用户名: 密码: 验证码:
谱域光学相干层析成像技术及其生物医学应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光学相干层析成像(Optical coherence tomography, OCT)技术是20世纪90年代发展起来的、利用相干特性来实现层析成像的新兴技术,通过探测干涉信号来获得组织内部的深度信息。OCT技术是由宽带光源照明的迈克尔逊干涉仪组成的。宽带光源的低相干特性实现了OCT技术的高分辨率、无创伤、非侵入等优点。OCT技术主要分为时间域OCT(时域OCT)和频率域OCT(频域OCT)。时域OCT是一种传统的OCT技术,通过改变参考臂的光程来实现样品的深度扫描,称之为点扫描方式。点扫描方式大大地降低了时域OCT技术的采集速度,影响了它的广泛应用。频域OCT是在时域OCT的基础上发展起来的新型的OCT技术。频域OCT主要分为谱域(Spectral domain)OCT和扫描光源(Swept source)OCT。谱域OCT是通过测量参考臂和样品臂的干涉光谱来实现样品的深度的采集,从而提高了OCT的采集速度;同时兼备了时域OCT技术的所有优点。因此,谱域OCT目前已经成为各个领域研究的热点。
     本文首先介绍了OCT技术的基本理论,并在此基础上展开对谱域OCT的成像原理和实验系统的阐述。谱域OCT技术是利用光谱仪探测参考光和样品光的干涉光谱,然后对干涉光谱进行傅里叶变换,便可获得样品的深度信息,而无须参考臂的深度扫描。
     与天津医科大学第二附属医院合作,对口腔组织——腮腺导管进行研究,通过谱域OCT技术对腮腺导管进行成像研究,可以诊断出疾病的位置和特征,并可以实时观测,对内窥式谱域OCT技术的研究具有重要的意义。与南开大学生命科学学院和医学院合作,利用谱域OCT技术研究紫外线对斑马鱼眼底的损伤,观测了斑马鱼眼底损伤的修复过程,并注射脂质体颗粒观测斑马鱼眼底延迟修复的过程,并与相对应的免疫组化结果进行比较,取得了理想的符合结果。同时利用谱域OCT实现了实时、活体的观测斑马鱼眼底的修复过程。对斑马鱼眼底的观测,对以后研究修复眼底损伤的药物研究就要重要的意义。
     在传统的光学系统中,轴向分辨率和横向分辨率是相互制约、相互关联的,然而在OCT技术中二者是相互独立、互不影响的。在OCT系统中,轴向分辨率是由宽带光源的带宽决定的,并成反比关系;横向分辨率是由成像物镜的数值孔径(NA)成正比的。然而当利用普通的成像物镜时,横向分辨率和焦深是成反比关系的,NA越大焦深越短,从而影响测量样品的深度信息。针对横向分辨率与焦深的制约关系,研究并设计了一种微光学元件,命名为改进型分形波带片,通过光束整形的方法解决了这个问题并利用样品进行了实验验证。
     针对癌症的特点,与天津市人民医院合作,对人体直肠癌进行研究并利用OCT图像获得了诊断癌症的量化参数——散射系数。谱域OCT通过探测样品的后向散射光来获得样品的深度信息,本文利用对采集的图像进行数据拟合的方式获得样品不同深度的散射系数,对组织的病变部位进行量化,通过数值判断出疾病的所在;并与目前临床医学上的诊断手段——病理切片进行比较,得到了很好的验证。
Optical Coherence Tomography is a new tomographic imaging technologydeveloped in1990s, which is obtaining the internal depth information of biologicaltissue through detecting the back scattering. OCT is composed by Michelsoninterferometer illuminated by broadband source. The low coherence of broadbandsource achieves the advantages of OCT, such as high resolution, non-contact,non-invasive, and so on. OCT is divided into time domain OCT (TDOCT) andfrequency domain OCT (FDOCT). Time domain OCT is a traditional OCTtechnology, which is through controlling the movement of reference mirror to realizethe axial scanning and obtain the depth information. Due to the scanning mode, thepicking rate of TDOCT is very slow, which is restricting the applications. Frequencydomain OCT is a new type OCT technology developing from TDOCT and is dividedinto spectral domain OCT (SDOCT) and swept source OCT (SSOCT). Spectraldomain OCT is detecting the interference spectrum of reference and sample light,which is realized the depth parallel sampling and improve the picking rate. Now,many fields are focus on the research of SDOCT.
     In the beginning, the paper introduces the basic principle of OCT and theimaging principle of SDOCT including the experimental system. SDOCT uses thespectrometer to detect the interference spectrum, and then obtain the depthinformation through Fourier transformation of interference spectrum, which is noneed of axial scanning.
     Allying with the2nd hospital of Tianjin medical university, we study the oraltissue (salivary glands) to detect the disease, which can be realized real-time imagingand is useful for the research of endoscope. Allying with Nankai university school ofmedicine and college of life science, we use SDOCT to study the zebrafish retinaldamage-regeneration caused by ultraviolet rays. Furthermore, the zebrafish areinjected with clodronate-liposome to study the regeneration process. In addition, weassess retinal light damage at various dpt (days post treatment) using immunohistochemistry in order to offer a solid criterion for an analytic result by OCT.The OCT results give a great agreement with the immunohistochemistry. Ascomparison, the SDOCT system is a real-time and non-invasive technology withoutfluorescence labeling and frozen cryosectioning. As a result, we observed the injuryand regeneration of the cone photoreceptors cells with SDOCT in live after UV lightillumination. The results demonstrate the SDOCT system for dynamic detection ofretina damage by UV illumination without requiring fluorescence labeling and frozencryosectioning, which gives a great value of the studying of the medicine of retinaldisease.
     In traditional optical system, the axial and transverse resolution areinterdependent, however, in OCT system the resolutions are independent. In OCTsystem, the axial resolution is determined by the bandwidth of broadband source; thetransverse resolution is determined by the NA of objective lens. In the commonobjective lens system, the transverse resolution and depth of focus (DOF) arereciprocal. The larger the resolution is, the shorter the DOF. In the paper, we design amicro-element named modified fractal zone plate to resolve the problem and give theexperimental results.
     To study the features of cancers, we extract the scattering coefficient of rectaltissue to quantify the disease from the OCT images allying with Nankai universityaffiliated hospital. In the paper, we use the data fitting method of OCT images toextract the scattering coefficient and confirm the disease. To give a criterion, wecompare the results with pathological sections which gives a perfect result.
引文
[1]杨莉松,王桂英,徐至展.光学层析成像技术的发展现状.激光与光电子学进展,1997,380(8):5~7
    [2] D. Huang, E. A. Swanson, C. P. Lin, et al. optical coherence tomography. Science,1991,254:1178~1180
    [3] A.F. Fercher, W.Drexler, C.K. Hitzenberger, et al. Optical coherence tomography-principlesand applications. Rep. Prog. Phys.,2003,66:239~303
    [4] A.F. Fercher, C.K. Hitzenberger, G. Kamp, et al. Measurement of Intraocular Distances byBackscattering Spectral Interferometry. Opt.Commun.1995,117:43~48
    [5] G.Hausler and M.W.Lindner. Coherence radar and spectral radar-new tools for dermatologicaldiagnosis. J. Biomed. Opt.,1998,3:21~31
    [6] Chinn Sit, Swanson EA, Fujimoto JG. Optical coherence tomography using afrequency-tunable optical source. Opt. Lett.,1996,22, No.5:340~342
    [7] F. Lexer, C. K. Hitzenberger, A. F. Fercher, et al. Wavelength-tuning interferometry ofintraocular distances. Appl. Opt.,1997,36:6548~6553
    [8] S. H. Yun, C. Boudoux, G. J. Tearney, et a1. High-speed wavelength-swept semiconductorlaser with a polygon-scanner-based wavelength filter. Opt. Lett.,2003,28:1981~1983
    [9] B. Golubovic, B. E. Bouma, J. G. Fujimotom, et al. Optical frequency-domain reflectometryusing rapid wavelength tuning of a Cr4+: forsterite laser. Opt. Lett.,1997,22:1704~1706
    [10] D. Fried, J. Xie, S. Shaft, et a1. Imaging caries lesions and lesion progression withpolarization sensitive optical coherence tomography. J. Biomed. Opt.,2002,9:618~627
    [11] Tearney GJ, Brezinski ME, Southern JF, et a1. Determination of the refractive index ofhighly scattering human tissue by optical coherence tomography. Opt Lett,1995,20:2258~2260
    [12] J.M. Schmitt, A Knuttel and A Gandjbakhche. Optical characterization of dense tissues usinglow-coherence interferometer. Proc SPIE,1993,1889:197~21l
    [13] J. M. Schmitt, A. Kniittel, and R. F. Bonner, Measurement of optical properties of biologicaltissues by low-coherence reflectometry. Appl. Opt.,1993,32:6032~6042
    [14] A F Fercher, W Drexler, C K Hitzenbergerl, et al. Optical coherence tomography-principlesand applications. Rep. Prog. Phys.,2003,66:239~303
    [15] T. Hellmuth. Contrast and resolution in optical coherence tomography. Proc. SPIE,1997,2926:228~237
    [16] J. M. Schmitt, M. Yadlowsky, and R. F. Bonner. Subsurface imaging if living skin withoptical coherence tomography. Dermatol.1995, vol.191, PP.93~98
    [17] B. E. Bouma and G. J. Teamey. Clinical imaging with optical coherence tomography. Acad.Radiol.,2002,9:942~953
    [18] W. V. Sofin and D. M. Baney. A simple intensity noise reduction technique for opticallow-coherence reflectometry. IEEE Photon. Technol. Lett.,1994,4:1404~1406
    [19] N. Bankman. Handbook of mecical imaging. Academic Press, San Diego,2000
    [20] J. A. Izatt, M. D. Kulkarni, H.-W. Wang, et a1. Optical Coherence Tomography andMicroscopy in Gastrointestinal Tissues. IEEE J. Sel.1996, Quant. Elect2:1017~1028
    [21] A. M. Sergeev, V. M. Gelikonov, G. V. Gelikonov, et a1. In vivo Endoscopic OCT Imaging ofPrecancer and Cancer States of Human Mucosa. Opt. Express,1997,2:432~440
    [22] C. B. Su. Achieving Variation of the Optical Path Length by a Few Millimeters atMillisecond Rates for Imaging of Turbid Media and Optical Interferometry: a NewTechnique. Opt. Lett.,1997,22:665~667
    [23] G. Hausler and M. W. Lindner. Coherence radar and spectral radar-new tools fordermatological diagnosis. Journal of Biomedical Optics,1998,3(1):21~31
    [24] L. Lepetit, Cheriaux, and M. Joffre. Linear techniques of phase measurement byfomtosecond spectral interferometry for applications in spectroscopy. J. Opt. Soc. Am. B,1995,12, No.12:2467~2474
    [25] Y. Yasuno, M. Nakama, Y. Sutoh, et a1. Optical coherence tomographies by spectralinterferometric joint transform correlator. Optics Commun.,2000,186:5l~56
    [26] C. Dorrer, N. Belabas, J. Likforman, et al. Spectral resolution and sampling issues in Fouriertransform spectral interferometry. Journal of the Optical Society of America B,2000,17:1795~1802
    [27] Bail M, Hausler G, Herrmann JM, et a1. Optical coherence tomography with the "Spectralradar"-Fast optical analysis in volμme scatterers by short coherence interferometry.1996,SPIE2929:298~303
    [28] W. Eickhoff and R. Ulrich. Optical frequency domain reflectometry in single-mode fiber.App. Phy. Lett.1981,39:693~695
    [29] Yuichi Teramura, Masayuki Suekuni, and Fumihiko Kannari. Two-dimensional opticalcoherence tomography using spectral domain interferometry. J. Opt. A: Pure Appl. Opt,2000,2:21~26
    [30] L. Froehly, S. Nieto Martin, T. Lasser, et a1. Multiplexed3D imaging using wavelengthencoded spectral interferometry: a proof of principle. Optics Commun.,2003,222:127~136
    [31] M. I. Mischenko, J. W. Hovenier. Depolarisation of light backscattered by randomly orientednonspherical particles. Opt. Lett.,1995,20:1356~1358
    [32] J. M. Schmit, S. H. Xiang. Cross-polarized backscatter in optical coherence tomography ofbiological tissue. Opt. Lett.,1998,23:1060~1062
    [33] G. Yao, L. Wang. Two-dimensional depth-resolved Mueller matrix characterization ofbiological tissue by optical coherence tomography. Opt. Lett.,1999,24:537~539
    [34] Hitzenberger CK, Drexler W, Fercher AF. Measurement of corneal thickness by laser dopplerinterferometer. Invest Ophthalmol Vis Sci1992,33:98~103
    [35] X. j. Wang, T. E. Milner, Z. Chen, et a1. Measurement of fluid-flow-velocity profile in turbidmedia by the use of optical Doppler tomography. Appl. Opt.1997,36:144~149
    [36] Z.Chen, T.E.Milner, D.Dave, et al. Optical Doppler tomography imaging of fluid flowvelocity in highly scattering media. Opt. Lett.1997,22:64~66
    [37] M. D. Kulkarni, T. G. Van Leeuwen, S. Yazdanfar, et a1. Estimation Accuracy and FrameRateLimitations in Color Doppler Optical Coherence Tomography. Opt. Lett.,1998,23:1057~1059
    [38] Victor X. D. Yang, Shou-jiang Tang, Maggie L. Gordon, et a1. Endoscopic Doppler opticalcoherence tomography in the human GI tract: initial experience. Gastrointestinal Endoscopy,2005,61, Issue7:879~890
    [39] A. Vitkin, M. L. Gordon, V. X. Yang, et a1. Doppler optical coherence tomography formonitoring subsurface micro·-structural and micro-vascular effects of cancer therapies.International Journal of Radiation Oncology Biology Physics,2004,60, l, Supplement l:S585~S586
    [40] Lei Wang, Wei Xu, Zhongping Chen, et a1. Imaging and quantilying of microflow byphase-resolved optical Doppler tomography. Optics Communications,2004,232, Issues l-6:25~29
    [41] V. X. Yang, D. E. Goertz, A. Needles, et a1. Structural and Doppler imaging of xenopuslaevis embryos and murme skin tumors in vivo: a comparison of ultrasound biomicroscopyand optical coherence tomography. Ultrasound in Medicinc&Biology,2003,29, Issue5,Supplement: S72
    [42] Victor X. D. Yang, Maggie L. Gordon, Alvin Mok, et a1. Improved phase-resolved opticalDoppler tomography using the Kasai velocity estimator and histogram segmentation. OpticsCommunications,2002,208, Issues4-6:209~214
    [43] R. C. K. Wong, J. A. Izatt, M. D. Kuuami, et a1. The visualization of submucosal bloodvessels by color doppler flow imaging using optical coherence tomography: Potential use inpeptic ulcer hemorrhage. Gastrointestinal Endoscopy,1997,45, Issue4: AB43
    [44] R. Leitgeb, M. Wojtkowski and A. Kowalczyk, A. F. Fercher. Spectral measurement ofabsorption by spectroscopic frequency-domain optical coherence tomography. Optics Letters,2000,25, No.11:820~822
    [45] T. Fuji, M. Miyata, S. Kawato, et a1. Linear propagation of light investigated with awhite-light interferometer. J. Opt. Soc. Anler. B,1997.14:1074-1078
    [46] Dirk J. Faber, Maurice C. G. Aalders, Egbert G. Mik, et a1. Oxygen Saturation-DependentAbsorption and Scattering of Blood. PHYSICAL REVIEW LETTERS,2004,93, Number2.0028102
    [47] J. M. Schrnitt. OCT elastography: Imaging microscopic deformation and strain of tissue. Opt.Express,1998,3:199~211
    [48] A. P. Sarvazyan, A. R. Skovoroda, S. Y. Emelianov, et a1. Biophysical bases of elasticityimaging. Acoust. Imaging,1995,21:223~240
    [49] J. F. de Boer, B. Cense, B. H. Park, et a1. Signal to noise gain of spectral domain over timedomain optical coherence tomography. Opt. Lett.2003,28:2067~2069
    [50] Takahisa Mitsui. Dynamic Range of optical reflectometry with spectral interferometry. J.Appl. Phys.,1999,38:6133~6137
    [51] R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher. Performance of Fourier domain VS timedomain optical coherencetomography. Optics Express,2003,11, No.8:889~894
    [52] P. Andretzky, M. W. Lindner, J. M. Herrmann, et a1. Optical coherence tomographyby"spectral radar": Dynamic range estimation and in vivo measurements of skin. SPIE,1998,3567:78~87
    [53] M. A. Choma, M. V. Sarunic, J. A. Izatt, et al. Sensitivity advantage of swept source andfourier domain optical coherence tomography. Opt. Express,2003,11:2183~2189
    [54] J. F. de Boer, B. Cense, B. H. Park, et al. Improved signal-to-noise ratio in spectral-domaincompared with time·-domain optical coherence tomogaphy. Opt. Lett.2003,28:2067~2069
    [55] Valery Tuchin. Tissue Optics: Light Scattering Methods and Instruments for MedicalDiagnosis. SPIE, TT38,2000
    [56]谢树森,李晖,陆祖康.组织光学概要,物理,1998,27(10):599~604
    [57] G.. J. Tearney, B.E.Bouma, S.A.Boppart, et al. Rapid acquisition of in vivo biological imagesby use of optical coherence tomography. Optics Letters,1996,21(17):1408~1410
    [58] B. E. Bouma, G.J. Tearney. Handbook of optical coherence tomography. New York: MarcelDekker,2002
    [59](德)Max Born,(美)Emil Wolf著,杨葭荪等译.光学原理,北京:电子工业出版社,2005.8
    [60] Kostadinka K. Bizheva, Andy M.Siegel, and David A.Boas. Path-length-resolved dynamiclight scattering in highly scattering random media: The transition to diffusing wavespectroscopy. Phys. Rev.,1998, E58:7664~7667
    [61] Amir H.Gandjbakhche, Victor Chernomordik, Jeremy C.Hebden, et al. Time-DependentContrast Functions for Quantitative Imaging in Time-Resolved TransillμminationExperiments. Applied Optics,1998,37, Issue10:1973~1981
    [62] J. M. SchmiR and G. Kumar. Turbulent nature of refractive-index variations in biologicaltissue. Opt. Lett.1996,21:1310~1312
    [63] Joseph M. Schmitt and Gitesh Kumar. Optical Scattering Properties of Soft Tissue: ADiscrete Particle Model. Applied Optics,1998,37, Issue13:2788~2797
    [64] Boris Karamata, Kai"Hassler, and Theo Lasser. Speckle statistics in optical coherencetomography. J. Opt. Soc. Am. A,2005,22, No.4:593~596
    [65] J. M. Schmitt, S. H. Xiang, and K. M. Yung. Speckle in optical coherence tomography. J.Biomed. Opt.1999,4:95~105
    [66] J. M. Schmitt. Array detection for speckle reduction in optical coherence tomography. Phys.Med. Bi01.1997,42:2307~2320
    [67] M. Pircher, E. Goetzinger, R. Leitgeb, et al. Speckle reduction in optical coherencetomography by frequency compounding. J. Biomed. Opt.2003,8:565~569
    [68] Beckman Laser Institute, UC Irvine [online]Available: http://dosi.bli.uci.edu/userfiles/image/basis_spectra.jpg
    [69] J.G. Fujimoto and W. Drexler. Optical Coherence Tomography: Technology and Applications,1sted. Springer,2008
    [70] Thorlabs, Fiber polarization controller manual,1998(online)
    [71]石顺祥,张海英,刘劲松.物理光学与应用光学.第一版.西安:西安电子科技大学出版社.2000
    [72] Ruikang K Wang and Zhenhe Ma. A practical approach to eliminate autocorrelation artefactsfor volume-rate spectral domain optical coherence tomography. Phys. Med. Biol.51,2006,3231~3239
    [73]张泰石,李刚,郑羽等.用线性补偿算法和CCD响应补偿来提高频谱OCT图像质量.光学精密工程,2006(14),929~933
    [74] Welzel J, Reinhardt C, Lankenau E, et al. Cutaneous biology changes in function andmorphology of normal human skin: evaluation using optical coherence tomography.Br JDermatol,2004,150:220~225
    [75] Welzel J, Bruhns M, Wolff HH, et al.Optical coherence tomography in contact dermatitis andpsoriasis. Arch Dermatol Res,2003,295:50~55
    [76] B. E. Bouma and G. J. Teamey. Power-effieient nonreciprocal interferometer andlinear-seanning fiber-optic catheter for optical coherence tomography, Opt.Lett.1999,24:531~533
    [77] B. E. Bouma and G. J.Teamey, C.C.Compton et al. Endoscopic optical coherence tomographyof the gastrointestinal tract, Gastrointest Endosc.1999,49:AB152~AB152
    [78] B. E. Bouma and G. J. Tearney, C.C.Compton,et al. High-resolution imaging of the humanesophagus and stomach in vivo using optical coherence tomography, GastrointestEndosc.2000,51:467~74
    [79] M. V. Sivak, K. Kobayashi, J. A. Izatt, et al.High-resolution endoseopic imaging of the Gltract using optical coherence tomography, Gastrointest Endosc.2000,51:474~79
    [80]金霞,李刚,刘铁根等.一种高速的光学相干层析成像系统.仪器仪表学报.2002,23(3):228~229
    [81]周琳,丁志华,俞晓峰.利用变迹术和相干门相结合实现光学相干层析成像术轴向超分辨光学学报.2005,25(9):1181~1185
    [82]黄亚达,朱红毅,廖然等.基于米氏理论的蒙特卡洛光学相干层析成像系统模拟研究.光学仪器.2005,27(4):49~54
    [83] E.A. Swanson, J.A. Izatt, M.R. Hee, et al. In vivo retinal imaging by optical coherencetomography. Optics Letters,1993, Vol.18(21),1864~1886
    [84] A.F. Fereher, C.K.Hitzenberger, W.Drexler, et al. In-vivo optical coherence tomography.American Journal of Ophthalmoloy,1993, Vol.116(l),113~115
    [85] J.A.IZatt, M.R.Hee, E.A.Swanson, et al. Micrometer-scale resolution imaging of the anterioreye in vivo with optical coherence tomography. Archives of opthalmoloy,1994, Vol.112(12),1584~1589
    [86] R.A.Costa, M.Skaf, L.A.S. Melo, et al. Retinal assessment using optical coherencetomography. Progress in Relinal and Eye Researeh,2006, Vol.25(3), P325~353
    [87] C.Bowd, L.M.Zangwill, C.C.Beny, et al. Deteeting early glaueoma by assessment of retinalnerve fiber layer thickness and visual function. Investigarive Ophthalmole&Visual Scienee,2001, Vol,42(9),1993~2003
    [88] M.N.Apostolopoulos, C.N.Koutsandrea, M.N.Mosehos, et al. Evaluation of sueeessfulmacular hole surgery by optical coherence tomography and multifocaleleetroretinography. American Journal of Ophthalmology,2002, Vol.134(5),667~674
    [89] H.Sato, R.Kawasaki, and H.Yamashita. Observation of idiopathic ful-thickness maeular holeclosure in early postoperative period as evaluated by optical coherence tomography.American Journal of Ophthalmology,2003, Vol.136(l),185~187
    [90] R.J.Anteliff, M.R.Stanford, D.5.Chauhan, et al. Comparison between optical coherencetomography and fundus fluoreseein angiography for the detection of cystoid macular edemain patients with uveitis. Ophthalmology,2000, Vol.107(3),593~599
    [91] M.R.Hee, C.R.Baumal, C.A.Puliafito, et al. optical coherence tomography of age-relatedmacular degeneration and choroidal neovaseularization. Ophthalmology,1996, vol.103(8),1260~1270
    [92]纪淑兴,张军军,唐健等.中心性渗出性脉络膜视网膜病变的光学相干断层扫描图像特.《中华眼底病杂志》,2002,18(2),121~124
    [93]谢娟,唐义灵,李西玲.中心性渗出性脉络膜视网膜病变的光学相干断层扫描分析.《中国实用眼科杂志》,2003,21(11),851~853
    [94] W.Drexler, U.Morgner, R.K.Ghanta, et.al.Ultrahigh-resolution ophthalmic optical coherencetomography [J], Nature Medicine,2001, Vol.7(4),502~507
    [95] M.R.Hee, C.A.Puliafito, C.Wang, et al. Quantitative assessment of macular edema withoptical coherence tomography. Arehives ophthalmology,1995, Vol.113(21),1011~1029
    [96] Gass, JDM. Stereoscopic Atlas of Macular Diseases: Diagnosis and Treatment.1. Mosby; St.Louis, Missouri. Normal macula,1997,1-49
    [97] Kimmel et al. Stage of embryonic development of the zebrafish. Dev. Dyn.,1995,203:253~310
    [98] K. Divakar Rao, Y. Verma, H.S. Patel, et al. Non-invasive ophthalmic imaging of adultzebrafish eye using optical coherence tomography. Current Acience, Vol.90(11):1506~1510
    [99] K. Divakar Rao,Aneesh Alex, Y. Verma, et al. Real-time in vivo imaging of adult zebrafishbrain using optical coherence tomography. J. Biophoton,2009, Vol.2(5):288~291
    [100] Larry Lagemann, Hiroshi Ishikawa and James G. Fujimoto, et al. Repeated, noninvasive,high resolution spectral domain optical coherence tomography imaging of zebrafish embryos.Molecular Vision,2008, Vol14:2157~2170
    [101] Bernardos R. L., Barthel L. K., Meyers J. R., et al. Late-Stage Neuronal Progenitors in theRetina Are Radial Muller Glia That Function as Retinal Stem Cells. Journal of Neuroscience27(26):7028–7040
    [102] ISO21348Process for Determining Solar irradiances
    [103] Dawe. R.S. et al. A randomized controlled trial of narrowband ultraviolet B vs.bath-psoralen plus ultraviolet A photochemotherapy for psoriasis. British Journal ofDermatology. London: British Association of Dermatologists.27June2003,148(6):1194~1204
    [104] Kirke, Sandra M, et al. A Randomized Comparison of Selective Broadband UVB andNarrowband UVB in the Treatment of Psoriasis, Journal of Investigative Dermatology.Cleveland, OH: Society for Investigative Dermatology.22March2007,127(7):1641~1646
    [105] Craig SEL, Calinescu AA, Hitchcock PF. J Ocul Biol Dis Inform,2008,1,73
    [106] Van Rooijen N, Bakker J, Sanders A. Trends Biotechnol,1997,15,178
    [107]白临波.长焦深折衍混合系统三维光场分布研究:(博士学位论文).成都:中国科学院光电技术研究所博士论文,2001
    [108]邬敏贤,刘海松,金国藩.超衍射分辨率的微光学器件.仪器仪表学报,1996,17(1)98~99
    [109] Levenson M. D., Viawanathan N. S. Improving resolution in photolithography withphase-shift mask. IEEE,1982:1828
    [110]赵丽萍,邬敏贤,金国藩等.折衍混合单透镜的色差校正研究.光学学报,1998,18(5):621~628
    [111] Dowsk I E. R., Cathey J.W.T. Extended depth of field through t wave-front coding. App.Opt.1995,34(10):1859~1866
    [112] Schmitt J M, Lee S L, Yung K M. An optical coherence microscope with enhancedresolving power in thicktissue. Opt. Comm,1997,142:203~207
    [113] Wang Yimi n, Zhao Yonghua, Nelson J S, et a1. Ultrahigh resolution optical coherencetomography by broadband continumn generation from a photonic crystal fiber. Opt. Lett.,2003,28(3):182~184
    [114] Pitcher Michael,Gotzinger Edch, Leitgeb Rainer, et a1. Measurement and imaging of waterconcentration in human cornea with differential absorption optical coherence tomography.Opt. Exp.,2003,11(18):2190~2197
    [115] Lexer F. Dynamic coherence focus OCT with depth-indenpent transversal resolution. J.Modern Optics,1999,46(3):541~553
    [116] Qi Bing, Himmer A. Phillip, Gordon L Maggie. Dynamic focus control in high-speedoptical coherence tomography based on a microelectromechanical mirror. OpticsCommunication,2004,232:123~128
    [117] Zara J M, Yazdanfar S, Rao K D, et al. Electrostatic micromachine scanning mirror foroptical coherence tomography. Optical Letters,2003,28(8):628~630
    [118] Xie Tuqiang, Guo Shuguang, Chen Zhongping. GRIN lens rod based probe for endoscopicspectal domain optical coherence tomography with fast ddynamic focus tracking. Opt. Exp.,2006,14(8):3238~3246
    [119]王玲,丁志华,李娜.用于OCT动态聚焦的液晶菲涅尔波带透镜的研究.光电工程,2007,34(10),124~128
    [120] J. H. Mcleod. Axicon: A new type of optical element. J. Opt. Soc. Am,1954(44)592~597
    [121] Ding Zhihua, Ren H, Chen Z.P., et al. High-resolution optical coherence tomography over alarge depth range with an axicon lens. Optics Letters,2002,28(8):243~245
    [122] R.A. Leitgeb, M. Villiger, A.H. Bachmann, et al. Extended focus depth for Fourier domainoptical coherence microscopy. Optics Letters,2006,31(16):2450~2452
    [123] Durnin J. Exact solutions for non-diffracting beam.I. The scalar theory. J. Opt. Soc. Am.A,1987(4):651
    [124] Durnin J. Miccli J Jr, et al. Diffraction-free beam. Phys. Rev. Lett.,1987(58):1499
    [125] H. Wang and F. Gan. High focal depth with a pure-phase apodizer. Appl. Optics40,5658(2001)
    [126] H. Wang and F. Gan. Phase-shifting apodizers for increasing focal depth. Appl. Optics41,5263(2002).
    [127] H. Wang, Z. Chen, and F. Gan. Phase-shifting apodizer for next-generation digital versatiledisk. Opt. Eng.40,991(2001)
    [128] H. Wang, L. Shi, T. Chong, et al. Subwavelength and super-resolution nondiffraction beam.Appl. Phys. Lett.89,171102(2006)
    [129] Haifeng Wang, Luping Shi, Chong Tow Chong, et al. Creation of a needle of longitudinalpolarized light in vacuμm using binary optics. Nature Photonics, doi:10.1038/nphoton.2008.127
    [130] Linbo Liu, Cheng Liu, Nanguang Chen, et al. Binary-phase spatial filter for real-timeswept-source optical coherence microscopy. Optics Letters,2007,32(16):2375~2377
    [131]金国藩等著.二元光学.北京国防工业出版社,1998
    [132]张济忠.分形.北京:清华大学出版社,1995,80~84
    [133] Shaotong Feng. An optical study of the fractional Fourier transforms for aregular fractalpattern. SPIE,2002,4929:427~430
    [134] Zunino L, GaravagIia M. Moire by fractal structures. Journal of Modern Optics,2003,50(9):1477~1486
    [135] Trabocchi O, Granieri S, Furlan WD. Optical propagation of fractal fields: Experimentalanalysis in a single display. Journal of Modern Optics,2001,48(7):1247~1253
    [136] F Saavedra G, Furlan WD, Monsoriu JA. Fractal zone plates. OPTICS LETTERS,2003,28(12):971~973
    [137] Davis JA, Ramirez L, Martin-Romo JAR, et a1. Focusing properties of fractal zone plates:Experimental implementation with a1iquid-crystal display. OPTICS LETTERS.2004,29(12):1321~1323
    [138] Monsoriu JA, Saavedra G, Furlan WD. Fractal zone plates with variable lacunarity. OPTICSEXPRESS,2004,12(18):4227~4234
    [139] Juan A. Monsoriu, Walter D. Furlan and Genaro Saavedra. Focusing light with fractal zoneplates. Recent Res. Devel. Optics2005
    [140] O. M. Yero, M. F. Alonso, J. A. Monsoriu, et al. Fractal generalized zone plates. J. Opt. Soc.Am. A,2009,26,1161~1166
    [141] W. D. Furlan, G. Saavedra, and J. A. Monsoriu. White-light imaging with fractal zone plates.Opt. Lett.,2007,32,2109~2111
    [142] Aaron D. Jaggard and Dwight L. Jaggard. Cantor ring diffractals. Optics Communications,1998,158,141~148
    [143] Okan K. Ersoy. Diffaction, Fourier optics and imaging. Wiley-interscience, A JOHNWILEY&SONS, INC., PUBLICATION
    [144] C. J. R. Sheppard, S. Ledesma, J. Campos, et al. Improved expressions for performanceparameters for complex filters. Opt. Lett.,2007,32,1713~1715
    [145] Linbo Liu, Frédéric Diaz, Nanguang Chen, et al. Superresolution along extended depth offocus with binary-phase filters for the Gaussian beam. J. Opt. Soc. Am. A,2008,25,2095~2101
    [146]王海凤,干福熹,陈仲裕.一种新型衍射超分辨光学器件.光学学报,2001,21(5):593~596
    [147]丁洪萍,李庆辉,邹文艺.三区振幅型超分辨光瞳滤波器的设计.光学学报,2004,24(9):1177~1180
    [148]云茂金,王美,孔伟金等.可调光瞳滤波器的轴向焦移及扩展焦深.光学学报,2011,31(3):0311003
    [149] Dirk J. Faber, Freek J. van der Meer, and Maurice C.G. Aalders. Quantitative measurementof attenuation coefficients of weakly scattering media using optical coherence tomography.Optics Express,2004,12(19):4353~4365
    [150] Zhiming Liu, Zhouyi Guo, Zhengfei Zhuang, et al. Quantitative optical coherencetomography of skin lesions induced by different ultraviolet B sources. Phys. Med. Biol.,2010,55:6175~6185
    [151] Simon S. Gao, Anping Xia, Tao Yuan, et al. Quantitative imaging of cochlear soft tissues inwild-type and hearing-impaired transgenic mice by spectral domain optical coherencetomography. Optics Express,2011,19(16):15415~15428
    [152] Oluyori Kutulola Adegun, Pete H. Tomlins, Eleni Hagi-Pavli, et al. Quantitative analysis ofoptical coherence tomography and histopathology images of normal and dysplastic oralmucosal tissues. Lasers Med Sci,2011
    [153] Yi Yang, Tianheng Wang, Quing Zhu, et al. Optical scattering coefficient estimated byoptical coherence tomography correlates with collagen content in ovarian tissue. Journal ofBiomedical optics,2011,16(9):090504:1~3
    [154] P. Lee, W. Gao, and X. Zhang, Performance of single-scattering model versusmultiple-scattering model in the determination of optical properties of biological tissue withoptical coherence tomography. Appl.Opt.2010,49:3538~3544
    [155] D. Levitz, L. Thrane, M. Frosz, et al. Determination of optical scattering properties ofhighly-scattering media in optical coherence tomography images. Opt. Express,2004,12:249~259
    [156] T. G. van Leeuwen, D. J. Faber, M. C. Aalders. IEEE J. Sel. Top. Quantum Electron.2003,9:227~233
    [157] L. Thrane, H. T. Yura, and P. E. Andersen. Analysis of optical coherence tomographysystems based on the extended Huygens–Fresnel principle. J. Opt. Soc. Am. A,2000,17:484~490
    [158] George M. Hale and Marvin R. Querry. Optical constants of water in the200-nm to200-μmwavelength region. Appl. Opt.,1973,555~563
    [159]金重星.暨南大学硕士毕业论文,基于光学相干层析成像技术的生物组织散射特性的研究,2011年5月
    [160] P. Parsa, S. L. Jacques, and N. S. Nishioka. Optical properties of rat liver between350and2200nm. Appl. Opt.,1989,28:2325~2330

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700