用户名: 密码: 验证码:
基于小波分析的线性时变结构参数识别方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
结构的动力学参数决定着结构的动力学特性,其在结构的有限元建模、模型修正、灵敏度分析、振动控制、损伤识别和结构健康监测等方面都起着重要的作用。所以结构参数识别研究历来很受重视,但以往的动力学参数识别都只局限于针对时不变结构,时变结构的动力学问题一直是学术界研究的难点,尤其是线性时变结构的参数识别问题,理论研究一直没有太大的突破。可是在实际工程中,大型的柔性航天结构、高速(超高速)飞行器以及高速列车等动力学问题又亟待解决,为此本文以小波分析为研究基础,主要进行了线性时变结构的参数识别方法研究。
     本文的主要研究内容和研究成果包括:
     (1)推导了函数积分运算的连续小波变换计算方法,基于此法,在小波域内,仅利用线性时变结构的加速度响应信号,就可以计算出速度响应信号和位移响应信号的连续小波变换值。并由此把二阶振动微分方程转变为线性代数方程组,再基于短时时不变的假设,构造最小二乘问题,识别出每个时刻点时变结构的质量,刚度和阻尼系数。本文所提出的这一新识别方法,仅从时变结构的加速度响应信号出发就可以进行时变参数辨识,有较强的工程实用性。
     (2)研究了小波尺度函数积分问题,提出了一种将小波分析和状态空间技术相结合的时变结构参数识别方法:通过引入状态向量,把时变结构的二阶振动微分方程改写为一阶状态空间方程,对状态方程的状态向量进行Daubechies小波尺度函数投影计算,借助尺度函数的正交性,把一阶状态方程解耦为线性代数方程组,基于短时时不变假设,求解方程组,识别出每个时刻点的状态转移矩阵,再将状态转移矩阵与时变结构的物理空间模型作对照,假设时变结构的质量系数为已知常数,或是其质量的时变特性已被规律性掌握,便可以得到每个时刻的系统刚度矩阵和阻尼矩阵。这种小波状态空间识别方法是小波-伽辽金法在时变参数识别应用中的重要补充,在识别过程中,本方法可以成功避免计算Daubechies小波二阶连接系数的数学难点,提高了参数的识别效率。
     (3)时变自回归模型的自回归系数是随时间变化的,可以用一组正交基进行展开,本文将区间B样条小波引入到时变自回归模型中,其时变的自回归系数用区间B样条小波基函数进行展开,仅仅利用时变结构的加速度响应信号,就可以准确、快速地识别出时变结构的瞬时频率,文中的这一识别技术对于工程实际中时变结构的瞬时频率快速识别是一个非常好的选择。
     (4)文中对上述三种时变参数识别方法,基于多种动力学模型,作了大量、细致的数值仿真研究,更设计完成了具有质量时变特性的悬臂梁振动测试实验。实验中利用采集的时变结构加速度响应信号,快速准确地识别了悬臂梁时变结构的前三阶瞬时频率。实验也进一步验证了区间B样条小波基函数时变自回归识别方法的可行性、有效性以及抗噪声能力。
Structural dynamic parameters are the main parameters that are able to determine thedynamic characteristics of the mechanical structures, which could offer important reference tostructure finite element modeling, dynamic model updating, sensitivity analysis, vibration controland structural health monitoring, etc. The identification of dynamic parameters is always of primeimportance in vibration analysis. However by far studies on dynamic parameters identificationhave been mainly limited to linear time invariant structures and it has been being very difficult tomake progress in research on dynamic of time varying structure, because theoretically it has notgeneral solution up to now, especially the time varying parameters identification issue. But thereare a number of thus problems in engineering to solve urgently, for example, the stretchingdynamics of large spacecraft flexible structure, varying mass problem of supersonic rocket, bridgevibration caused by the high speed train, etc. Therefore the parameters identification methodsissue for time varying structures based on wavelet analysis are studied in this dissertation.
     The main contents of this dissertation are as follows:
     (1) in chapter two, the continuous wavelet transform based algorithm for functionalintegration is formulated and the continuous wavelet transform values of displacement andvelocity responses signals are calculated subsequently, only using the measurements ofacceleration responses signals. As a result, vibration differential equations of motion are betransformed into linear algebraic equations with wavelet-based coefficients. On the assumptionthat the time varying structural dynamic parameters are constant in a short period, the structurephysical parameters (mass, stiffness and damping coefficients) can be extracted by solving a leastsquare problem in every moment. Since the structural acceleration response data is just used toidentify the dynamic parameters, the proposed identification method has a strong practicability.
     (2) in chapter three, a wavelet-based state space time varying parameters identificationmethod is proposed based on the research results of wavelet scaling functional integrationproblem. For an arbitrary linear time varying system, the second order vibration differentialequations are first rewritten as the first order state equations using the state space theory. The statevectors are projected by using the Daubechies wavelet scaling functions and the first order statespace equations are transformed into simple linear equations based on the orthogonality of thewavelet scaling functions. This allows the time varying equivalent state space system matrices ateach moment to be identified directly via solving the linear equations on the assumption that thetime varying structural dynamic parameters are constant in a short period. The stiffness and damping matrices are determined by comparing the identified equivalent system matrices with thephysical system matrices on the premise of the system time varying mass characteristics areknown in advance. The system modal parameters are extracted though eigenvalue decompositionof the state space system matrices. The proposed algorithm is a development of Wavelet-Gelerkinmethod for time varying parameters identification as there is no need to calculate the second orderconnection coefficients of Daubechies wavelet during the identification procedure. Thisimprovement can supply a higher calculation speed.
     (3) in chapter four, the time varying auto regressive (T-AR) model has time dependent autoregressive coefficients which can be expanded by a set of orthogonal basis functions. Thisdissertation utilizes a time varying auto regressive model using B-spline wavelet on the interval asbasis function. The time varying auto regressive model’s coefficients are expanded with B-splinewavelet on the interval basis function first. Subsequently the system acceleration response signalsare utilized for structural instantaneous frequencies identification. Since the parameters are beextracted quickly and accurately, the proposed identification method is priority for the engineers.
     (4) in this dissertation, three proposed time varying parameters identification algorithmsabove are investigated with a number of different simulation models. The performance of theB-spline wavelet on the interval based T-AR method is illustrated using a cantilever beam withtime varying mass characteristics. The first three orders instantaneous frequencies of thecantilever beam are quickly and accurately identified only by using the measurement accelerationresponse signals. The test results demonstrate the good performance (the feasibility, effectiveness,and the anti-noise ability) of the T-AR identification method.
引文
[1]胡海岩,孙久厚,陈怀海.机械振动与冲击[M].北京:航空工业出版社,2002.
    [2]周传荣,赵淳生.机械振动参数识别及其应用[M].北京:科学出版社,1989.
    [3]张令弥.振动测试与动态分析[M].北京:航空工业出版社,1992.
    [4]傅志方,华宏星.模态分析理论与应用[M].上海:上海交通大学出版社,2002.
    [5] Vold H, Kundrat J, Rocklin G T, et al. A multi-input modal estimation algorithm formini-computers [J]. SAE Technical Paper,1982,91:815-821.
    [6] Juang J N, Pappa R S. An Eigen-system Realization Algorithm (ERA) for ModalParameter Identification and Model Reduction [J]. Journal of Guidance, Control andDynamics,1985,8(5):620-627.
    [7] Moor B D, Vandewalle J. A geometrical strategy for the identification of state spacemodels of linear multivariable systems with singular value decomposition [C]//Proceeding of the3rd International Symposium on Application of Multivariable systemTechniques,1987.
    [8] Verhaegen M, Westwick D. Identifying MIMO Hammerstein systems in the context ofsubspace model identification methods [J]. International Journal of Control,1996,63(2):331-349.
    [9] Overschee P V, Moor B D. N4SID: subspace algorithms for the identification ofcombined deterministic-stochastic systems [J]. Automatica (Special Issue on StatisticalSignal Processing and Control),1994,30(1):75-93.
    [10] Levy E C. Complex Cure Fitting [J]. IEEE Transaction on Automatic Control,1959,4(1):37-44.
    [11] Richardson M H, Formenti D L. Parameter estimation from frequency responsemeasurements using Rational Fraction Polynomials [C]//Proceeding of the1stInternational Modal Analysis Conference, Orlando,1982:167-181.
    [12] Shih C Y, Tsuei Y G. Complex Mode Indication Function and its Application to SpatialDomain Parameter Estimation [C]//Proceedings of the7th International Modal AnalysisConference,1989.
    [13] Zhang L M, Kanda H. Some applications of frequency domain poly-reference modalparameter identification [C]//Proceeding of the4th International Modal AnalysisConference, Los Angeles, USA,1986:1237-1245.
    [14] Guillaume P, Verboven P, Vanlanduit S. Frequency-domain maximum likelihoodidentification of modal parameters with confidence interval [C]//Proceeding of ISMA23,1998.
    [15] Guillaume P, Verboven P, Vanlanduit S, et al. A poly-reference implementation of theleast squares complex frequency domain estimator [C]//Proceeding of21st InternationalModal Analysis Conference, Kissimmee, USA, February2003.
    [16] Cauberghe B. Applied frequency domain system identification in the field ofexperimental and operational modal analysis [D]. Belgium: Vrije Universiteit Brussel,2004.
    [17]易伟建,周云.基于高阶局部模态的弹性地基上框架结构物理参数识别研究[J].地震工程与工程振动,2007,27(1):414-423.
    [18]周云,易伟建.用PolyMAX方法进行弹性地基板的实验模态分析[J].振动与冲击,2007,26(7):139-144.
    [19] Zhang L M, Brincker R, Andersen P. An Overview of Operational Modal Analysis: MajorDevelopment and Issues [J]. Earthquake Engineering and Structural Dynamics,2000,29:481-498.
    [20] Cunha á, Caetano E. From input-output to output-only modal identification of civilengineering structures [C].1st International Operational Modal Analysis Conference,Copenhagen, Denmark, April,2005,(Keynote Lecture).
    [21] Smail M, Thomas M. ARMA models for modal analysis: effect of model orders andsampling frequency [J]. Mechanical Systems and Signal Processing,1999,13(6):925-941.
    [22] Gautier P E, Gontier C, Smail M. Robustness of an ARMA identification method formodal analysis of mechanical systems in the presence of noise [J]. Journal of Sound andVibration,1995,179:227-42.
    [23] Bodeux J B, Golinval J C. Modal identification and damage detection using thedata-driven stochastic subspace and ARMAV methods [J]. Mechanical Systems andSignal Processing,2003,17(1):83-89.
    [24] Ibrahim S R. Random decrement technique for modal identification of structure [J].Journal of Spacecraft and Rockets,1977,14:696-700.
    [25] James G H. Extraction of modal parameter from an operating HAWT using the NaturalExcitation Technique (NExT)[C]//The13th ASME Wind Energy Symposium,1994.
    [26]继秀忠,华宏星,陈兆能.基于环境激励的模态参数辨识方法综述[J].振动与冲击,2002,21(3):1-5.
    [27] Overschee P V, Moor B D. Identification for Linear Systems: Theory, Implementation,Application [M]. Kluwer Academic Publishers,1996.
    [28] Peeters B, Roeck G D. Stochastic System Identification for Operational Modal Analysis:A Review [J]. Journal of Dynamic Systems Measurement and Control,2001,123:659-667.
    [29] Peeters B. System Identification and Damage Detection in Civil Engineering [D].Belgium: Katholieke Universiteit Leuven,2000.
    [30] Brincker R, Zhang L M, Andersen P. Modal identification from ambient response usingfrequency domain decomposition [C]//Proceeding of the18th International ModalAnalysis Conference, San Antonio, USA,2000.
    [31] Brincker R, Zhang L M, Andersen P. Modal Identification of Output-Only Systems UsingFrequency Domain Decomposition [J]. Smart Materials and Structures,2001,10:441-445.
    [32]王彤.复杂结构多输入多输出频域模态参数识别研究及软件[博士学位论文].南京:南京航空航天大学,2003.
    [33] Guillaume P, Hermans L, Van Der Auweraer H. Maximum likelihood identification ofmodal parameters from operational data [C]//Proceeding of the17th International ModalAnalysis Conference. Kissimmee, USA, February1999:187-189.
    [34]科恩L.时-频分析:理论与应用(白居宪)[M].西安:西安交通大学出版社,1998.
    [35]于开平,邹经湘,庞世伟.结构系统模态参数识别方法研究进展[J].世界科技研究与发展,2005,26(6):22-30.
    [36]沈林.基于小波方法的线性时变系统参数识别[硕士学位论文].南京:南京航空航天大学,2006.
    [37]邹经湘,于开平,杨炳渊.时变结构的参数识别方法[J].力学进展,2000,30(3):370-377.
    [38]于开平.时变结构动力学数值方法及其模态参数识别方法研究[博士学位论文].哈尔滨:哈尔滨工业大学,2000.
    [39]续秀忠.时变线性结构模态参数辨识的理论及实验研究[博士学位论文].上海:上海交通大学,2003.
    [40]于开平,庞世伟,赵婕.时变线性/非线性结构参数识别及系统识别方法研究进展[J].中国科学,2009,54(20):3147-3156.
    [41]刘豹.现代控制理论[M].北京:机械工业出版社,1983.
    [42] Ko W J, Huang C F. Extraction of Structural System Matrices from an IdentifiedState-Space System Using Combined Measurements of DVA [J]. Journal of Sound andVibration,2002,249(5):955-970.
    [43]刘福强,张令弥.一种改进的特征系统实现算法及其在智能结构中的应用[J].振动工程学报,1999,12(3):316-322.
    [44] Peeters B, Roeck G D, et al. Stochastic Subspace Technique Applied to ParameterIdentification of Civil Engineering Structures [C]//Proceeding of New Advances inModal Synthesis of Large Structures: Nonlinear, Damped and Nondeterministic Cases,Lyon, France, September1995,151-162.
    [45]全亚斌,张卫东,蔡云泽,等.基于双边迭代奇异值分解的递推子空间辨识方法[J].上海交通大学学报,2002,36(4):563-565.
    [46]徐良,江见鲸,过静珺.随机子空间识别在悬索桥实验模态分析中的应用[J].工程力学,2002,19(4):46-49.
    [47]樊可清,倪一清,高赞明.改进随机子空间系统辨识方法及其在桥梁状态监测中的应用[J].中国公路学报,2004,17(4):70-73.
    [48]常军,张启伟,孙利民.随机子空间产生虚假模态及模态遗漏的原因分析[J].工程力学,2007,24(11):57-62.
    [49] Liu K. Modal parameter estimation using the state space method [J]. Journal of Soundand Vibration,1996,197:387-402.
    [50] Liu K. Identification of Linear Time-Varying Systems [J]. Journal of Sound and Vibration,1997,206(4):487-505.
    [51] Liu K. Extension of Modal Analysis to Linear Time-Varying Systems [J]. Journal ofSound and Vibration,1999,226(1):149-167.
    [52] Liu K, Deng L. Identification of pseudo-natural frequencies of an axially movingcantilever beam using a subspace-based algorithm [J]. Mechanical Systems and SignalProcessing,2004,20:94-113.
    [53] Liu K, Deng L. Experimental Verification of an Algorithm for Identification of LinearTime-Varying Systems [J]. Journal of Sound and Vibration,2005,279:1170-1180.
    [54] Tasker F, Bosse A, Fisher S. Real-time Modal Parameter Estimation using SubspaceMethods: Theory [J]. Mechanical Systems and Signal Processing,1998,12(6):797-808.
    [55]吴亚锋,姜节胜.结构模态参数的子空间辨识方法[J].应用力学学报增刊,2001,18(1):31-35.
    [56]史东锋,郑敏,申凡,等.工程结构工作模态的子空间辨识方法[J].振动工程学报,2000,13(3):406-412.
    [57]庞世伟,于开平,邹经湘.用于时变系统辨识自由响应递推子空间方法[J].振动工程学报,2005,18(2):233-237.
    [58]庞世伟,于开平,邹经湘.识别时变结构模态参数的改进子空间方法[J].应用力学学报,2005,22(2):184-188.
    [59]庞世伟,于开平,邹经湘.用于时变结构模态参数识别的投影估计递推子空间方法[J].工程力学,2005,22(5):115-119.
    [60]于开平,谢礼立,樊久铭等.移动质量-简支梁系统的参数辨识[J].地震工程与工程振动,2002,22(5):14-17.
    [61]庞世伟,于开平,邹经湘.用于线性时变系统的固定长度平移窗投影估计递推子空间方法[J].机械工程学报,2005,41(10):117-122.
    [62] Raffy M, Gontier C. Statistical asymptotic error on modal parameters in combineddeterministic-stochastic identification algorithm [J]. Mechanical Systems and SignalProcessing,2005,19(4):714-735.
    [63] Bosse A, Tasker F, Fisher S. Real-time modal parameter estimation using subspacemethod: application [J]. Mechanical Systems and Signal Processing,1998,12:809-823.
    [64]张志谊,胡芳,樊江玲,华宏星.基于系统输出的时变特征参数辨识[J].振动工程学报,2004,17(2):214-218.
    [65] Mevel L. Basseville M. Benveniste A. Fast in-flight detection of flutter onset-astatistical approach [J]. AIAA Journal of Guidance, Control, and Dynamics,2005,28:431-438.
    [66] Goethals I, Mevel L, Benveniste A, et al. Recursive output only subspace identificationfor in-flight flutter monitoring [C]//Proceedings of the22nd International ModalAnalysis Conference (IMACXXII), Dearborn, Michigan, January2004.
    [67] Shi Z Y, Law S S, Li H N. Subspace-Based Identification of Linear Time-Varying System[J]. AIAA Journal,2007,45(8):2042-2050.
    [68]李会娜,史治宇.基于自由响应数据的时变系统物理参数识别[J].振动工程学报,2007,20(4):348-352.
    [69]李会娜,史治宇.基于随机激励响应的时变系统物理参数子空间识别方法研究[J].工程力学,2008,25(9):46-51.
    [70]李会娜.基于状态空间方法的时变系统参数识别[硕士学位论文].南京:南京航空航天大学,2007.
    [71] Stefan L H. Hilbert Transform in Signal Processing [M]. Artech House Inc,1996.
    [72] Feldman M. Non-Linear System Vibration Analysis Using Hilbert Transform-I: FreeVibration Analysis Method FREEVIB [J]. Mechanical Systems and Signal Processing,1994,8(2):119-127.
    [73] Feldman M. Non-Linear System Vibration Analysis Using Hilbert Transform-II: ForcedVibration Analysis Method FORCEVIB [J]. Mechanical Systems and Signal Processing,1994,8(3):309-318.
    [74] Huang N E, Shen Z, Long S R, et al. The Empirical Mode Decomposition and HilbertSpectrum for Nonlinear and Nonstationary Time Series Analysis [C]//Proceedings of theRoyal Society of London-Series A,454,1998:903-995.
    [75] Huang N E, Shen Z, Long S R. A new view of nonlinear water waves: the HilbertSpectrum [J]. Annual Review of Fluid Mechanics,1999,31:417-457.
    [76]李中付,华宏星,宋汉文,等.模态分解法辨识线性结构在环境激励下的模态参数[J].上海交通大学学报,2001,35(12):1761-1765.
    [77]李中付,华宏星,宋汉文,等.非稳态环境激励下线性结构的模态参数辨识[J].振动工程学报,2002,15(2):139-143.
    [78] Yang J N, Lin S, Pan S. Damage Identification of Structures Using Hilbert-HuangSpectral Analysis [C]//Proceeding of15th ASCE Engineering Mechanics Conference,New York, Columbia University,2002.
    [79] Yang J N, L Ying, Pan S, Huang N. System Identification of Linear Structures Based onHilbert–Huang Spectral Analysis. Part1: Normal Modes [J]. Earthquake Engineeringand Structural Dynamics,2003,32:1443-1467.
    [80] Yang J N, Lei Y, Pan S, Huang N. System Identification of Linear Structures Based onHilbert–Huang Spectral Analysis. Part2: Complex Modes [J]. Earthquake Engineeringand Structural Dynamics,2003,32:1533-1554.
    [81] Yang J N, Lei Y, Lin S, Huang N. Hilbert-Huang Based Approach for Structural DamageDetection [J]. Journal of Engineering Mechanics,2004:85-95.
    [82] Zhou L, Yan G. HHT method for system identification and damage diction: anexperimental study [J]. Journal of Smart Structures and Systems,2006,2(2):141-154.
    [83] Shi Z Y, Law S S. Identification of Linear Time-Varying Dynamical System UsingHilbert Transform and EMD Method [J]. Journal of Applied Mechanics,2007,74(2):223-230.
    [84]刘建军. Hilbert_Huang变换及其在线性时变结构模态参数识别中的应用[硕士学位论文].长沙:中南大学,2007.
    [85]程远胜,熊飞,刘均.基于HHT方法的时变多自由度系统的参数识别[J].华中科技大学学报(自然科学版),2007,35:41-43.
    [86] Shi Z Y, Law S S, Xu X. Identification of linear time-varying mdof dynamical systemsfrom forced excitation using Hilbert transform and EMD method [J]. Journal of Soundand Vibration,2009,321:572-589.
    [87] Cooper J E, Worden K. On-line physical parameter estimation with adaptive forgettingfactors [J]. Mechanical Systems and Signal Processing,2000,14:705-730.
    [88] Kosmatopolous E B, Smyth A W, Masri S F, et al. Robust Adaptive Neural Estimation ofRestoring Forces in Nonlinear Structures [J]. Journal Applied Mechanics,2001,68(6):880-893.
    [89] Lin J W, Betti R, Smyth A W, et al. On-line identification of nonlinear hystereticstructural systems using a variable trace approach [J]. Earthquake Engineering andStructural Dynamics,2001,30:1279-1303.
    [90] Smyth A W, Masri S F, Kosmatopoulos E B, et al. Development of AdaptiveModeling Techniques for Non-Linear Hysteretic Systems [J]. International Journal ofNon-Linear Mechanics,2002,37(8):1435-1451.
    [91] Yang J N, Lin S. On-line identification of nonlinear hysteretic structures using anadaptive tracking technique [J]. International Journal of Non-linear Mechanics,2004,39:1481-1491.
    [92] Yang J N, Lin S. Identification of Parametric Variations of Structures Based on LeastSquare Estimation and Adaptive Tracking Technique [J]. Journal of EngineeringMechanics ASCE,2005,131(3):290-298.
    [93]李新.基于不完备测量的结构损伤自适应追踪技术研究[硕士学位论文].南京:南京航空航天大学,2009.
    [94]尹强.非线性橡胶隔振结构参数识别与损伤诊断研究[博士学位论文].南京:南京航空航天大学,2010.
    [95]程正兴.小波分析算法与应用[M].西安:西安交通大学出版社,1998.
    [96]李弼程.小波分析及其应用[M].北京:电子工业出版社,2003.
    [97]杨建国.小波分析及其工程应用[M].北京:机械工业出版社,2005.
    [98] Grossman A, Morlet J. Decomposition of Hardy Function into Square IntegrableWavelets of Constant Shape [J]. SIAM J. Math Anal,1984,15(4):736-783.
    [99] Meyer Y. Wavelet with Compact Support. In: Beckner W. Conf in honor of A Zygnmund.New York: Academic Press,1986,1-8.
    [100] Daubechies I. Orthonarmal Bases of Compactly Supported Wavelets, Communication inPure and Applied Mathematics,1988,(41):909-996.
    [101] Mallat S G. A Theory for Multiresolution Signal Decomposition: the WaveletRepresentation [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,1989,11(7):674-693.
    [102] Daubecies I. Ten Lecture on Wavelet, Society for Industrial and Applied MathematicsPhiladelphia, Pennsylvania,1992.
    [103] Meyer Y. Ondelettes et Operateurs, Paris: Hermann Press,1990,1-175.
    [104] Daubechies I. The Wavelet Transform Time-Frequency Localization and Signal Analysis[J]. IEEE Transactions on IT,1990,961-1006.
    [105] Mallat S, Hwang W L. Singularity Detection and Processing with Wavelet [J]. IEEETransactions on ASSP,1992,38,617-643.
    [106] Chui C K. An Introduction to Wavelets. Academic Press.1992,1-200.
    [107]王建中.小波理论及其在物理和工程中的应用[J].数学进展,1992,21(3):26-36.
    [108] Staszewski W J, Cooper J E. Flutter data analysis using the wavelet transform [C].Proceedings of international Congress on MV2: New Advances in Modal Synthesis ofLarge Structures, Non-linear, Damped and Non-Deterministic Cases, Lyon, France,October1995,549-561.
    [109] Ruzzene M, Fasana A, Garibaldi L, et al. Natural frequencies and dampings identificationusing wavelet transform: application to real data [J]. Mechanical Systems and SignalProcessing,1997,11:207-218.
    [110] Staszewski W J. Identification of non-linear systems using multi-scale ridges andskeletons of the wavelet transform [J]. Journal of Sound and Vibration,1998,214:639-658.
    [111] Argoul P, Le T P. Instantaneous indicators of structural behavior based on the continuousCauchy wavelet analysis [J]. Mechanical Systems and Signal Processing,2003,17:243-250.
    [112] Le T P, Argoul P. Continuous Wavelet Transform for Modal Identification Using FreeDecay Response [J]. Journal of Sound and Vibration,2004,277:73-100.
    [113] Sone A, Hata H and Masuda A. Identification of structural parameters using the wavelettransform of acceleration measurements [J]. Journal of Pressure Vessel Technology,2004,126:128-133.
    [114] Mitra M, Gopalakrishnan S. Spectrally formulated wavelet finite element for wavepropagation and impact force identification in connected1-D waveguides [J].International Journal of Solids and Structures,2005,42:4695-4721.
    [115] Kijewski T, Kareem A. Wavelet transforms for system identification in civil engineering[J]. Computer-Aided Civil and Infrastructure Engineering,2003,18:339-355.
    [116] Roger G, Francesco R. A wavelet-based approach for model and parameter identificationof non-linear systems [J]. International Journal of Non-Linear Mechanics,2001,36:835-859.
    [117] Yan B, Miyamoto A. A comparative study of modal parameter identification based onwavelet and Hilbert-Huang transforms [J]. Computer-Aided Civil and InfrastructureEngineering,2006,21:9-23.
    [118] Schoenwald D A. System identification using a wavelet-based approach [C]//Proceedings of the32nd IEEE Conference on Decision and Control, San Antonio, Texas,1993,3064-3065.
    [119] Robertson A N, Park K C, Alvin K F. Extraction of impulse response data via wavelettransform for structure system identification [J]. Journal of Vibration and Acoustics,1998,120:252-260.
    [120] Ghanem R, Romeo F. A Wavelet-Based Approach for the Identification of LinearTime-Varying Dynamical Systems [J]. Journal of Sound and Vibration,2000,234(4):555-576.
    [121]史治宇,沈林.基于小波方法的时变动力系统参数识别[J].振动、测试与诊断,2008,28(2):108-112.
    [122] Amaratunga K, Williams J R, Qian S. Wavelet-galerkin solutions for one dimensionalpartial differential equation [J]. International Journal for Numerical Methods inEngineering,1994,37:2703-2716.
    [123] Latto A, Resnikoff H L, Tenenbaum E. The evolution connection coefficients ofcompactly supported wavelets [C]//Proceedings of the French-USA workshop onwavelets and turbulence. NY USA, Springer-Verlag Press,1992.
    [124] Zhao H P. Bentsman J. Biorthogonal Wavelet Based Identification of Fast LinearTime-Varying Systems-Part I: System Representations [J]. Journal of Dynamic Systems,Measurement and Control,2001,123(4):585-592.
    [125] Chen S L, Lai H C and Ho K C. Identification of linear time varying systems by Haarwavelet [J]. International Journal of System Science,2006,37:619-628.
    [126] Pawlak M, Hasiewicz Z. Nonlinear system identification by the Haar multiresolutionanalysis [J]. IEEE Transactions on Circuits and Systems-I: Fundamental Theory andApplications,1998,45:945-961.
    [127] Tsatsanis M K, Giannakis G B. Time-varying system identification and model validationusing wavelets [J]. IEEE Transactions on Signal Processing,1993,41:3512-3523.
    [128] Wang C, Ren W X. A wavelet ridge and SVD-based approach for instantaneousfrequency identification of structure [C]//Proceedings of the Second InternationalConference on Structural Condition Assessment, Monitoring and Improvement, SciencePress, Beijing,2007,803-807.
    [129]王超,任伟新,黄天立.基于复小波变换的结构瞬时频率识别[J].振动工程学报,2009,22(5):492-496.
    [130]王超.基于小波变换的时变结构参数识别研究[博士学位论文].长沙:中南大学,2009.
    [131] Ni Y Q, Wang B S, Ko J M. Constructing input vectors to neural networks for structuraldamage identification [J]. Journal of Smart Materials and Structures,2002,11(6):825-833.
    [132]于德介,雷慧.一种基于神经网络的结构参数识别方法[J].湖南大学学报(自然科学版),1999,26(4):39-44.
    [133] Yeung W T, Smith J W. Damage detection in bridges using neural networks for patternrecognition of vibration signatures [J]. Engineering Structures,2005,27(5):685-698.
    [134] Elshafey A A, Haddara M R, Marzouk H. Damage detection in offshore structures usingneural networks [J]. Marine Structures,2010,23(1):131-145.
    [135]吕勇,李友荣,肖涵,等.基于降噪与及独立分量分析的轴承故障声信号特征提取[J].武汉科技大学学报(自然科学版),2008,31(1):91-94.
    [136]王俊元.基于ICA的工作模态参数识别研究[博士学位论文].太原:太原理工大学,2008.
    [137] Maruyama O, Hoshiya M. System identification of an experimental model by extendedKalman filter [C]//Proceeding of Structure Safety and Reliability, ICOSSA2001,CD-ROM,7pages, Swet&Zeitinger, Lisse,2001.
    [138] Sato T, Honda R, Sakanoue T. Applicantion of Adaptive Kalman filter to identify a fivestory frame structure using NCREE experimental data [C]//Proceeding of StructureSafety and Reliability, ICOSSA2001, CD-ROM,7pages, Swet&Zeitinger, Lisse,2001.
    [139]刘丽兰.时间序列分析在振动系统中变参数识别中的应用[硕士学位论文].西安:西安理工大学,2005.
    [140]刘丽兰,刘宏昭,吴子英,等.基于时变多变量Prony法的时变振动系统模态参数辨识[J].机械工程学报,2006,42(1):134-138.
    [141]张海勇,马孝江.非平稳信号的一种ARMA模型分析方法[J].电子与信息学报,2002,21(7):992-996.
    [142]洪振发,柯文俊,彭彦惇.运用自我回归外变数模型与特征系统识别运算于等效运动方程式之推算[J].台大工程学刊,2001,82:21-31.
    [143]洪振发,柯文俊,彭彦惇,等.含外变数之向量后向自我迴规模型之系统识别方法[J].台大工程学刊,2002,86:91-102.
    [144] Poulimenos A G and Fassois S D. Parametric time-domain methods for non-stationaryrandom vibration modelling and analysis–a critical survey and comparison [J].Mechanical Systems and Signal Processing,2006,20:763-816.
    [145] Spiridonakos M D and Fassois S D. Parametric identification of a time-varying structurebased on vector vibration response measurements [J]. Mechanical Systems and SignalProcessing,2009,23:2029-2048.
    [146] Spiridonakos M D, Poulimenos A G, Fassois S D. Output-only identification and dynamicanalysis of time-varying mechanical structures under random excitation: A comparativeassessment of parametric methods [J]. Journal of Sound and Vibration,2010,329:768-785.
    [147] Spiridonakos M D, Fassois S D. Output-only identification of time-varying structures viaa complete FS-TARMA model approach [C]//Proceeding of4th InternationalOperational Modal Analysis Conference, May,2011, Istanbul, Turkey.
    [148]许鑫,史治宇.状态空间下基于小波变换的时变系统参数识别[J].振动工程学报,2010,23(4):415-419.
    [149]许鑫,史治宇.用于时变系统参数识别的状态空间小波方法[J].工程力学,2010,28(3):23-28.6.
    [150] Xu X, Shi Z Y and You Q. Identification of linear time-varying systems using awavelet-based state-space method [J]. Mechanical Systems and Signal Processing,2012,26:91-103.
    [151] X. Xu, Z. Y. Shi, S. L. Long. Time-varying systems identification using continuouswavelet analysis of free decay response signals [J]. Journal of Vibroengineering,2012,14(1):225-235.
    [152] X. Xu, W. J. Staszewski, Z. Y. Shi. Identification of Time-Variant Systems Using WaveletAnalysis of Force and Acceleration Response Signals [C]//Proceeding of IOMAC'11–4th International Operational Modal Analysis Conference,2011, Istanbul, Turkey.
    [153]续秀忠,张志谊,华宏星,等.应用时频分析方法辨识时变系统的模态参数[J].振动工程学报,2003,16(3):358-362.
    [154]续秀忠,张志谊,华宏星,等.应用时变参数建模方法辨识时变模态参数[J].航空学报,2003,24(5):230-233.
    [155]何正嘉,陈雪峰,李冰,等.小波有限元理论及其工程应用[M].北京:科学出版社,2006.
    [156]尤琼.基于小波有限元与一阶Tikhonov正则化的移动车载识别研究[博士学位论文].南京:南京航空航天大学大学,2011.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700