用户名: 密码: 验证码:
离轴折反射式中波红外连续变焦光学系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着当今世界探测技术的飞速发展,对光学探测技术提出了新的要求,尤其是对大口径、长焦距等方面的连续变焦光学系统的需求更加的迫切。但是现有的设计型式不能完全满足新的设计要求,所以解决大口径、长焦距红外连续变焦系统的设计问题成为目前连续变焦系统设计的关键。
     针对红外连续变焦系统新的设计需求,本文提出了离轴折反射式的设计方法,并着重研究了红外连续变焦系统的被动无热化设计,分析了杂散辐射对信噪比的影响。主要的具体研究内容如下:
     1、分析现有各种红外连续变焦系统的设计型式,对比各种型式优缺点,提出了离轴折反射式的设计思路。将红外连续变焦系统分为离轴反射式无焦系统和后组透射式连续变焦系统两部分设计,根据光瞳匹配和冷光阑匹配将两分系统组合起来进行统一优化。设计出了大口径、长焦距、无遮拦且满足100%冷光阑效率的离轴折反射红外连续变焦系统。
     2、针对红外光学系统对温度变化敏感,系统成像质量随温度变化较大的问题,提出了对连续变焦系统进行折衍混合消热差设计。根据连续变焦系统的光焦度分配公式和折衍混合系统消热差公式,推导出了连续变焦系统的无热化设计理论公式。并以此为基础,对后组透射式连续变焦系统在-30℃~+50℃温度范围内进行无热设计,使系统各个焦距位置在此温度范围内具有良好的成像质量,以满足红外连续变焦系统在温度变化较大的恶劣环境中的使用要求。
     3、分析了杂散辐射的来源及其辐射特性,研究了分析抑制杂散辐射的方法和步骤,并根据本文所设计连续变焦系统研究了杂散辐射抑制技术。建立了杂散辐射分析抑制模型和杂散辐射对光学系统信噪比与传递函数的影响模型。得出太阳、天空背景、系统自身热辐射等杂散辐射的等效光子数形式,将各种来源的杂散辐射等效为到达像面的光子数,从而得出等效光子信噪比。
     4、建立了鬼像对成像影响的模型,分析了扩展源目标中的亮点源在像面上的照度与主像的照度之比。对红外系统的冷反射现象进行分析,推导得出冷反射等效温度差异系数。并以此分析了本文所设计系统的鬼像和冷反射现象,得出结果为鬼像照度为主像照度的万分之一量级,系统各个表面冷反射等效温度差异小于探测器最小可探测温差。
     最终研究结果表明:本文所设计的大口径长焦距中波红外连续变焦系统成像质量良好,机械结构简单,杂散辐射对成像信噪比影响较小,满足设计指标要求。
With the rapid development of the detection technology, new requirement isproposed to the optical detection system, especially the large diameter and long focallength continuous zoom optical system. But the existing design type can’ t fully meetthe requirements, so the solution of large aperture and long focal length is the linchpinof the infrared continuous zoom system.
     In allusion to the infrared continuous zoom system’s design requirements, theoff-axis catadioptric design method is bring forward in this dissertation. Theathermalization design and the stray lights’ effect to the signal-to-noise ratio areemphatically analyzed. Specific studies of this paper are as follows:
     1、Through analyzing existing infrared continuous zoom system design type andcomparing the advantages and disadvantages of various types, bring forward off-axiscatadioptric design method. The infrared continuous zoom system is divided into theoff-axis reflective non-power system and the latter transmission continuous zoomsystem. The two parts are optimized separately. Then combinate the two partstogether according to matching the pupil and cold shield. At last, unified optimizationis carried out to the overall system. A off-axis infrared catadioptric continuous zoomsystem with a large-diameter, long focal length and meeting the cold apertureefficiency of100%is designed.
     2、The infrared optical systems are sensitive to temperature changes. And thesystem’s imaging quality deteriorate with temperature change. So the hybridrefractive/diffractive athermal design is proposed to infrared continuous zoom system.According to the continuous zoom system’s optical power formula and hybridrefractive/diffractive system’s athermal formula, derive the continuous zoom system’sathermal formula. And on this basis, athermal design in the temperature range of-30~+50degree is carried out to the transmission continuous zoom part. By theathermal design, the zoom system in full focal length range have a good imaging quality with the temperature change and meet the requirement of the infrared zoomsystem being used in the harsh environment.
     3、Analyzed the stray radiation sources and characteristics. The methods andsteps of the stray radiation reduction are studied. And the stray radiation suppressingis put into practice to the infrared zoom system designed in this paper. The strayradiation analysis inhibition models and the model of the stray radiation effect to thesignal-to-noise ratio are established. Get the equivalent number of photon of thevariety sources of stray radiation, such as the sun, sky background and the systemthermal radiation. Accordingly calculate the equivalent photon signal-to-noise ratio.
     4、The model of ghost imaging’s effect is established. Analyzed the ratio of themain image illumination with the illumination in the image plane of the bright spotsource in the extend source. For the narcissus of the infrared system, the noiseequivalent temperature difference (NETD) is calculated. Then the ghost and thenarcissus of the zoom system designed in this paper are analyzed. The results of theanalysis are that the ghost illumination is less than one ten-thousand of the mainimage illumination, and the NETD of the narcissus of each surface less than detectorminimum detectable temperature difference.
     The final study results show that: the large aperture and long focal length MWIRcontinuous zoom system have a good imaging quality and simple mechanicalstructure. The stray radiation’s effect to the signal-to-noise ratio is small. The resultmeet the design requirements.
引文
[1] Aron Y, Boubis I, Shabit R. Topaz:a novel design of a high magnification athermalized1:30zoom in the MWIR [C]. Proceedings of SPIE,Infrared Technology AndApplications,2004,5406:97-106.
    [2] Fonti S, Solazzo S, Blanco A, et al.. A infrared zoom for space application[C].Planetary and Space Science,2000,48:523-528.
    [3] Allen Mann. Developments and trends in infrared zoom lenses from2000to2010[J]. OpticalEngi neering,2013,52(1):013001,1-6.
    [4]蔡伟.大变倍比变焦系统设计[D].长春:中国科学院长春光学精密机械与物理研究所,2012.
    [5]黄玮.全部采用反射元件的四组元变焦望远镜的设计与分析[J].光机电信息,1997,14(7):9-10.
    [6] Chang Jun, Wang Yongtian, Zhang Tingcheng, M. M. Talha. All reflective zoom systems forinfrared optics[J]. SPIE-OSA, Vol.634263421Q:1-9.
    [7] Matthew E. L. Jungwirth, David V. Wick, Eustace L. Dereniak. Theory and tradespaceanalysis of a reflective axial adaptive optical zoom system[J]. Optical Engineering,2012,51(8):083001.
    [8] Iain A.Neil. Optical design dependence on technology development[J]. Optical Engineering,2011,50(12):121706.
    [9]程珂.红外变焦系统的研究[D].西安:中国科学院西安光学精密机械研究所,2005.
    [10]Hyun Sook Kim, Chang Woo Kim, Seok MIN Hong. Compact mid-wavelength infraredzoom camera with20:1zoom range and automatic athermalization[J]. Optical Engineering,2002,41(7):1661–1667.
    [11]Z. Y. Fan et al..Design of high ratio middle infrared continuous zoom optical system[C].Proc.of SPIE,2011,vol.8193R.
    [12]R. Barry Johnson, James B. Hadaway, and Tom Burleson. All Reflective Four Element ZoomTelescope: Design and Analysis[C]. Proc. of SPIE,1990,vol.1354.
    [13]Seung Yu Rah, Sang Soo Lee. Four spherical mirror zoom telescope continuously satisfyingthe aplanatic condition[J]. Optical Engineering,1989,28(9):1014–1018.
    [14]张庭成,王涌天,常军,M.M. Talhha.三反变焦系统设计[J].光学学报,2010,30(10),3034-3038.
    [15]Reynold S. Kebo. All reflective zoom optical system[P]. United States,5144476,1992.
    [16]Lacy G. Cook, El Segundo, Calif. Two nested all reflective afocal telescopes providing fourfields of view[P].United States,5477395,1995.
    [17]杨正.制冷式中波红外凝视变焦光学系统研究[D]。西安:中国科学院西安光学精密机械研究所,2008.
    [18]王红.不断发展的红外变焦透镜[J]。光机电信息,1997,14(7),1-5.
    [19]Jiang Kai, Zhou Sizhong, Duan Jing, Wang Yanbin, Zhang Hengjin. Design of Catadioptricmiddle infrared continuous zoom lens for uncooled infrared detector[C]. Proc.of SPIE,2011,vol8193.
    [20]Zhou Hao, Liu Ying, Sun Qiang, Li Chun, Zhang Xiaolong, Huang Jianbo. Mechanicallycompensated type for midwave infrared zoom system with a large zoom ratio[J]. OpticalEngineering,2013,52(1):013002.
    [21]王艳彬.中波红外变焦光学系统研究[D]。哈尔滨:哈尔滨工业大学,2010.
    [22]王梓萤.红外变焦距光学系统设计[D]。长春:长春理工大学,2011.
    [23]常虹.透射式红外系统热光学稳定性关键技术研究[D]。哈尔滨:哈尔滨工业大学,2011.
    [24]Perry J W. Thermal effects upon the performance of lens systems[C]. The Proceeding of thePhysical Society,1943,55(310):257-285.
    [25]Baak T. Thermal coefficient of refractive index of optical glasses[J]. Journal of the OpticalSociety of America,1969,59(7):851-857.
    [26]Rogers P J. Athermalized flir optics[C]. Proc. of SPIE,1990,1354:742-751.
    [27]Rayces J L, Lebich L. Thermal compensation of infrared achromatic objectives with threeoptical materials[C]. Proc. of SPIE,1990,1354:752-759.
    [28]Tamagawa Y, Tajime T. Expansion of an athermal chart into a multilens system with thicklenses spaced apart[J]. Optical Engineering,1996,35(10):3001-3006.
    [29]Tamagawa Y, Wakabayashi S, Tajime T. New design method for athermalized opticalsystems[C]. Proc. of SPIE,1992,1752:232-238.
    [30]J.Jahns, Y.H.Lee, C.A.Burns, Jr., J.Jewell. Optical interconnects using top surface emittingmicrolasers and planar optics[J]. Applied Optics,1992,31(5):592-597.
    [31]C.Londono, W.T.Plummer, P.PClark. Athermalization with diffractive optics[J]. OpticalSociety of America,1992,9:7.
    [32]G.P.Behrmann, J.P.Bown. Thermal effects in diffractive lenses[J]. Optical Society ofAmerica,1992,9:8-10.
    [33]李林,王煊.环境温度对光学系统影响的研究即无热系统设计的现状与展望[J].光学技术,1997,5:72-81.
    [34]奚晓.红外光学系统无热设计[D].浙江:浙江大学,2005.
    [35]Roberts M. Athermalization of infrared optics:A review[C]. Proc. of SPIE,1989,1049:72-81.
    [36]谢勇,王兵,任静斌.红外系统温度补偿结构的研究[J].计算机仿真,2008,,25(8),315-318.
    [37]吴晓靖,孟军和。使用简单机械机构实现红外光学系统无热化[J].红外与激光工程,2008,34(4)391-393.
    [38]胡玉禧,周绍祥,杨建峰,相里斌。红外系统的光机热一体化设计[J].红外技术,2000,22(2),32-36.
    [39]张羽,杨长城,杨坤涛。8~14um波段折衍混合红外光学系统的热补偿设计[J].光学学报,2005,25(11),1535-1538.
    [40]王学新,焦明印。红外光学系统无热化设计方法的研究[J].应用光学,2009,30(1),129-133.
    [41]李林,安连生。计算机辅助光学设计的理论与应用[M].北京:国防工业出版社,2001.
    [1]刘琳.长焦距三反射式望远镜设计研究[D].苏州:苏州大学,2002.
    [2]余怀之.红外光学材料[M].北京:国防工业出版社,2007.
    [3] Kuang-Lung Huang, Jonathan Maxwell. Application of catadioptric mirrors in zoomoptical systems[C]. Proc. SPIE,1990,2774:320-328.
    [4]姜凯,周泗忠,王艳彬,段晶,赵睿,张恒金.大口径离轴折反式中波红外连续变焦光学系统设计[J].红外与激光工程,2013,42(4)。
    [5] Zhang Tingcheng, Wang Yongtian, Chang Jun. Design of unobscured reflective zoom systemwith three mirrors[J]. Chinese Optics Letters,2010,8(7):0701-05.
    [6]熊衍建,吴晗平,吕照顺,周伟,黄璐。军用红外光学系统性能及其结构形式技术分析[J].红外技术,2010,32(12):688-695.
    [7]王美钦,王忠厚,白加光.用于高分辨率光谱仪的离轴三反射镜光学系统的设计[J].光电技术应用,2010,25(1):29-32.
    [8]萧泽新,安连生.工程光学设计(第二版)[M].北京:电子工业出版社,2008.
    [9]潘君骅.光学非球面的设计、加工与检验[M].苏州:苏州大学出版社,2005.
    [10]田海雷,汪岳峰,张伟.离轴抛物面反射式红外平行光管设计[J].红外技术,2007,29(12):701-703.
    [11]钱煜,潘君骅.离轴抛物面镜的单件加工技术[J].光学技术,1998,5(3):47-48.
    [12]陶纯堪.变焦距光学系统设计[M].北京:国防工业出版社,1988.
    [13] Kazuo Tanaka. Paraxial analusis of mechanically compensated zoom lenses.1: Fourcomponent type[J]. Applied Optics,1982,21(12),2174-2183.
    [14]郁道银,谈恒英.工程光学(第二版)[M].北京:机械工业出版社,2006.
    [15]王之江.光学设计理论基础(第二版)[M].北京:科学出版社,1985.
    [16] Neil A. Optimization glitches in zoom lens design[C]. Proc. SPIE,1997,3129:158-180.
    [17] Fan Zheyuan, Cao Jianzhong,Yang Hongtao, Qu Enshi, Wu Dengshan. Design of high ratiomiddle infrared continuous zoom optical system[C]. Proc. of SPIE,2011,8193.
    [18]金逢锡,金虎杰.变焦镜头结构形式的最佳选择方法[J].光学仪器,2004,26(1):34-38.
    [19]姜凯,周泗忠,王艳彬,段晶,张恒金,李刚.30×中波红外连续变焦光学系统设计[J].红外与激光工程,2012,,41(8),2162-2166.
    [20] The2012zoom lens design problem–zooming monochromatic quartet[C].Proc. of SPIE,2012,8848:1-9.
    [21]冯秀恒.光学系统设计[M].北京:北京勤德利科技发展有限公司,2012.
    [22]王志坚,郑建平.动态光学系统的物象共轭理论[J].长春光学精密机械学院院报,1992,15(2):25-28.
    [23]刘钧,高明.光学设计[M].西安:西安电子科技大学出版社,2006.
    [24]李林,林家明,王平,黄一帆.工程光学[M].北京:北京理工大学出版社,2003.
    [25]电影镜头设计组.电影摄影物镜光学设计[M].北京:中国工业出版社,1971.
    [26]李晓彤,岑兆丰.几何光学·像差·光学设计[M].浙江:浙江大学出版社,2003.
    [27]孟超.红外变焦光学系统设计及性能分析[D].长春:长春理工大学,2010.
    [28]江伦.大变倍比长焦距中波红外连续变焦距系统研究[D].长春:中国科学院长春光学精密机械与物理研究所,2015.
    [29]潘君骅.大口径红外成像系统的光学设计[J].光学学报,2003,23(12):1475-1478.
    [30]白清兰,马彩文,孙东岩.红外光学系统出瞳与冷屏匹配方式及渐晕分析计算[J].红外技术,2006,28(2):95-97.
    [1] Povey V. Athermalisation techniques in infra red systems [C]. Proc. SPIE,1986,655:142-153.
    [2]邹百英.折/衍混合红外物镜的超宽温消热差研究[D].哈尔滨:哈尔滨工业大学,2008.
    [3]唐大为.折/衍混合红外双视场光学系统设计[D].长春:中国科学院长春光学精密机械与物理研究所,2010.
    [4]张庞岭.光学系统热环境对尺寸稳定性影响的研究[D].西安:西安电子科技大学,2008.
    [5] Miller J, Hatch M, Green K. Predicting performance of optical systems undergoing Thermal/Mechanical loading using integrated Thermal/Structural/Optical numerical methods [J].Optical Engineering,1981,20(2):166-174.
    [6]郭永红,沈忙作,陆祖康.折射/衍射红外光学系统的消热差设计[J].光学学报,2000,20(10):1392-1395.
    [7]宋修元.典型光学元件及系统的温度效应[D].北京:北京理工大学,1999.
    [8]罗伟伟,焦明印.光学系统折射率温度效应的模拟计算[J].应用光学,2008,29(2):234-239.
    [9]李士贤,李林,袁旭沧.光学设计手册(修订版)[M].北京:北京理工大学出版社,1996.
    [10]白剑,孙婷,沈亦兵,侯西云,杨国光.红外折射-衍射混合光学系统的热差分析[J].光学学报,1999,19(7):997-1002.
    [11]陈吕吉,冯生荣.一种紧凑的红外消热差光学系统[J].红外技术,2007,29(4):203-205.
    [12]韩莹,王肇新,杨新军,吴环宝.8~12um波段折/衍混合反摄远系统消热差设计[J].光子学报,2007,36(1):77-80.
    [13]常虹.透射式红外系统热光学稳定性关键技术研究[D].哈尔滨:哈尔滨工业大学,2011.
    [14]Doyle K B, Michels G J, Genberg V L. Athermal design of nearly incompressible bonds[C].Proc. of SPIE,2002,4771:296-303.
    [15]杨国光.微光学与系统[M].浙江:浙江大学出版社,2008.
    [16]Kiril M S, Clark C Guest. Simulated annealing algorithm for binary phase only filters inpattern classification [J]. Applied Optics,1990,28(8):1203-1208.
    [17]Zhou G, Chen Y, Wang Z. Genetic local search algorithm for optimization design ofdiffractive optical elements [J]. Applied Optics,1999,38:4281-4290.
    [18]Lichtenberg B, Gallagher N C. Finite element approach for the numerical analsis andmodeling of diffractive and scattering objects [C]. Proc. of SPIE,1994:2-13.
    [19]Prather D W, Mait J N, Mirotznik M S. Vector-based synthesis of finite aperiodicsubwavelength diffractive optical elements [J]. JOSA,1998,15(6):1599-1607.
    [20]金国藩,严瑛白,邬敏贤,等.二元光学[M].北京:国防工业出版社,1998.
    [21]马韬.多层衍射光学元件设计理论及其在混合光学系统中的应用[D].浙江:浙江大学,2006.
    [22]王泰升.修正折/衍混合系统像质分析模型的研究[D].长春:长春光学精密机械与物理研究所,2011.
    [23]李红军.衍射光学元件制作及其在CCD相机光学系统中的应用[D].长春:长春光学精密机械与物理研究所,2001.
    [24]颜树华.二元光学器件设计理论及并行制作技术研究[D].长沙:国防科学技术大学,2004.
    [25]陈潇,杨建峰,马小龙,白瑜,何佶珂,何建伟.折/衍混合红外物镜超宽温度消热差设计[J].红外与激光工程,2011,40(1):79-82.
    [26]邬融.衍射光学元件的高效计算与设计方法[D].合肥:中国科学技术大学,2008.
    [27]颜树华.衍射微光学设计[M].北京:国防工业出版社,2011.
    [28]李华,韩维强,沈忙作.中波红外光学系统被动无热化设计及测试[J].红外与激光工程,2009,38(4):687-671.
    [29]洪新华.衍/折光学系统消二级光谱的研究[D].西安:西安光学精密机械研究所,2005.
    [30]Kuo C W, Lin C L, Han C Y. Dual field of view midwave infrared optical design andathermalization analysis [J]. Applied Optics,2010,49(19):3691-3700.
    [31]梁玲,张良,潘晓东.折衍混合红外光学系统消热差设计[J].电光与控制,2008,15(8):72-75.
    [32]刘永昌,朱虹.红外寻的制导技术的发展现状与新趋势[J].红外技术,1999,21(4):7-12.
    [33]宋岩峰.现代红外光学系统设计[D].西安:西安电子科技大学,2008.
    [34]Behrmann G P, Bowen J P. Influence of temperature on diffractive lens performance[J].Applied Optics,1993,32(14):2483-2489.
    [35]张幼文.红外光学工程[M].上海:上海科学技术出版社,1982.
    [36]克利克苏诺夫.红外技术原理[M].俞福堂,孙星南,程促华,梁士元,赵金纯译,北京:国防工业出版社,1986.
    [37]Missig M D, Morris G M. Diffractive optics applied to eyepiece design[J]. Applied Optics,1995,34(14):2452-2461.
    [1] Stephen M. Pompea, Richard N. Pfisterer, Jeffrey S. Morgan. A stray light analysis of theapache point observatory3.5meter telescope system[C]. Proc. of SPIE,2003,4842:128-138.
    [2] Walter R. Leeb. Degradation of signal to noise ratio in optical free space data links due tobackground illumination [J]. Applied Optics,1989,28(15):3443-3449.
    [3]黄智强.红外系统杂散光分析研究[D].成都:中国科学院光电技术研究所,2006.
    [4]徐根兴,姚连兴,仇维礼.目标与环境的光学特性[M].北京:宇航出版社,1995.
    [5]张建奇,方小平.红外物理[M].西安:西安电子科技大学出版社,2004.
    [6]徐南荣,卞南华.红外辐射与制导[M].北京:国防工业出版社,1997:66~75。
    [7]施帅红.近43年太阳辐射的变化特征以及云的光学特性的研究[D].南京:南京信息工程大学,2007.
    [8] Jacobs P A M. Convective heat exchange of a three dimensional target placed in the openfield [J]. Arch. Met. Greoph. Biocl., Ser. B,1997,33;349-358.
    [9]黄强,钮新华,沈学民.红外光学系统内部热辐射引起的杂散辐射分析[J].红外技术,2006,28(6):348-352.
    [10]Mary L. Peterson. Stray light calculation methods with optical ray trace software[C]. Proc.SPIE,1999,3780.
    [11]夏新林,谈和平,肖淑琴,等.空间光学系统中内部构件热辐射引起的谱段杂散辐射[J].航天返回与遥感,1996,17(1):22-31.
    [12]宣益民,韩玉阁.地面目标与背景的红外特征[M].北京:国防工业出版社,2004.
    [13]Thomas D J., Martin G M. Thermal modeling of background and targets for air to ground andground to ground vehicle applications. SPIE I maging Infrared,1989,1110:166-176.
    [14]张智丰,李向新,彭群生.基于大气传输模型的动态目标红外成像仿真[J].系统仿真学报,2000,5:524-527.
    [15]王建才,高聚忠,白修宇.红外制导系统大气衰减影响分析[J].红外,2009,9:9~12。
    [16]李晖.光学系统杂光分析方法研究[D].西安:中国科学院西安光学精密机械研究所,1996.
    [17]Sheldon M. Smith. BRDF measurements of sunshield and baffle materials for the IRAStelescope [M]. California: National Aeronautics and Space Administration,1982.
    [18]廖胜.光学杂散光抑制研究[D].成都:电子科技大学,2003.
    [19]F. O. Bartell, E. L. Dereniak, W. L. Wolfe. The theory and measurement of bidirectionalreflectance distribution function (BRDF) and bidirectional transmittance distribution function(BTDF)[C]. Proc. of SPIE,1980,257.
    [20]J. E. Harvey. Light scattering characteristics of optical surfaces [D]. Arizona: University ofArizona,1976.
    [21]牛金星.红外探测系统杂散辐射的分析与抑制技术研究[D].西安:中国科学院西安光学精密机械研究所,2009.
    [22]K. Scott Ellis. Stray light characteristics of the large synoptic survey telescope (LSST)[C].Proc. of SPIE,2009,742708:1-12.
    [23]廖胜,沈忙作.红外光学系统杂光PST的研究与测试[J].红外与毫米波学报,1996,15(5):375-378.
    [24]李晖,李英才.一种简化杂光分析方法的数理模型[J].光子学报,1996,25(7):665-672.
    [25]谈和平,夏新林,刘林华,等.红外辐射特性与传输的数值计算[M].哈尔滨:哈尔滨工业大学出版社,2006.
    [26]Cen Zhaofeng, Li Xiaotong, He Zhiping, Zhu Qihua, Zhang Qingquan. Stray light analysis ofbasic model Gaussian beam [C]. Proc. of SPIE,2002,4914:235-238.
    [27]帅永,夏新林,谈和平,等.星载光学系统中杂光概率模拟的可靠性验证[J].航天器工程,2003,1:23-30.
    [28]冯聪.基于多级微反射镜的傅里叶变换红外光谱仪杂散光分析[D].长春:中国科学院长春光学精密机械与物理研究所,2011.
    [29]Stepphen M. Pompea. The management of stray radiation issues in space optical systems.Space Science Reviews74:181~193,1995.
    [30]石荣宝.微小卫星空间遥感相机的杂散光分析、测量和遮光系统设计[D].苏州:苏州大学,2010.
    [31]王学伟,王春歆,张玉叶.点目标图像信噪比计算方法[J].电光与控制,2010,17(1):18-21.
    [32]陈维真,张春华,周晓东.空间目标的光度特性及其成像信噪比研究[J].红外技术,2007,29(12):716-719.
    [33]陈锦新,袁艳,李立英.目标探测的信噪比分析[J].应用光学,2007,28(4):397-400.
    [34]邸旭,杨进华.微光与红外成像技术[M].北京:机械工业出版社,2012.
    [35]崔敦杰.关于红外探测器与红外焦平面阵列探测器性能参数描述方法的商榷[J].光学精密工程,2003,11(3):265-269.
    [36]王骞,张景旭,郭劲.红外系统中杂散辐射的抑制方法[J].红外技术,2002,12:21-24.
    [37]Pierre Y. Bely. The design and construction of large optical telescope [M].Springer-VerlagNew York, Inc,2003:7.
    [38]姚秀文,肖静,曾曙光,李方倩,张彬.红外光学系统自身杂散辐射分析及抑制[J].激光与光电子学进展,2009,12:91-94.
    [39]黄强,钮新华,沈学民.红外光学系统内部热辐射引起的杂散辐射分析[J].红外技术,2006,28(6):348-352.
    [40]鲁新平,沈振康。红外焦平面探测器输出图像信噪比计算和分析[J].系统工程与电子技术,2002,24(4):111-113.
    [41]Zhang Caiping. The National Standard of Several Main Parameters Determinate in 'The StrayLight Test Method of Camera Lens. http://www.cqvip.com.
    [42]Su Hongyu, Zhang Xianliang, Chen Yu,. Characteristics Evaluation of Infrared ThermalImaging System [J]. China Measurement&Test,2010,36(1).
    [43]Duan Jing, Mei Chao, Jiang Kai, Wang Yanbin. The Influence of The stray light on MTF inOptical System in Test Range[C]. Proc. of POEM,2012.
    [44]J. D. Rogers, T. S. Tkaczyk, M. R. Descour, A. H. Karkkainen, R. Richard-Kortum. Removalof ghost images by using tilted element optical systems with polynomial surface foraberration compensation[J]. Opt. Lett.,2006,31:504-506.
    [45]梅超,周泗忠,张恒金,段晶,姜凯.基于Code V和Tracepro的成像光学系统一阶鬼像分析[J].光学学报,2013,33:0411003。
    [46]Optical Research Associates. Code V Introductory User’s Guide[M]. California: OpticalResearch Associates,2011.
    [47]Lucimara C. N. Scaduto, Erica G. Carvalho, Lucas F. Santos. Baffle design and analysis ofstray light in multispectral camera of a Brazilian satellite [J]. Annals of Optics,2006.
    [48]邹刚毅,樊学武.离轴三反射望远镜遮光罩设计与杂光分析[J].光子学报,2009,38(3):605-609.
    [49]John L. Stauder. Stray light design and analysis of the wide field infrared explorer (WIRE)
    [C]. Proc. of SPIE,1997,3122;35-44.
    [50]黄智强,邢廷文.遮光罩和挡光环程序化设计的原理及实现[J].光电工程,2006,,33(4):119-123.
    [51]李研.基于LASIS的高分辨率高光谱成像仪光学系统设计及杂光分析[D].西安:中国科学院西安光学精密机械研究所,2009.
    [52]周世椿.高级红外光电工程导论[M].上海技术物理研究所内部资料,2009:34~35。
    [53]陈前荣,杨本永,王国玉,陈永光,张黎明,冯亮.消杂光发射涂料远红外波段反射率测试及误差分析[J].激光与红外,2007,37(2):158-161.
    [1] James A. Ratches, Richard H. Vollmerhausen, Ronald G. Driggers. Target acquisitionperformance modeling of infrared imaging systems: past, present, and future [J]. IEEESensors Journal,2001,1(1):31-40.
    [2]王娟.红外成像系统的作用距离估算[D].成都:电子科技大学,2004.
    [3]李润顺,袁祥岩,范志刚,左宝军.红外成像系统作用距离的估算[J].红外与激光工程,2001,30(1):1-4.
    [4]黄玲.两种变焦距光学系统的设计研究[D].浙江:浙江大学,2002.
    [5]张鑫,贾宏光.大相对孔径红外消热差物镜设计[J].中国光学,2011,4(4):374-379.
    [6] Kamil A.Moldosanov, Victor A.Kashirin, Alexander M.Skrynnikov. Black coating for straylight and thermal control applications[C]. Proc. of SPIE,2001, Vol.4458:87~94.
    [7] A. F. Cheng, S. J. Conard, H. A. Weaver, F. Morgan, M. Noble. Stray light performance of thelong range reconnaissance inager (LORRI) on the new horizons mission[C]. Proc. of SPIE,2010,7731:77311A.
    [8]车驰骋,李英才,陈荣利,等.地面可见光相机探测静止轨道目标可行性研究[J].光子学报,2007,5:905~908。
    [9]王涌天,崔桂华.红外扫描成像系统中冷像的分析和控制[J].光学学报,1994,14(6):650-659.
    [10]刘志祥,马冬梅,胡明鹏,马磊.凝视型红外成像系统中冷像的仿真分析[J].红外与激光工程,2008,37(4):702-705.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700