J, van de Kooij and van der Burg G. Sea Bottom Topography with Polarimertic P-, L-and C-Band SAR[C].Geoscience and Remote Sensing Symposium, 1991:2031-2034.
    [63]Netherlands Calkoen C J, Hesselmans G, Wensink G, et al. The Bathyme-try Assessment System:Efficient Depth Mapping in Shallow Seas Using Radar Images[J]. Int.J.Remote Sensing, 2001,22:2973-2998.
    [64]黄韦艮.浅海水下地形的星载合成孔径雷达遥感[J].海洋科学.,1995,(6):26.
    [65]黄韦艮,高曼娜等.我国近海海洋现象的星载SAR观测[J].遥感技术与应用,1996,(2):12-17.
    [66]黄韦艮,傅斌等.星载SAR水下地形和水深遥感的最佳雷达系统参数模拟[J].遥感学报,2000,(3):172-177
    [67]Huangweigen, Fubin et al.. Simulation study on optimal currents and winds for the spaceborne SAR mapping of sea bottom topography[J]. Progress in Natural Science.2000, (11):61-68.
    [68]傅斌,黄韦艮等.星载SAR浅海水下地形和水深测量模拟仿真—水下地形高度、坡度和方向与可测水深分析[J].海洋学报,2001,(1):35-42.
    [69]傅斌,黄韦艮.大坡度水下地形的SAR遥感模拟仿真[J].国土资源遥感,2003,(1):33-37.
    [70]范开国,黄韦艮等.SAR浅海水下地形遥感研究进展[J].遥感技术与应用,2008,(4):479-485.
    [71]傅斌.SAR浅海水下地形探测[D].青岛:中国海洋大学,2005.
    [72]范开国,黄韦艮等.SAR浅海水下地形遥感研究进展[J].遥感技术与应用,2008,(4):479-485.
    [73]范开国,傅斌等.浅海水下地形的SAR遥感仿真研究[J].海洋学研究,2009,(2):79-83.
    [74]袁业立.论骑行波-波动不稳定性和频率调制[J].中国科学(B辑),1994,24(3):317-324.
    [75]袁业立.海波高频谱形式及SAR影象分析基础[J].海洋与湖沼,1997,28(增刊):1-5.
    [76]金梅兵,袁业立.SAR影象对海底地形变化可视度的仿真模拟与分析[J].海洋与湖沼,1997,28(增刊):2 1-26.
    [77]金梅兵,袁业立.利用SAR影象探测海底地形的数学物理反问题的提法与解法[J].海洋与湖沼,1997,28(增刊):27-31.
    [78]Jinmeibing, Zhangjie et al.. Analysis of bathymetric features using SAR image:an example from the southern north sea [J]. Chinese Journal of Oceanology and Limnology,1998, (2): 128-136.
    [79]夏长水,袁业立.塘沽海区海底地形的SAR影像仿真与反演研究[J].海洋科学进展,2003,(4):437-445.
    [80]Yang J G, Zhang J, Meng J M. A detection model of underwater topography with a series of SAR images acquired at different time[J]. Acta Oceanol Sin,2010,29(4):28-37.
    [81]李泽军,王小青,于祥祯等.SAR图像反演浅海地形的一种改进方法[J].电子测量技术,2012,35(4):86-89.
    [82]崔经汉,陈国庆等.SAR影像仿真与水下地形反演的阻尼牛顿-行作用法[J].海洋科学进展,2003,(1):68-77.
    [83]杨俊钢,张杰等.南沙双子礁水下地形多时相SAR探测[C].第十四届全国遥感技术学术交流会.中国青岛.2003:94-95.
    [84]张杰,杨俊钢等.南沙群岛珊瑚岛礁水下地形SAR测绘技术研究——以美济礁为例[C].第十三届全国遥感技术学术交流会.中国福州.2001:113-114.
    [85]Mason D. C., Davenport I J, Flatther R A. Interpolation of an intertidal digital elevation model from heighted shorelines:a case study in the Western Wash [J]. Estuarine, coastal and shelf science,1997,45:599-612.
    [86]Mason, D. C., Davenport, I., Flatther, R. A and Gurney, C. A digital elevation model of the intertidal areas of the wash produced by the waterline method [J]. International journal of remote sensing,1998,19:1455-1460.
    [87]Chen, L. C. and Rau, J. Y. Detection of shoreline changes for tideland areas using multi-temporal satellite images [J]. International journal of remote sensing,1998,19:3383-3397.
    [88]Ryu J. H.,Won J. S.,Min K. D. Waterline extraction from Landsat TM data in a Tidal Flat [J]. Remote sensing of environment,2002,83:442-456.
    [89]Ryu J. H., Kim C. H., LEF Y. K., et al. Detecting the intertidal morphologic change using satellite data [J]. Estuarine, coastal and shelf science,2008,78:623-633.
    [90]韩震,恽才兴.伶仃洋大铲湾潮滩冲淤遥感反演研究[J].海洋学报,2003,25:58-64.
    [91]韩震,恽才兴,蒋雪中等.温州地区淤泥质潮滩冲淤遥感反演研究[J].地理与地理科学进展,2003,19(6):31-34.
    [92]韩震,恽才兴,戴志军等.淤泥质潮滩高程及冲淤变化遥感定量反演方法研究—以长江口崇明东滩为例[J].海洋湖泊通报,2009,1:12-18.
    [93]戴志军.基于遥感和数字化地形信息复合技术在岸滩演变定量研究中的应用[D].上海:华东师范大学,2005.
    [94]郑宗生,周云轩,蒋雪中等.崇明东滩水边线信息提取与潮滩DEM的建立[J].遥感技术与应用,2007,22(1):36-39.
    [95]郑宗生,周云轩,刘志国等.基于水动力模型及遥感水边线方法的潮滩高程反演[J].长江流域资源与环境,2008,17:756-760.
    [96]沈芳,匡定波.青海湖最近25年变化的遥感调查与研究[J].湖泊科学,2003,15(4):289-296.
    [97]何茂兵.基于3S技术的九段沙湿地DEM构建及动态变化研究[D].上海:华东师范大学,2008.
    [98]王艳君.由潮滩土壤含水量反演露滩地形的遥感方法初探[D].南京:南京师范大学,2003.
    [99]胡平香.出露潮滩土壤含水量探测遥感方法初探——以江苏大丰王港潮滩为例[D].南京:南京师范大学,2005.
    [100]张鹰,张东,胡平香.海岸带潮滩土壤含水量遥感测量[J].海洋学报,2008,30(5):29-34.
    [101]李欢.潮间带露滩地形的遥感测量方法研究[D].南京:南京师范大学,2012.
    [102]龚明劫,张鹰.辐射沙洲水下地形冲淤演变研究[D].南京:南京师范大学,2008.
    [103]张鹰,顾燕,龚明劫等.遥感技术用于南黄海沙脊群地形变化测量与分析.中国科技论文在线,2010.
    [104]黄海军,李成治.南黄海海底辐射沙洲的现代变迁研究[J].海洋与湖沼,1998,29(06):640-645.
    [105]黄海军.南黄海辐射沙洲主要潮沟的变迁[J].海洋地质与第四纪地质,2004,24(02):1-8.
    [106]黄海军.苏北陆岸岸滩主要潮沟近期变迁的遥感解译[J].海岸工程,2002,21(01):24-28.
    [107]Haijun Huang, Tingqin Du and Ang Gao. Modern changes of tidal troughs among the radial sand ridges in northern Jiangsu coastal zone [J]. Chinese Journal of Oceanology and Limnology, 2009,27(03):658-666.
    [108]刘燕春,张鹰.遥感中轴线法在辐射沙脊群潮汐水道的应用[D].南京:南京师范大学,2009.
    [109]刘燕春,张鹰.遥感中轴线法在江苏辐射沙洲潮沟演变监测中的应用[J].海洋科学,2011,35(2):72-76.
    [110]康彦彦,丁贤荣.基于纳潮盆地地貌特征线的潮滩地形模拟研究[D].南京:河海大学,2011.
    [111]Xianrong D., Ang Zh., Ligang Ch. et al. Modeling methods for tidal flat digital terrain based on neural network[C]. Information Science and EnginEFring (ICISE),2010:6716-6719.
    [112]Qing L., Xianrong D., Ang Zh. et al. Neural network modeling of tidal flat terrain based on lidar survey data[C]. International Symposium on Lidar and Radar Mapping 2011:Technologies and Applications,2011:828725-828625.
    [113]于景元,周晓纪.系统科学与系统工程的发展[J].复杂系统与复杂性科学,2004,(3):4-9.
    [114]DoD. "System of Systems EnginEFring," In Defense Acquisition Guidebook[M]. Department of Defense,2004.
    [115]Office of the Under Secretary of Defense. System of Systems EnginEFring Guide V 1.0. [M].2007.12
    [116]Mark W Maier. Architecting Principles for Systems-of-Systems[J]. Systems EnginEFring, 1998,(4):267-284.
    [117]Kotov V. Systems of Systems as Communicating Structures[R]. Hewlett Packard Computer Systems Laboratory PaPFr HPL-97-124,1997:1-15.
    [118]R PFi. Systems of Systems Integration(SoSI)-a Smart way of Acquiring Army C4I2WS Systems[C]. Proc Summer Comput Simul Conf,2000:574-579.
    [119]A P Sage, C D Cuppan. On the Systems EnginEFring and Management of Systems of Systems and Federations of Systems[J]. Information Knowledge Systems Management,2001, (2): 325-345.
    [120]Charles Keating, Ralph Rogers, Resit Unal et.al. System of Systems EnginEFring[J]. EnginEFring Management Journal,2003,15(3):36-45.
    [121]Jeremy M Kaplan. A New Conceptual Framework for Net-Centric, Enterprise-Wide, System-of-Systems EnginEFring [M]. National Defense University,2006:7.
    [122]Jo Ann Lane, Ricardo Valerdi. Synthesizing SoS Concepts for Use in Cost Modeling[J]. Systems EnginEFring,2007,10(4):297-308.
    [123]United States Air Force Scientific Advisory Board. System-of-Systems EnginEFring for Air Force Capability Development[R].2005:7.
    [124]Naval Studies Board. Naval Analytical Capabilities:Improving Capabilities-Based Planning. http://www.nap.edu/catalog/11455.html.
    [125]William A.Crosssley, System of Systems:An Introduction of Purdue University Schools of EnginEFring's Signature Area. http://enginEFring.purdue.edu/Engr/Signature/SoS/.
    [126]杨克巍,赵青松,谭跃进等.体系需求工程技术与方法[M].北京:科学出版社,2011.
    [127]刘皿,刘作全,庞远军.浅析成都市林业产业体系建设与发展[J].四川林勘设计,2004,(3):36-39.
    [128]吴平.黔东南州”十一五”林业产业体系建设与发展思路[J].林业调查规划,2006,3:112-116.
    [129]王满.基于布局优化的中国林业产业体系建设研究[D].长沙:中南林业科技大学,2010.
    [130]Maier M W. Architecting principles for systems-of-systems[C]. The proc. Of the symposium of the International Council on System EnginEFring.1996.
    [131]张最良,黄谦等.体系开发规律和科学途径[J].中国科学基金,2006:159-163.
    [132]熊德国.系统科学理论在区域可持续发展中的应用研究[D].重庆:重庆大学,2004.
    [133]钱学森.人体科学与当代科学技术发展纵横观[M].北京:人民出版社,1996.
    [134]魏宏森,曾国屏.系统论[M].北京:清华大学出版社,1995.
    [135]孙东川,林福用,孙凯.系统工程引论(第2版)[M].北京:清华大学出版社,2009.
    [136]舒宇.基于能力需求的武器装备体系结构建模方法与应用研究[D].长沙:国防科技大学.2009.
    [137]DoD Architecture Framework Working Group. DoD Architecture Framework Version 1.5[R]. U.S, Department of Defense,2007.
    [138]张忍顺.中国潮汐汊道研究的进展[J].地球科学进展,1994,9(4):45-49.
    [139]王颖,黄海陆架辐射沙脊群[M],北京:中国环境科学出版社,2002.
    [140]任美锷,江苏省海岸带和海涂资源综合调查[M],北京:海洋出版社,1986.
    [141]刘振夏,夏东兴.潮流沙脊的水力学问题探讨[J].黄渤海海洋,1995,13(4):23-29.
    [142]Angstrom, A. The albedo of various surfaces of ground[J]. Geografiska.1925,7:323.
    [143]Bowers, S.A. and Hanks, R.1. Reflection of radiant energy from soils[J]. Soil Sciyncy,1965. 100(3):130-138
    [144]Stoner, E.R. and Baumgardncr, M.F.Physiochemical, site and bidircctional reflectance factor characteristics of uniformly moist soils[J].111679, LARS, Purdue University, USA.1980
    [145]David B. Lobell* and Gregory P. Asner, Moisture Effects on Soil Reflectance[J], SOIL SCI. SOC. AM. J.,2002,66:722-727.
    [146]王艳君,张鹰.由潮滩土壤含水量反演露滩地形的遥感方法初探[D].南京:南京师范大学,2003.
    [147]胡平香,张鹰.出露潮滩土壤含水量探测遥感方法初探[D].南京:南京师范大学,2005.
    [148]张鹰,张东,胡平香.海岸带潮滩土壤含水量遥感测量[J].海洋学报,2008,30(5):29-34.
    [149]李欢.潮间带露滩地形的遥感测量方法研究[D].南京:南京师范大学,2012.
    [150]胡鹏,游涟,杨传勇等.地图代数[M].武汉:武汉大学出版社,2006.
    [151]Francis Chin, Jack Snoeyink, Cao An Wang. Finding the Medial Axis of a Simple Polygon in Linear Time [C]. Proc.6th Ann Int Symp Algorithms and Computation(ISAAC95), Lecture Notes in Computer SeienEF,1995:1004.
    [152]Olson. An algorithm for generating road centerlines from road right-of-way[C]. ProcEFdings of the 12th International Symposium on Computer-Assisted Cartography. Charlotte,1995:11-12.
    [153]Federico Thomas. Generating strEFt center-lines from inaccurate vector city maps[J]. Cartography and Geographic Information Science,1998,25(4):221-230.
    [154]魏士春,金宝石,周葆华等.基于ArcScan的遥感影像中水域信息快速提取方法[J].合肥工业大学学报(自然科学版),2008,31(11):1744-1747.
    [155]杨小平.统计分析方法与SPSS应用教程[M].清华大学出版社,2012.
    [156]朱绍攀,陈宇.大气辐射校正方法分析[J].地理空间信息,2010,(1):113-116.
    [157]王占宏,成燕辉等,遥感影像平面图技术标准的研究[J].测绘标准化,1996,(12):2-4.
    [158]王晶晶.悬浮泥沙光谱特性及其浓度的遥感反演模式研究[D].南京:南京师范大学,2006.
    [159]宋召军.南黄海辐射沙洲海区悬沙及沙洲演变的遥感研究[D].青岛:中国科学院,2006.
    [160]徐效军.南黄海近岸水体悬沙分析与遥感反演[D].南京:南京师范大学,2006.
    [161]陶菲.基于泥沙遥感参数的辐射沙洲水下地形反演研究[D].南京:南京师范大学,2006.
    [162]潘雪峰.基于悬浮泥沙的辐射沙洲水下地形遥感反演研究[D].南京:南京师范大学,2006.
    [163]朱绍攀,陈宇.大气辐射校正方法分析[J].地理空间信息,2010,(1):113-116.
    [164]Gilabert M A, Conese C, Masellf. An Atmospheric Correction Method for the Automatic Retrieval of Surface Reflectance from TM Images[J]. INTJ Remote Sensing,1994,15(10): 2065-2086.
    [165]郑伟,曾志远.遥感图像大气校正方法综述[J].遥感信息,2004,(4):66-70.
    [166]刘小平,余前,蔡槿.一种实用大气校正法及其在TM影像中的应用[J].中山大学学报 论丛,2004,(3):297-300.
    [167]T. Cooleya, GP. Andersona, GW. Felde, et al. FLAASH, a MODTRAN4 based atmospheric correction algorithm, it's application and validation[C]. ProcEFding of International Geoscience and Remote Sensing Symposium(IGARSS) 02. IEEFE,2002:1414-1418.
    [168]S. Adler-Golden, A. Berk, L.S. Bernstein, et. al. FLAASH, a MODTRAN4 Atmospheric Correction Package for HyPFrsPFctral Data Retrievals and Simulations[M].1998.
    [169]A. Berk, S.M.Adler-Golden, A.J. Ratkowski, et.al. Exploiting MODTRAN radiation transport for atmospheric correction:The FLAASH algorithm information fusion[C]. ProcEFding of the Fifth International Conference.2002, (2):798-803.
    [170]宋晓宇,王纪华,刘良云等.基于高光谱遥感影像的大气纠正:用AVIRIS数据评价大气纠正模块FLAASH[J].遥感技术与应用,2005,20(4):393-398.
    [171]程亮,马友华等.ENVI FLAASH和ERDAS ATCOR2的大气校正对比研究[J].农业网络信息,2011,(12):17-20.
    [172]杨校军,陈雨时等.FLAASH模型输入参数对校正结果的影响[J].遥感信息,2008,(6):46-48.
    [173]Ralph W.Kiefer, Thomas M.Lillsand.遥感与图像解译[M],北京:电子工业出版社,2003.
    [174]戴昌达,姜小光,唐伶俐.遥感图像应用处理与分析[M].北京:清华大学出版社,2004:92-93.
    [175]张鹰,张东,顾燕等.GCP分布对海岸带TM影像几何校正精度的影响研究[J].海洋学报,2007,29(1):31-37.
    [176]温红艳.遥感图像拼接算法研究[1D].武汉:华中科技大学,2009.
    [177]朱述龙,钱曾波.遥感影像镶嵌时拼接缝的消除方法[J].遥感学报,2002,6(3):183-187.
    [178]王颖,朱大奎,周旅复等.南黄海辐射沙脊群沉积特点及其演变[J].中国科学,1998,28(5):385-393.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700