用户名: 密码: 验证码:
有机肥施用对红壤氮素循环微生物相关基因多样性的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微生物的生态多样性在各种生态系统的功能和演变中都起着综合的和独特的作用,它对持续农业系统的作用为许多近期研究所证实。土壤微生物是自然物质循环不可缺少的成员,担负着分解动植物残体,直接关系到土壤养分的有效性和植物的生长,同时微生物在土壤肥力评价和生物净化等方面也有着重要的作用。土壤微生物对环境变化很敏感,能够较早地指示生态系统功能的变化,而且对于退化生态系统的恢复和治理以及提高不同植被的生产力均有重要的理论和实践意义。
     红壤广泛的存在于我国南方,该地区也是重要的粮食和经济作物产区。但近年来,水土流失、土壤生物活性下降、肥力减退及环境污染等问题已严重影响红壤地区农业经济的可持续发展。土壤微生物是土壤生态系统的重要组成部分,在土壤生态平衡、物质循环和植物养分转换等过程中起着重要的作用。长久以来,人们都是利用传统的微生物学培养方法对土壤微生物进行研究,然而环境中仅有小于1%的微生物能被研究人员在实验室条件下培养,所以在自然环境中的微生物群落结构信息及其种群的检测成为长期困扰着微生物学家和生态学家的一大难题,微生物分子生物学技术的引入为认识和了解土壤环境中微生物的多样性和功能提供了新的契机。
     本研究主要通过PCR扩增、基因克隆、DGGE、RFLP和序列分析等对红壤环境中的固氮酶基因nifH、氨单加氧酶酶基因amoA、反硝化亚硝酸还原酶酶基因nirK和16S rDNA的分子多样性进行了分析,探讨了四种不同处理(对照,低有机肥,高有机肥,高有机肥加石灰改良)下红壤中参与氮素循环相关的固氮微生物、氨氧化细菌和反硝化细菌等功能微生物类群与之对应发生的群落多样性变化信息。
     (1)用于分子生态学研究的土壤微生物DNA提取方法的研究
     土壤微生物分子生态学研究的关键技术之一是从各种环境样品中高效的获得可以进行分子生物学研究的基因组DNA,同时高质量的提取DNA是进行后续实验的基础。提取的环境样品总DNA能否代表环境中的微生物是首要前提。本研究利用SDS高盐法(Zhou's method)和变性剂加PVPP法(Raddy's method)两种方法对红壤中微生物总DNA进行了提取,然后通过电洗脱回收和树脂柱试剂盒回收两种方法进行纯化,结果表明改良的SDS高盐法对DNA提取效率明显高于其它两种方法。PCR扩增表明,改良的SDS高盐法从贫瘠的原始红壤中可以扩增到16SrDNA片段和固氮基因nifH、硝化基因αmoA、反硝化基因nirK等功能基因。因此认为改良的SDS高盐法是一种高效、可靠的适合于中国典型红壤下微生物分子生态学研究的DNA提取方法。
     (2)施加有机肥处理下红壤中微生物数量和分子多样性的变化
     通过传统的培养技术和现代分子生物方法探讨了红壤在施加有机肥处理下微生物群落多样性变化,为指导红壤生态系统下科学合理的发展农业生产保护红壤中微生物资源提供重要参考。通过DGGE方法和传统培养计数方法研究了不同肥力下红壤中微生物多样性变化,统计分析发现,四种处理中DNA的提取量与微生物的计数结果成显著的正相关,但是DGGE多样性指数显示随有机肥肥力的升高微生物多样性逐渐降低。系统发育分析显示高肥和高肥改良微生物类群聚为一支,CK与底肥处理下微生物类群聚为一支。说明土壤中微生物总数量随有机肥添加量的增加而增加,微生物的种类随有机肥的增加而减少。揭示了我们在提高红壤的肥力的同时要关注红壤中微生物类群整体的变化,科学合理的施用有机肥以保护红壤中微生物多样性资源。
     (3)红壤中固氮微生物的分子多样性研究
     研究了向红壤中投加有机氮肥对生态系统下固氮微生物群落结构的影响,通过PCR-RFLP和测序分析对四种不同处理下微生物固氮基因(nifH)的多样性和系统发育进行了研究分析。通过RFLP分析和多样性指数计算发现,四个文库都有比较高的覆盖值(88%以上),分布在alpha-, beta-和gamma Proteobacteria, Firmicutes, cyanobacter, Verrucomicrobia和假定未知一族,代表了环境中主要的固氮微生物类群。四种文库中的nifH基因的多样性都不均匀,都存在着绝对的优势类群,种类主要以自生固氮蓝细菌为主。实验室条件下难以分离培养,主要生活在海洋中的蓝细菌是旱地红壤中固氮微生物优势种群,这为研究红壤固氮微生物提供了重要参考信息。高肥力样品中多样性指数数值在四个处理中是最低的,而低肥力样品中的多样性指数数值则在四个处理中最高。传统的计数结果显示随添加有机肥数量的增加固氮细菌数量是增加的。说明在红壤中适当投加有机肥有利于提高固氮微生物的多样性,过高投加有机肥影响了固氮微生物群落种类的多样性。科学合理的投加有机肥有利于红壤生态系统的健康平衡发展。
     (4)红壤中硝化细菌的分子多样性研究
     研究了向贫瘠红壤中投加有机氮肥对红壤生态系统下硝化微生物群落结构的影响,通过PCR-RFLP和测序分析对四种不同处理下氨氧化细菌中氨单加氧酶基因(amoA)的多样性和系统发育进行了研究分析。通过RFLP分析和多样性指数计算发现,四个文库的覆盖值都很高(90%以上),可以代表了环境中绝大部分的氨氧化细菌。四种文库中的amoA基因的多样性均匀性不高,但文库之间都存在着共同的主要类群,主要以亚硝化螺菌为主。四个文库群落之间相似性比较高(57%以上)。MPN计数结果显示随投加有机肥量的增加氨氧化细菌数量是逐渐增加的。因此说明向贫瘠的红壤中施加有机肥和改良红壤有利于增加氨氧化细菌数量,对氨氧化细菌群落种类多样性的影响不明显。这也与红壤环境下氨氧化细菌自身种类少有一定的关系。
     (5)红壤中反硝化细菌的分子多样性研究
     研究了向贫瘠红壤中投加有机氮肥对红壤生态系统下反硝化微生物群落结构的影响,通过PCR-RFLP和测序分析对四种不同处理下微生物亚硝酸还原酶基因(nirK)的多样性和系统发育进行了研究分析。通过RFLP分析和多样性指数计算发现,四个文库都有比较高的覆盖值(80%以上),代表了环境中主要的反硝化微生物类群。四种文库中的nirK基因的多样性均匀性较高,而且也存在着主要类群的反硝化细菌,主要Alcaligenes faecalis细菌为主。四文库之间的相似性在40%左右。原始对照样品中多样性指数数值是四个处理中最低,而高肥力样品中的多样性指数数值则是四个处理中最高的。MPN计数结果显示随有机肥投加量的增加反硝化微生物数量成递增的趋势。说明在红壤中反硝化微生物的多样性是随投加有机肥量的增加而提高。揭示了要科学控制有机肥的投加量,减少土壤中有机氮肥的流失。
Microbial diversity plays an integral and unique role in variety of the global ecosystem; this has been proven in agricultural ecosystem by much recent research. Soil microorganism is the necessary part in global material cycle of carbon, nitrogen, and so on, thus it affects the material balance, the composition of the atmosphere and geochemistry procedure in the global scale. Soil microorganisms play a key role indegrading the animal and plant body, which directly influence the available nutrient of soil and vegetation growth. Soil microorganisms are sensitivity to the environmental change and easily indicated the change of the ecosystem functions, which had important significance to renew and protect the ecosystem. Understanding the structure and composition of soil microbial communities and their responses and apaptions to global change is critical in maintaining or restoring desirable ecosystem functions. Due to the irrational exploitation and utilization for natural resources, more and more factors impact on the diversity of soil microorganisms, such as the increasing of CO2concentration, vegetation degeneration and environmental pollution.
     Red soil is the typical soil resources in South China, and it is also considered as important production bases of economic forests, cash crops and cereals. However, soil degradation and utility processes, such as soil erosion, soil nutrient depletion, soil acidification, pollution, etc. exert impacts on sustainable development of agricultural economy in this area. Microorganisms are the important part of soil ecosystem, which play significant roles in material cycling promotion, ecological balance maintenance and plant nutrients transformation. For a long time, numerous researches focused on the research of soil microorganisms by traditional cultivation methods, because less than1%of microorganisms can be cultured, characterization and detection of microbial populations in natural environments present a great challenge to microbial ecologists, while molecular biology methods provide us with new perspectives to analyze the diversity, genetics and function of the microbial community.
     In this study, a PCR-based cloning and sequencing approach was used to investigate the molecular diversity and community structure of all bacteria in red soil by using the traditional cultural technology and analyzing the diversity of16S rDNA, which influencing the different land use patterns and different manure fertility in red soil. We also had been investigated the molecular diversity and community structure of nitrogen-fixing microbes, ammonia-oxidizing bacteria and denitrifying bacteria those connecting with the Nitrogen cycle and their key impact factors in the different manure fertility. All results from these studies are summarized as bellow.
     1. Extraction method of soil microbial DNA for molecular ecology study
     In environmental microbiology, molecular ecology study has been widely concerned in the world, while one of the key technologies of study uncultured microorganism in molecular level is obtain the high quality genome from environmental microbiology. It is the important basic that total extracted DNA can represent all environmental microbiology. In this study, soil microbial DNA was extracted using Zhou's method and Raddy's method, respectively. The crude DNA extraction was purified by gel electrophoresis dialysis method and gel midi purification kit, respectively. The result showed that the modified zhou's method could extract DNA more efficiently and was the best useful method. Even the DNA extracted from the barren CK sample was available in amplifying its16S rDNA and functional genes fragment (such as nifH, amoA, nirK) by Polymerase Chain Reaction. Therefore, the modified Zhou's method could be an efficient and reliable method to extract DNA from the typical barren red soils in the molecular ecology studies.
     2. The diversity of different amount of organic manure fertility to Soil Microbial Diversity in red soil
     To understand the influence of different amount of manure fertility to soil microbial diversity, four treatments with three replicates were established in randomized plots, low manure treatment (LM), high manure treatment (HM), and high manure and lime treatment (ML). Nothing was applied in the control (CK). The organic manure was fresh pig dejecta from hoggery. the soil microbial diversity was investigated by the traditional cultural method, and DGGE molecular approach. The soil quality and microbial diversity evaluated.
     The diversity of microbial community has been investigated in different manure fertility treatments by the traditional cultural method and DGGE molecular approach. The quality of extracted DNA had remarkably positive correlation with the amount of CFU by statistical analysis; the diversity of microbial community had negative correlation with the amount of the organic manure adding in red soil. It was suggested that much attention should be paid and the rsourses of the microbial diversity should be prorected for long-term using organic manure in barren red soil. The structure of microbial community transformed with the different amount of the organic manure adding to red soil from the analysis of the phylogenetic tree.
     3. Molecular Diversity of Nitrogen-Fixing microbes in red soil
     In order to understand the community structure of Nitrogen-Fixing microbes in red soil and effects of organic manure application on the structure, four nifH gene libraries were constructed (CK, LM, HM, and ML). Total150nifH gene clones were screened and grouped into21clusters of RPLP analysis. Existence of dominant patterns was observed in all libraries, which counted for over96%of clones in library HM and about56-72%in other three libraries. Representative nifH clones were sequenced and showed to be similar to nitrogenase reductase (about73-100%of similarity). These nifH clones showed very high diversity, dispersing throughout the nifH clade (alpha-, beta-and gamma Proteobacteria, Firmicutes cyanobacteri, Verrucomicrobia, and posited group). The nifH sequences of the dominant patterns in all libraries were most similar to sequences of the cyanobacteria Bradyrhizobium and Burkholderia were also important diazotrophs in low fertility soils. nifH genes in LM treatment had the highest diversity while HM had the lowest. Manure and lime treatment led to obvious community succession. High available P to total N ratio was the main reason that affected the diversity of diazotrophs in red soil. pH played important role in the community changes of cyanobacteria. Cyanobacteria diversity was positively related to the soil pH. Considering the functions of cyanobacteria in paddy soils and the climate in this test site, cyanobacteria might also play important roles under unflooded agronomy condition.
     4. Molecular Diversity of Ammonia-Oxidizing Bacteria in red soil
     In order to understand the community structure of ammonia-oxidizing bacteria in red soil and effects of organic manure application on the structure, four amoA gene libraries were constructed (CK, LM, HM, and ML). Total206amoA gene clones were screened and grouped into20clusters of RFLP analysis. Existence of many dominant patterns was observed in all libraries, the coverage C of the four amoA gene libraries was so high (above90%) and the similarity of the four libraries was also high (above57%). Phylogenetic analysis suggested that the representative ammonia-oxidizing bacteria were only the cluster of Nitrosomonas; this was consistent with many other studies suggesting the dominance of Nitrosospira in soils. In a word, there was no remarkable effect on the community of ammonia-oxidizing bacteria adding organic manure in barren red soil.
     5. Molecular Diversity of Denitrifying bacteria in red soil
     In order to understand the community structure of denitrifying bacteria in red soil and effects of organic manure application on the structure, four nirK gene libraries were constructed (CK, LM, HM, and ML). Total282nirK gene clones were screened and grouped into78clusters of RFLP analysis. All statistical results showed that microbial diversity of all nirK gene libraries was rich and the coverage C of all nirK gene libraries was high (above80%), four nirK gene libraries could represent the main community of denitrifying bacteria in red soil ecosystem. Existence of dominant patterns was observed in all libraries, the pairwise similarity of four libraries was about40%. The diversity of denitrifying bacteria in CK treatment was the lowest but the diversity of denitrifying bacteria in HM treatment was the highest. The diversity of denitrifying bacteria in red soil was richer with the increase of adding organic manure in to the red soil. It suggested that the organic manure must be scientifically used in red soil ecosystem to avoid so much lost of the N fertility from soil.
引文
[1]杨风亭,刘纪远,庄大方,等.中国东南红壤丘陵区土地利用变化的生态环境效应研究[J].2004,23(5):43-56
    [2]赵其国.红壤物质循环及其调控[A].北京:科学出版社,2002,6-10
    [3]孙波,赵其国.红壤退化中的土壤质量评价指标及评价方法[J].1999,18(2):167-177
    [4]赵其国,徐梦杰,吴志东.东南红壤丘陵地区农业可持续发展研究[J].土壤学报,2000,37(4),433-442
    [5]赵其国.我国红壤的退化问题[J].土壤,1996,28(6):281-285
    [6]周健民.中国土壤科学的现状与展望[M].河海大学出版社,2007,236
    [7]白清云.土壤微生物群落结构的化学估价方法[J].1997,16(6):252-256
    [8]顾希贤.红壤利用方式与微生物学特征[J].土壤,1992,24(5):268-269
    [9]杨风,潘超美,李幼菊.亚热带赤红壤不同林型对土壤微生物区系的影响[J].热带亚热带土壤科学,1996,5(1):20-26
    [10]俞慎,李勇,王俊华,等.土壤微生物生物量作为红壤质量生物指标的探讨[J].土壤学报,1999,36(3):413-422
    [11]Zheng H, Ouyang Z Y, Wang X K, et al. Effects of regenerating forest cover on soil microbial communities:A case study in hilly red soil region, Southern China [J]. Forest Ecology and Management,2005,217:244-254
    [12]Liao Min, Xie Xiao M. Effect of heavy metals on substrate utilization pattern, biomass, and activity of microbial communities in a reclaimed mining wasteland of red soil area [J]. Ecotoxicology and Environmental Safety. In press
    [13]郑华,欧阳志云,王效科,等.不同森林恢复类型对土壤微生物群落的影响[J].应用生态学报,2004,15(11):2019-2024
    [14]Pace N R. A molecular view of microbial diversity and the biosphere [J]. Science.1997,276: 734-740
    [15]Kennedy A C, Gewin V L. Soil microbial diversity:present and future considerations [J]. Soil Science,1997, (162):607-617
    [16]张薇,魏海雷,高洪文,等.土壤微生物多样性及其环境影响因子研究进展[J].生态学杂志,2005,24(1):48-52
    [17]Ward B B. Nitrification and denitrification:probing the nitrogen cycle in aquatic environments [J]. Microbial Ecology,1996,32:247-261
    [18]Kuenen J G, Robertson L A. Ecology of nitrification and denitrification [M]. In:Cole J A, Gerguson S J (eds). The nitrogen and sulfur cycles. Cambridge:Cambridge University Press,1988,161-218
    [19]DeLong E F. Diversity of naturally occurring prokaryotes [A]. In:Colwell R R. (Eds). Microbial Diversity in Time and Space [C]. New York:Plenum,1996,125-133
    [20]Colwell R R. Microbial diversity in time and space. Proceeding of the international symposium on the microbial diversity in time and Space [J]. In Tody, Japan,1994:1-159
    [21]王书帛,胡江春,张宪武,等.新世纪中国土壤微生物学的展望[J].微生物学杂志,2002,22(1):36-39
    [22]周群英,高延耀.环境工程微生物学[M].北京:高等教育出版社,1998,176-179
    [23]Kennedy A C, Gewin V L. Soil microbial diversity:Present and future considerations [J]. Soil Science.1997.162 (9):607-617
    [24]Kennedy A D, Smith K L. Soil microbial diversity and the sustainability of agricultural soils [J]. Plant and Soil,1995,170:75-86
    [25]林稚兰,黄秀梨.现代微生物学与实验技术[M].北京:科学技术出版社,2000,151-187
    [26]Zehr J P, Jenkins B D, Short S M, et al. Nitrogenase gene diversity and microbial community structure:a cross-system comparison [J]. Environ Microbiol,2003,5:539-554
    [27]Young J P W. Phylogenetic classification of nitrogen-fixing organisms [M], p43-86. In C. Stacey, R. H. Burns, and H. J. Evans (ed.), Biological nitrogen fixation.1992, Chapman and Hall, New York, N.Y.
    [28]Shaffer B T, Wildmer F, Porteous L A, et al. Temporal and spatial distribution of the nifH gene of N2-fixing bacteria in forests and clearcuts in western Oregon [J]. Microb Ecol,2000,39:12-21
    [29]Ueda T, Suga Y, Yahiro N, et al. Remarkable N2-fixing bacterial diversity detected in rice roots by molecular evolutionary analysis of nifH gene sequences [J]. J Bacteriol,1995,177:1414-1417
    [30]Chelius M K, Lepo J E. Restriction fragment length polymorphism analysis of PCR-amplified nifH sequences from wetland plant rhizosphere communities [J]. Environ Technol,1999,20:883-889
    [31]Zehr J P, Melton M, Braun S, et al. Diversity of heterotrophic nitrogen fixation genes in a marine cyanobacterial mat [J]. Appl Environ Microbiol,1995,61:2527-2532
    [32]张华峰,胡建成,黄巨富,等.生物固氮在农业生产中的应用现状与展望[M].自然杂志,2002,24(3):136-137
    [33]Warrington R. On nitrification [J]. J. Chem. Soc,1878,33:44-51
    [34]Winogradsky S. Recherches sur les organismes de la nitrification [J]. Ann. Inst. Pasteur,1891,5: 577-616
    [35]Hans-Peter Horz, Adrian Barbrook, Christopher B. Field, and Brendan J. M. Bohannan. Ammonia-oxidizing bacteria respond to multifactorial global change [J]. Proc. Natl. Acad. Sci. 2004,101:15136-15141
    [36]Ulrike Purkhold, Andreas Pommerening-Roser, Stefan Juretschko, et al. Phylogeny of All Recognized Species of Ammonia Oxidizers Based on Comparative 16S rRNA and amoA Sequence Analysis:Implications for Molecular Diversity Surveys [J]. Appl Envir Microbiol,2000,66(12): 5368-5382
    [37]Kowalchuk G A, Stephen J R, De Boer W, et al. Analysis of ammonia-oxidizing bacteria of the beta subdivision of the class Proteobacteria in coastal sand dunes by denaturing gradient gel electrophoresis and sequencing of PCR-amplified 16S ribosomal DNA fragments [J]. Appl Envir Microbiol,1997,63(4):1489-1497
    [38]John R. Stephen, George A. K, Mary-Ann V. B, et al. Prosser Analysis of ~Subgroup Proteobacterial Ammonia Oxidizer Populations in Soil by Denaturing Gradient Gel Electrophoresis Analysis and Hierarchical Phylogenetic Probing [J]. Appl Envir Microbiol,1998,64(8):2958-2965
    [39]Martin G. Klotz, Jeanette M. Norton. Multiple copies of ammonia monooxygenasee (amo) operons have evolved under biased AT/GC mutational pressure in ammonia-oxidizing autotrophic bacteria [J]. FEMS Microbiology Letters,1998,168:303-311
    [40]Armin Gieseke, Ulrike Purkhold, Michael Wagner, Rudolf Amann. Andreas Schramm. Community Structure and Activity Dynamics of Nitrifying Bacteria in a Phosphate-Removing Biofllm [J]. Appl Envir Microbiol,2001,67(3):1351-1362
    [41]Agot Aakra, Janne B. Utaker, Ingolf F. Nes. Comparative phylogeny of the ammonia monooxygenase subunit A and 16S rRNA genes of ammonia-oxidizing bacteria [J]. Microbiology Letters,2001,205:237-242
    [42]Castignetti D, Hollocher T C. Heterotrophic nitrification among denitrifiers [J]. Appl. Environ. Microbiol.1984,47:620-623
    [43]Daum M, Zimmer W, Papen H, Kloos K, Nawrath K, Bothe H. Physiological and molecular biological characterization of ammonia oxidation of the heterotrophic nitrifier Pseudomonas putida [J]. Curr Microbiol.1998,37 (4):281-288
    [44]Moir J W, Crossman L C, Spiro S, Richardson D J. The purification of ammonia monooxygenase from Paracoccus denitrificans [J]. FEMS Lett.1996,387:71-74
    [45]Anderson I C, Poth M, Homstead J, Burdige D. A comparison of NO and N2O production by the autotrophic nitrifier Nitorsomonas europaea and the heterotrophic nitrifier Alcaligenes faecalis [J]. A ppl Environ Microbiol.1993,59 (11):3525-3533
    [46]Tate R L 3rd. Nitrification in histosols:a potential role for the heterotrophic nitrifiers [J]. Appl Environ Microbiol.1977,33:911-914
    [47]K Killham. Heterotrophic nitrification [J]. I Prosser. Nitrification. IRL Press 1986.117-126.
    [48]Alexander M. Nitrification. In:Wiley J, Sons. (eds). Introduction to soil microbiology [M].2nd ed. New York,1977,251-271
    [49]Graaf A A, Mulder A, Bruijn P, Jetten MSM, Robertson L A, Kuenen J G. Anaerobic oxidation of ammonium is a biological mediated process [J]. Appl Environ Microbiol.1995,61:1246-1251
    [50]Jetten M S M, Strous M, Pas-choonen K T, et al. The anaerobic oxidation of ammonium [J]. FEMS Microbiol Rev,1999,22:421-437
    [51]Philippot L. Denitrifying genes, in bacterial and archaeal genomes [J]. Biochimica Biophysica Acta (BBA)-Gene structure and expression,2002,1577(3):355-375
    [52]Ganeshram, R. S., T. F. Pedersen, S. E. Calvert, and J. W. Murray. Large hanges in oceanic nutrient inventories from glacial to interglacial periods [J]. Nature 1995,376:755-758
    [53]Altabet M. A. and W. B. Curry. Testing models of past ocean chemistry using for aminiferal 15N/14N. Global Biogeochem [J]. Cycles.1989,3,107-119
    [54]Middleburg J. J., K. Soetaert, P. M. J. Herman, and C. H. R. Heip. Denitrification in marine sediments:A model study [J]. Global Biogeochem Cycles.1996,10,661-671
    [55]Shoun H, Tanimoto T. Denitrification by the fungus Fusarium axysporum and involvement of cytochrome p-450 in the respiratory nitrite reduction [J]. J Biol. Chem.1991,266:1078-1082
    [56]Bender M. L. The delta 18O of dissolved O2 in seawater:A unique tracer of circulation and respiration in the deep sea [J]. J. Geophys. Res.1990,95,22243-22252
    [57]Murray, J. W., and K. M. Kuivilla. Organic matter diagenesis in the northeast Pacific, transition from aerobic red clay to suboxic hemipelagic sediments [J]. Deep-Sea Res.1990,37:59-80
    [58]Rabouille, C. and J. F. Gaillard. The validity of steady-state flux calculations in early diagenesis:A computer simulation of deep silica diagenesis [J]. Deep-Sea Res.1990,37:625-646
    [59]郑平。环境微生物学[M].浙江:浙江人民出版社,2002
    [60]Cheneby D, Philippot L.16S rRNA analysis for characterization of denitrifying bacteria isolated from three agricultural soils [J]. FEMS Microbiol. Ecol.2000,34:121-128
    [61]Lensi R, Beaupied H, Hoiroud A. Denitrifying activity in the Actinorhizae [J]. Acta Oecol.1990,11: 391-398
    [62]Hong W, Donald S, Koch A. Controlling factors for simultaneous nitrification and denitrification in a two-stage intermittent aeration process treating domestic sewage [J]. Wat. Res.,1999,33: 961-970
    [63]孙建光,高骏莲,马晓彤,等.反硝化微生物分子生态学技术及相关研究进展[J].中国土壤与肥料,2007,2:7-12
    [64]Robertson L A, Van Niel E W J, Torrcmans R A M, et al. Simultaneous nitrification and denitrification in aerobic chemostat cultuers of Thiosphaera pantotropha [J]. Appl. Environ. Microbiol.1998,54(11):2812-2818
    [65]Lukow T, Diekmann H. Aerbic denitrification by a newly isolated heterotrophic bacterium strain TL1 [J]. Biotechnology Letters.1997,11(19):1157-1159
    [66]Johnsen K, Jacobsen C S, Torsvik. Pesticide effects on bacterial diversity in agricultural soils. A review [J]. Biol Fery Soils,2001,33:443-453
    [67]周德庆.普通微生物学教程[M].第二版,高等教育出版社,2002,339-340
    [68]焦晓丹,吴凤芝.土壤微生物多样性研究方法的进展[J].土壤通报,2004,35(6):789-792
    [69]章家恩,蔡燕飞,高爱霞,等.土壤微生物多样性实验研究方法概述[J].土壤,2004,36(4):346-350
    [70]Dianne K. Newman and Jillian F. Banfield. Geomicrobiology:How Molecular-Scale Interactions Underpin Biogeochemical Systems [J]. Science,2002,296:1071-1077
    [71]叶姜瑜,罗固源。未培养微生物的研究与微生物分子生态学的发展[J].微生物学通报2004,31(5):111-115
    [72]Lechevalier M P. Lipids in bacterial taxonomy-a taxonomist's view [J]. Critic Rev Microbiol,1977, 5:109-210
    [73]Bligh E C, Dyer W J. A rapid method of total lipid extraction and purification [J]. Can.J.Microbiol, 1959,37:911-917
    [74]Wilkinson S C, Anderson J M. Spatial patterns of soil microbial communities in a Norway [J]. Microb.Ecol,2001,42:248-255
    [75]Hack S K, Garchow H, Odelson D A. Accuracy, reproducibility and interpretation of fatty acid methyl ester profiles of model bacterial communities [J]. Appl.Environ.Microbiol,1994,60: 2483-2493
    [76]Yao Huiying, He Zhenli and Huang Changyong. Phospholipid fatty acid profiles of Chinese red soil with varying fertility levels and land use histories [J]. Pedosphere.2001.11(2):97-103
    [77]Elsas J D, Duarte G F, Rosado A S, et al. Microbiological and molecular biological methods for monitoring microbial inoculants and their effects in the soil environment [J]. J Microbiol Method; 1998,32:133-154
    [78]Gland J L, Mills A L. Classification and characterization of heterotrophic microbial community level sole carbon source utilization [J]. Appl. Environ. Microbial,1991,57:2351-2359
    [79]Konopka A, Oliver L, Turco R F. The use of carbon substrate utilization patterns in environmental and ecological microbiology [J]. Microb.Ecol,1998,35:103-115
    [80]章家恩,蔡燕飞,高爱霞,等.土壤微生物多样性实验研究方法概述[J].土壤,2004,36(4):346-350
    [81]杨元根,Paterson E, Campbell C. Biolog方法在区分城市土壤与农村土壤微生物特性上的应用[J].土壤学报,2002,39(4):582-589
    [82]龙健,黄昌勇,腾应,等.铜矿尾矿库土壤—海州香薷(Elsholtzia harchowensis)植物体系的微生物特征研究[J].土壤学报,2004,41(1):120-125
    [83]腾应,黄昌勇,骆永明,等.铅锌银尾矿区土壤微生物活性及其群落功能多样性研究[J].土壤学报,2004,41(1):113-119
    [84]Winding A, Hendriksen N J. Biolog substrate utilization assay for metabolic fingerprint of soil bacteria:incubation effects. In:Insam H, Rangger A, et al. Mcirobial communities:Functional versus structural approaches [J]. Heidelberg:Springer,1997,192-205
    [85]蔡燕飞,廖宗文.土壤微生物生态学研究方法进展[J].土壤与环境,2002,11(2):167-171
    [86]Britten R J, Kohne D E. Repeated sequences in DNA [J]. Science,1968,161:529-540
    [87]钟鸣,周启星.微生物分子生态学技术及其子环境污染物研究中的应用[J].应用生态学报,2002,13(2):247-251
    [88]Hosein S q Millette D, Butler B J, el al. Catabolicgene probe analysis of an aquifer microbial community degrading crosate related polycyclic aromatic and heterocyclic compounds [J]. Microbiol Ecol,1997,34 (2):81-89
    [89]Annelie P, Pernthaler J, Amann R. Fluorescence In Situ Hybridization and Catalyzed Reporter Deposition for the Identification of Marine Bacteria [J]. Appl. Environ. Microbial.2002,68(6): 3094-3101
    [90]张于光,李迪强,肖启明.分子生态学技术及其在环境微生物研究中的应用[J].微生物学杂志,2005,25(5):87-90
    [91]Williams J G, Kubelik A R, Livak K J. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers [J]. Nucleic Acids Res,1990,18:6531-6535
    [92]Ulton C S J, Higgins C F, Sharp P M. ERIC sequences:a novel family of repeatitive elements in the genomes of Escherichia coli, Salmonella typhimurium and other enterobacteria [J]. Mol. Microbiol, 1991,5(4):825-834
    [93]Frank S, Chistoph C T. A new approach to utilize PCR-single-strand-conformation polymorphism for 16srRNA gene-based microbial community analysis [J]. Appl. Environ. Microbial,1998,64(12): 4870-4876
    [94]HeadI M,Saunders J R, Pickup R W. Microbial evolution, diversity and ecology:A decade of ribosomal RNA analysis of uncultivated microorganisms [J]. Microb. Ecol,1998,35:11-21
    [95]Marilley L, Vogt G, Blanc M. Bacterial diversity in the bulk soil and rhizosphere fractions of Lolium perenne and Trifolium repens as revealed by PCR retriction analysis [J]. Plant Soil,1998, 198:219-224
    [96]Frank S, Chistoph C T. Effect of field inoculation with Sinorhizobium meliloti L33 on the composition of bacterial communities in rhizospheres of a target plant (Medicago saliva) and a non-target plant(Chenopodium album) linking of 16s rRNA gene-based single-strand conformation polymorphism community profiles to the diversity of cultivated bacteria [J]. Appl. Environ. Microbiol,2000,66(8):3556-3565
    [97]Cole J R, Chai B, Marsh T L, et al. The Ribosomal Database Project (RDP-II):previewing a new autoaligner that allows regular updates and the new prokaryotic taxonomy [J]. Nucleic Acids Res. 2003,31(1):442-443
    [98]Siebert, P D, J W Larrick. Competitive PCR [J]. Nature 1992,359:557-558
    [99]Gilliland, G., S. Perrin, K. Blanchard, and H.F. Bunn. Analysis of cytokine mRNA and DNA: detection and quantitation by competitive polymerase chain reaction [J]. Proc. Natl. Acad. Sci. 1990,87:2725-2729
    [100]Ferre, F., P. Pezzoli, and E. Buxton. Quantitation of RNA transcripts using RT-PCR [M]. p.1996. 175~190. In Krieg P A, A Laboratory guide to RNA:Isolation, analysis and synthesis. Wiley-Liss, Inc, New York.
    [101]Piatak, M Jr, Wages J Jr, Luk K-C, et al. Quantification of RNA by competitive RT-PCR: theoretical considerations and practical advice [M].1996,191~222, In P. A. Krieg, A Laboratory guide to RNA:Isolation, analysis and synthesis. Wilev-Liss. Inc., New York.
    [102]Lee, S Y, Bollinger J, Bezdicek D, et al. Estimation of the abundance of an uncultured soil bacterial strain by a competitive quantitative PCR method [J]. Appl. Environ. Microbiol.1996,62: 3787-3793
    [103]Leser, T D, Boye M, Hendriksen N B. Survival and activity of Pseudomonas sp. strain B13 (FR1) in a marine microcosm determined by quantitative PCR and an rRNA-targeting probe and its effect on the indigenous bacterioplankton [J]. Appl. Environ. Microbiol.1995,61:1201-1207
    [104]Muyzer G, Ramsing N B. Molecular methods to study the organization of microbial communities [J]. Wat. Sci. Technol,1996,32(8):1-9
    [105]Rondon M R, August P R, Betterman A D, et al. Cloning the Soil Metagenome:a Strategy for Accessing the Genetic and Functional Diversity of Uncultured Microorganisms [J]. Appl Environ Microbiol,1999,66 (2):541-5471
    [106]Kaeberlein T, Lewis K, Epstein S S. Isolating "Uncultivable" Microorganisms in Pure Culture in a Simulated Natural Environment [J]. Science,2002,296:1127-11291
    [107]Gillespie D E, Brady S F, Bettermann A D, et al. Isolation of Antibiotics Turbomycin A and B from a Metagenomic Library of Soil Microbial DNA [J]. Appl Environ Microbiol,2002,68: 4301-4306
    [108]Gupta R, Beg Q K, Lorenz P. Bacterial alkaline proteases:molecular approaches and industrial applications [J]. Appl Microbiol Biotechnol,2002,59:15-321
    [109]Rondon M R, Raffel S J, Goodman R M, et al. Toward functional genomics in bacteria:Analysis of gene expression in Escherichia coli from a bacterial artificial chromosome library of Bacillus cereus [J]. Proc Nat Acad Sci,1999,96:6451-6455
    [110]Beja O, Aravind L, Koonin E V, et al. Bacterial rhodopsin:evidence for a new type of phototrophy in the sea [J]. Science,2000,289:1902-1906
    [111]Fodor S P A, Read J I, Pirning M C, et al. Light-directed, spatially addressable parallel chemical synthesis [J]. Science,1991,251(4):767-773.
    [112]Shalon D, Smith S J, Brown P O. A DNA microarray system for analyzing complex DNA samples using two-color fluorescent probe hybridization [J]. Genome Res,1996,6(4):639-645
    [113]马立人,蒋中华.生物芯片[M].北京:化学工业出版社,2002,1-43
    [114]韩金祥.DNA芯片[M].济南:山东人学出版社,2001,1-23
    [115]National Research Council (NRC) [M]. In stiu bioremediation:when does it work? Washington: National Academy Press,1993,21-26
    [116]Broklehurst K R, Morby A P. Wetal-ion tolerance in Escherichia coli:analysis of transcriptional profiles by genearray technology [J]. Microbiol,2000,146(9):2277-2282
    [117]Khodursky A B, Peter B J, Cozzarelli N R, et al. DNA microarray analysis of gene expression in response to physiological and genetic changes that affect tryptophan in response in Escherichia coli [J]. Proc Natl Acad Sci USA,2000,97(22):12170-12175
    [118]Wei Y, Lee J M, Richmond C, et al. High-density microarray mediated gene expression profiling of Escherichia coli [J]. J Bacteriol,2001,183(2):545-556
    [119]Ye B W, Tao W, Bedzyk L, et al. Global gene expression profiles of Bacillus subtilis grown under anaerobic conditions [J]. J Bacteriol,2000,182(16):4458-4465
    [120]Zhon J, Thompson D K. Challenges, in applying microarrays to environmental studies [J], Curr Opin Biotechnol,2002,13(3):204-207
    [121]Wu L, Thompson D K, Li G, et al. Development and evaluation of functional gene arrays for detection of detected genes in the environmental studies in microbiology [J], Appl Environ Microbiol.2001,67(12):5780-5790
    [122]Braker G, Zhou J, Wu L Y. Nitrite reductase genes (nirK and nirS) as functional markers to investigate diversity of denitrifying bacteria in Pacific Northwest marine sediment communities [J]. Appl Environ Microbiol.2000,66:2096-2104
    [123]Nold S C, Zhou J Z, Devol A, et al. Pacific Northwest marine sediments contain ammonia-oxidizing bacteria in the subdivision of the Proteobacteria [J]. Appl Environ Microbiol. 2000,68:4532-4535
    [124]Priem A, Braker G, Tiedje J M. Diversity of nitrite reductase(nirK and nirS) gene fragments in forested upland and wetland soils [J]. Appl Environ Microbiol,2002,68:1893-1900
    [125]Metheu B A, Nelson K E, Eisen J A, et al. Genome of Ceobacter sulfur reducens metal reduction in subsurface environments [J]. Science,2003,302:1967-1969
    [126]唐志尧,方精云.植物物种多样性的垂直分布格局[J].生物多样性,2004,12(1): 1-28
    [127]Erb R W, Wagner D L. Detection of Polychlorinated biphenyl degradation genes in Polluted sediments direct DNA extraction and Polymerase chain reaction [J]. Appl Environ Microbiol,1993, 59 (12):4065-4073
    [128]Gao P P, Zhao L P. DNA extraction from activated sludge for molecular community analysis [J]. Acta Ecologica Sinica,2002,22 (11):2015-2019
    [129]Zhang H W, Zhang Q R, Zhou Q X, et al. Introduction and progress of molecular microbial ecology [J]. Chin JAppl Ecol,2003,14 (2):286-292
    [130]Tiara C J, Chen J K, Zhong Y. Phylogenetic diversity of microbes and its perspectives in conservation biology [J]. Chin J Appl Ecol,2003,14(4):609-612
    [131]Holben W E, Jansson J K, Chelm B K, et al. DNA probe method for the detection of specific microorganisms in the soil bacterial community [J]. Appl Environ Microbiol,1988,54:703-711
    [132]Moran M A, Torsvik V L, Torsvik T, et al. Direct extraction and purification of rRNA for ecological studies [J]. Appl Environ Microbiol,1993,59(3):915-918
    [133]Gabor E M, De Vries E J, Janssen D B. Efficient recovery of environmental DNA for expression cloning by indirect extraction methods [J]. FEMS Microbiology Ecology,2003,44(2):153-163
    [134]Zhou J Z, Bruns M A, Tiedje J M. DNA recovery from soils of diverse composition. Appl Envir Microbiol,1996,62 (2):316-322
    [135]LaMontagne M G, Michel J F C, Holden P A, et al. Evaluation of extraction and purification methods for obtaining PCR-amplifiable DNA from compost for microbial community analysis [J]. J Microbiol Methods,2002,49(3):255-264
    [136]徐德昌,赵亚华,杜天奎.植物总DNA和核DNA提取及其纯度的研究[J].宁夏农学院学报,1997,18(3):57-61
    [137]Wilson K H, Blitchington R A B, Greene R C. Amplification of Bacterial 16S Ribosomal DNA with Polymerase Chain Reaction [J]. Journal of Clinical Microbiology,1990,28(9):1942-1946
    [138]Ulrike Edwards, Till Rogall, Helmut Blocker, et al. Isolation and direct complete nucleotide determination of entire genes. Characterization of a gene coding for 16S ribosomal RNA [J]. Nucleic Acids Research,1989,17(19):7843-7854
    [139]Torok, I, and Kondorosi A. Nucleotide sequence of the R. meliloti nitrogenase reductase (nifH) gene [J]. Nucleic Acids Res.1981,9:5711-5723
    [140]Nishiyama, M, Suzuki J, M. Kukimoto, Ohnuki T, et al. Cloning and characterization of a nitrite reductase gene from Alcaligenes faecalis and its expression in Escherichia coli [J]. J. Gen. Microbiol.1993,139:725-733
    [141]Rotthauwe, J H, Witzel K P, Liesack W. The ammonia monooxygenase structural gene amoA as a functional marker:molecular fine-scale analysis of natural ammonia-oxidizing populations [J]. Appl. Environ. Microbiol.1997,63:4704-4712
    [142]Muyzer G, dewaal E C, Uitterlinden A G. Profiling of complex microbial populations by denaturing gradient gel electrophorsis is analysis of polymerase chain reaction-mplified genesencoding for 16S rRNA [J]. Appl. Environ. Microbiol,1993,59:695-700
    [143]Brosius J, Palmer M L, Kennedy P L, et al. Complete nucleotide sequence of a 16S ribosomal RNA gene from Escherichia coli [J], Proc. Nat. Acad. Sci.1978,75:4801-4805
    [144]Huang P M, Bollag J M, Senesi N. Interactions between soil particles and microorganisms:Impact on terrestrial ecosystem [M].2002. John Wiley & Sons, New York.2-41
    [145]Chander K, Goyal S, Nandal D P, et al. Soil organic matter microbial biomass and enzyme activities in atropical agroforestry system [J]. Biology and Fertility of Soils,1998,27:168-172
    [146]Powlson D S, Brookes P C. Chnstensen B T. Measurement of soil microbial biomass provides an early indication of changes in total soil organic matter due to straw incorporation [J]. Soil Biology and Biochemistry,1987,19:159-164
    [147]Dilly O. Munch J C. Ratios between estimates of microbial biomass content and microbial activity in soils [J]. Biology and Fertility of Soils 1998,27:374-379
    [148]Harris J A. Measurements of the soil microbial community for estimating the success of restoration [J]. European Journal of Soil Science,2003,54:801-808
    [149]Schloter M, Dilly O, Munch J C. Indicators for evaluating soil quality [J]. Agriculture, Ecosystems and Environment,2003,98:255-262
    [150]Bossio D A, Fleck J A, Scow K M, et al. Alteration of soil microbial communities and water quality in restored wetlands [J]. Soil Biology and Biochemistry,2006,38:1223-1233
    [151]周朋霞,丁明懋.土壤微生物学特性对土壤健康的指小作用[J].生物多样性,2007,15(2):162-171
    [152]Acme G L. (convenor). Composition of soil microbial and fauna communities:new insight from new technologies [J]. In:17th WCSS Abstracts. Bangkok Thailand,2002:263-298
    [153]李东坡,武志杰,陈利军,等.长期培肥黑土微生物量磷动态变化及影响因素[J].应用生态学报,2004,15(10):1897-1902
    [154]肖烨,张于光,张小全,等.土地利用变化对土壤肥力影响研究进展.世界林业研究,2007,20(1):6-9
    [155]郑华,欧阳志云,王效科.不同森林恢复类型对土壤微生物群落的影响[J].应用生态学报,2004,15(11):2019-2024
    [156]Amann R I, Ludwig W, and Schleifer K H. Phylogenetic identification and in situ detection of individual microbial cells without cultivation [J]. Microbial. Rev,1995,59:143-169
    [157]Fernandez L A. Exploring prokaryotic diversity:there are other molecular worlds [J]. Molecular Microbiology,2005,55(1):5-15
    [158]Daniel R. The metagenomics of soil [J]. Nature,2005,3:470-479
    [159]鲁如昆.土壤农业和化学分析方法[M].北京:中国农业科技出版社,2003,256-264
    [160]Hill T C J, Walsh K A, Harris J A, et al. Using ecological diversity measure with bacterial communities [J]. FEMS Microbiology Ecology,2003,43:1-11
    [161]Dunbar John, Barns S M, Ticknor L O, et al. Empirical and.theoretical bacterial diversity in four Arizona soils [J]. Appl Environ Microbiol,2002,68(6):3035-3045
    [162]Islam K R, Weil R R. Land use effects on soil quality in a tropical forest ecosystem of Bangladesh [J]. Agriculture Ecosystems and Environment,2000,79:9-16
    [163]韩芳,邵玉琴,赵吉,等.皇甫川流域不同土地利用方式下的土壤微生物多样性[J].内蒙古大学学报,2003,(5):298-303
    [164]姚槐应,何振立,黄昌勇.不同土地利用方式对红壤微生物多样性的影响[J].水土保持学报,2003,17(2):51-54
    [165]章家恩,刘文高,胡刚.不同土地利用方式下土壤微生物数量与土壤肥力的关系[J].土壤与环境,2002,11(2):140-143
    [166]仇少君,彭佩钦,刘强,等.土壤微生物生物量氮及其在氮素循环中作用[M].生态学杂志,2006,25(4):443-448
    [167]Young J P W. Phylogenetic classification of nitrogen-fixing organisms [M], p43-86. In G Stacey, R. H. Burns, and H. J. Evans (ed.), Biological nitrogen fixation.1992, Chapman and Hall, New York, N. Y.
    [168]Atlas R M, Bartha R. Microbial ecology. Fundamentals and applications. New York: Addison-Wesley Press,1981,125
    [169]Poly F L, Ranjard S, Nazaret F, et al. Comparison of nifH gene pools in soils and soil microenvironments with contrasting properties [J]. Appl Environ Microbiol,2001,67(5): 2255-2262
    [170]Widmer F, Shaffer B T, Porteous L A, et al. Analysis of nifH Gene Pool Complexity in Soil and Litter at a Douglas Fir Forest Site in the Oregon Cascade Mountain Range [J]. Appl Envir Microbiol,1999 65:374-380
    [171]Flores-Mireles A L, Winans S C, Holguin G. Molecular Characterization of Diazotrophic and Denitrifying Bacteria Associated with Mangrove Roots [J]. Appl Envir Microbiol,2007 73: 7308-7321
    [172]Riflkin P A, Quigley P E, Kearney G A, et al. Factors associated with biological nitrogen fixation in dairy pastures in south-western Victoria [J]. Aust J Agric Res,1999,50:261-272
    [173]Helmut B, Franco W, William V S, et al. New Molecular Screening Tools for Analysis of Free-Living Diazotrophs in Soil [J]. Appl Envir Microbiol,2004 70:240-247
    [174]Rudnick P, Meletzus D, Green A, et al. Regulation of nitrogen fixation by ammonium in diazotrophic species of proteobacteria [J]. Soil Biol Biochem,1997,29:831-841
    [175]Keeling A A, Cook J A, Wilcox A. Effects of carbohydrate application on diazotroph populations and nitrogen availability in grass swards established in garden waste compost [J]. Biores Technol, 1998,66:3814-3822
    [176]Rosch C, Mergel A, Bothe H. Biodiversity of Denitrifying and Dinitrogen-Fixing Bacteria in an Acid Forest Soil [J]. Appl Envir Microbiol,2002,68:3818-3829
    [177]Ocio J A, Brookes P C, Jenkinson D S. Field incorporation of straw and its effects on soil microbial biomass and soil inorganic N [J]. Soil Biol Biochem,1991,23:171-176
    [178]Poly, F, Ranjard L, Nazaret S, et al. Comparison of nifH Gene Pools in Soils and Soil Microenvironments with Contrasting Properties [J]. Appl Environ Microbiol,2001,67:2255-2262
    [179]Van Breemen N. Natural organic tendency [J]. Nature,2002,415:381-382
    [180]Shaffer B T, Wildmer F, Porteous L A, et al. Temporal and spatial distribution of the nifH gene of N2-fixing bacteria in forests and clearcuts in western Oregon [J]. Microb Ecol,2000,39:12-21
    [181]Chelius M K, Lepo J E. Restriction fragment length polymorphism analysis of PCR-amplified nifH sequences from wetland plant rhizosphere communities [J]. Environ Technol,1999,20: 883-889
    [182]Grieg F S, Bethany D J, Bess B W, et al. Development and testing of a DNA macroarray to assess nitrogenase nifH gene diversity [J]. Appl Environ Mfcrobiol,2004,70(3):1455-1465
    [183]Young, J. P. W. Phylogenetic classification of nitrogen-fixing organisms [M]. In Stacey G, Burris R H, Evans H J. (Eds.), New York.1992,191-211
    [184]Knauth S, Hurek T D, Brar D, et al. Influence of different Oryza cultivars on expression of nifH gene pools in root of rice [J]. Environ Microbiol,2005,7:1725-1733
    [185]Tan Z Y, Hurek T, Reinhold-Hurek B. Effect of N-fertilization plant genotype and environmental conditions on nifH gene pools in roots of rice [J]. Environ Microbiol,2003,5:1009-1015
    [186]Yeager C M, Kornosky J L, Housman D C, et al. Diazotrophic Community Structure and Function in Two Successional Stages of Biological Soil Crusts from the Colorado Plateau and Chihuahuan Desert [J]. Appl Envir Microbiol,2004,70:973-983
    [187]Mergel A, Kloos K, Bothe H. Seasonal fluctuations in the population of denitrifying and N2-fixing bacteria in an acid soil of a Norway spruce forest [J]. Plant Soil,2001,230:145-160
    [188]Deslippe J R, Egger K N, Henrv G H R. Impacts of warming and fertilization on nitrogen-fixing microbial communities in the Canadian high arctic [J]. FEMS Microbiol Ecol,53:41-50
    [189]Shaffer B T, Widmer F, Porteous L A, et al. Temporal and spatial distribution of the nifH gene of N2 fixing bacteria in forests and clearcuts in western Oregon [J]. FEMS Microbiol Ecol,39:12-21
    [190]Burgmann H, Meier S, Bunge M, et al. Effects of model root exudates on structure and activity of a soil diazotroph community [J]. Environ Microbiol,2005,7:1711-1724
    [191]Hamelin J, Formin N, Tamawski S, et al. nifH gene diversity in the bacterial community associated with the rhizosphere of Molinia coerulea, an oligonitrophilic perennial grass [J]. Environ Microbiol,2002,4:477-481
    [192]陶思明.中国的有机食品及其产业化发展[J].环境保护,1998,(4):38-40
    [193]陈刚才,甘露,王仕禄,等.土壤氮素及其环境效应[J].地质地球化学,2001,29(1):63-67
    [194]Muller R H, Babel W. Measurement of growth at very low rates ((mu)>= 0), an approach to study the energy requirement for the survival of Alcaligenes eutrophus JMP 134 [J]. Appl Envir Microbiol,1996,62:147-151
    [195]Rotthauwe J H, Witzel K P, Liesack W. The ammonia monooxygenase structural gene amoA as a functional marker:molecular fine-scale analysis of natural ammonia-oxidizing populations [J]. Appl Envir Microbiol,1997,63:4704-4712
    [196]Kowalchuk G A, Stephen J R. Ammonia-oxidizing bacteria:a model for molecular microbial ecology [J]. Annu. Rev. Microbiol,2001,55:485-529
    [197]Chu H Y, Takeshi F J, Morimoto S, et al. Community Structure of Ammonia-Oxidizing Bacteria under Long-Term Application of Mineral Fertilizer and Organic Manure in a Sandy Loam Soil [J]. Appl Envir Microbiol,2007,73(2):485-481
    [198]He J Z, Shen J P, Zhang L M, et al. Quantitative analyses of the abundance and composition of ammonia-oxidizing bacteria and ammonia-oxidizing archaea of a Chinese upland red soil under long-term fertilization practices [J]. Environmental Microbiology,2007,9(9):2364-2374
    [199]Oved T, Shaviv A, Goldrath T, et al. Influence of Effluent Irrigation on Community Composition and Function of Ammonia-Oxidizing Bacteria in Soil [J]. Appl Envir Microbiol,2001,67: 3426-3433
    [200]Mendum T A, Hirsh P R. Changes in the population structure of β-group antotrophic ammonia oxidizing bacteria in arable soils in response to agricultural practice [J]. Soil Biol Biochem,2002, 34:1479-1485
    [201]Cornelia B, Walter G Z. The structural genes of the nitric oxide reductase complex from Pseudomonas stutzeri are part of a 30-kilobase gene cluster for denitrification [J]. J Bacteriol,1992, 174:2394-2397
    [202]Philippot L, Clays-Josserand A, Lensi R, et al. Purification of the dissimilative nitrate reductase of Pseudomonas fluorescens and the cloning and sequencing of its corresponding genes [J]. Biochim Biophys Acta,1997,1350:272-276
    [203]Philippot L. Denitrifying genes in bacteria and archaeal genomes [J]. Biochim Biophys Acta, 2002,1577:355-375
    [204]Scala D J, Kerkhof L J. Horizontal heterogeneity of denitrifying bacterial communities in marine sediments by terminal restriction fragment length polymorphism analysis [J]. Appl Environ Microbiol,2000,66:1980-1986
    [205]Bomenman J. Culture-independent identification of microorganisms that respond to specified stimuli [J]. Appl Environ Microbiol,1999,65:3398-3400
    [206]Braker G, Fesefeldt A, Witzel K P. Development of PCR Primer Systems for Amplification of Nitrite Reductase Genes(nirK and nirS) To Detect Denitrifying Bacteria in Environmental Samples [J]. Appl Envir Microbiol,1998,64:3769-3775
    [207]Kandeler E, Deiglmayr K, Tscherko D, et al. Abundance of narG, nirS, nirK, and nosZ Genes of Denitrifying Bacteria during Primary Successions of a Glacier Foreland [J]. Appl Envir Microbiol, 2006,72:5957-5962
    [208]Henry S, Bru D, Stres B, et al. Quantitative Detection of the nosZ Gene, Encoding Nitrous Oxide Reductase, and Comparison of the Abundances of 16S rRNA, narG, nirK, and nosZ Genes in Soils [J]. Appl Envir Microbiol,2006,72:5181-5189
    [209]Henry S, Baudoin E, Lopez-Gutierrez J, et al. Quantification of denitrifying bacteria in soils by nirK gene targeted real-time PCR [J]. J Microbiol Meth,2004,59 (3):327-335
    [210]朱兆良.中国土壤氮素研究[J].土壤学报,2008,45(5):778-783
    [211]王秀丽,孙波.红壤旱地施用有机肥的氮素淋失过程[J].土壤学报,2008,45(4):745-749
    [212]杨兴明,徐阳春,黄启为,等.有机(类)肥料与农业可持续发展和生态环境保护[J].2008,45(5):925-932
    [213]Supanjani S, Lee K D, Almaraz J J, et al. Effect of organic N source on bacterial growth, lipo-chitooligosaccharide production, and early soybean nodulation by Bradyrhizobium japonicum. Can J Microbiol.2006,52 (3):227-36
    [214]Wang, S P, and Stacey G. Ammonia regulation of nod genes in Bradyrhizobium japonicum. Mol. Gen. Genet.1990,223:329-331

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700