用户名: 密码: 验证码:
基于多线索的人脸识别认证
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物特征识别是一项根据人类自身固有的生物特征进行身份识别的技术,具有优于传统身份识别技术的安全性和可靠性。其中,人脸识别技术以其采集方便并可在不打扰检测对象正常活动条件下隐蔽进行的独特优势,受到广泛关注并成为研究热点。经过多年的研究和开发,人脸识别技术已取得了一定的突破,在公共安全、信息安全、金融安全等领域展现出广阔的应用前景。但是,由于人脸图像的复杂性和多样性,目前人脸识别技术的精度距离人们的期望还有一些距离,提高人脸识别正确率是一项非常重要的研究任务,同时也是一项具有挑战性难度的研究课题。
     人脸识别是一个复杂的信息处理过程,在真实应用条件下的人脸识别,更是受到多种不能预先确定环境因素的影响。在认知判别中,引入多种有效的特征信息和多种理论推理方法,将有助于全面、准确地认识和区分对象。本文研究和探讨了基于多线索即多种特征信息和多种理论方法集成(融合)的人脸识别技术。主要工作成果和贡献如下:
     1.提出了一种基于多线索的眼睛精确定位方法。该方法包含三个阶段由粗到细逐级精确化眼睛定位。前两个阶段,采用Viola-Jones算法进行眼睛的粗定位。本文工作的主要贡献在于第三阶段的精确定位,提出采用具有更高分辨能力的梯度组合特征和曲线波(Curvelet)特征,以适应眼睛中心周围邻域的灰度分布和边缘轮廓的描述;并提出一种重构偏差计算机制,采用重构偏差来度量候选眼睛子块图像与眼睛子块典型样本图像集的匹配相似度,进行计算对比,将基于梯度组合特征和曲线波特征的重构偏差结果进行综合,最终选定最佳的眼睛中心位置。实验结果表明,本文方法具有较高的定位精度。
     2.提出了一种基于Gabor特征、Curvelet特征和LBP (Local Binary Pattern)特征融合的人脸识别方法。Gabor、Curvelet和LBP都是有成效的描述人脸的特征,它们分别从通用的和侧重于边缘轮廓的多尺度波形分解和亮度差细观纹理结构等不同特性角度,描述了对象的内蕴特性。三种特征内容具有很强的关联性和互补性,在本文提出的方法中,首先将特征相关性较强的Gabor特征和Curvelet特征在特征层上采用典型相关分析(Canonical Correlation Analysis, CCA)的原理方法进行重组融合;然后将CCA融合特征的匹配相似度与LBP特征的匹配相似度在决策层上进行融合,获得最终的匹配相似度。实验结果表明,通过将三种特征进行融合识别精度得到显著提高。
     3.对于同一人脸多张图像和单张人脸图像的匹配问题,本文提出一种计算同一人脸多张图像的共性表征和匹配偏差方法。在选定特征表示后,同一人脸对象的多张图像特征数据计算得到的主方向可作为该人脸对象的共性表征。将待匹配单张图像在已知多张图像的主方向上投影,然后进行重构,其重构偏差可作为匹配偏差。通过实验测试证明本文提出的方法的有效性。
     4.对于非正面人脸图像匹配问题,本文提出了一种新的人脸姿态估测方法以及两项简化校正处理:纵横比修正和选用翻转图像。在人脸姿态估测方法中,采用局部线性嵌入(Locally Linear Embedding, LLE)方法约简特征维数,采用稀疏编码和字典学习的方法进行偏转程度分级。在侧向面对摄取方向的人脸图像中,人脸的宽度方向尺寸产生缩减,本文提出了一种纵横比(宽高比)修正处理方法。当两张匹配图像的偏转方向相反且偏转角度较大时,直接进行匹配处理,匹配偏差较大,本文提出一种选用翻转图像的处理方法,即将其中一张图像左右对称翻转后再与另一张图像进行匹配。实验结果证明,所提出的姿态分级估测方法健壮,通过两项简化处理,识别效果具有明显的改善。
Biometric recognition is a recognition technology based on the inherent biometrics of human beings and is superior to the traditional identification technology in security and robustness aspects. Due to its unique advantages such as convenient data acquisition and the capability working under concealed environments without disturbing the detected objects, face recognition has drawn widespread attention and is a research hotspot now. Some technology breakthroughs had been made in the past two decades. The application prospect of face recognition is wide in the fields of public security, information security and financial security etc. However, due to the complexity and the radon variations of face images, there still is a long way to go to meet the people's expectation. Upgrading the identification performance of face recognition is still an urgent and important task in developing technology; however, it is also a challenge research issue in pattern recognition discipline.
     Face recognition is a complex information processing. Face recognition in real application conditions is influenced by a variety of uncertain environment factors. In the cognition implementations, incorporating multiple effective feature information and theory methods will help system recognize and discriminate different objects comprehensively and accurately. This paper deals with the researches of face recognition technology with multiple cues. The main works and contributions are as follows:
     1. An approach of precise localization of eye centers with multiple cues is proposed. This approach searches the precise localization of eye centers from coarse to fine by three stage processing. In the first two stages, Viola-Jones approach is used for the rough localization of eye centers. The main contribution of the proposed approach is the precise localization processing of eye centers in the third stage. Gradient combination features and Curvelet features were constructed and used in precise processing, both features possess higher discrimination ability in revealing the intensity distribution and edge characteristics of the neighbourhood around eye center. A rebuilt error calculation mechanism is proposed and the rebuilt errors are used for evaluating the matching similarity between a test eye patch image and the pre-constructed reference eye patch image set. The final localizations of eye centers are selected based on integrating the rebuilt error results of gradient combined based features and Curvelet based features. The experiment results show that the proposed approach achieved high localization precision.
     2. A face recognition approach with feature fusion of Gabor based, Curvelet based and LBP based representations is proposed. Gabor, Curvelet and LBP are effective features successfully used for face representations. They reveal the intrinsic characteristics of the description object from different characteristics views such as general multi-scale waveform decomposition, multi-scale edge-oriented waveform decomposition and the micro texture of lightness differences. These features possess strong correlation and complementarity. In the proposed approach, the Gabor features and Curvelet features are first fused by canonical correlation analysis (CCA) on feature layer; then the matching similarity score of CCA fusion features and similarity score of LBP features are integrated on decision layer. The experiment results show that the proposed approach upgrades the recognition accuracy significantly.
     3. For the matching problem of multiple face images from one person to a single face image, a novel approach is proposed. The proposed approach first analyses the multiple face images, which were taken from same person, statistically. After select a feature representation, the mean feature values and the principle directions of feature data of multiple face images from same person can be calculated. The mean feature values and the principle directions will be taken as the common attributes of the specified person. Project a single test image onto the principle directions of multiple face images, and then generate a rebuilt image with limited number terms of the principle components. The difference between the original test image and the rebuilt image is called rebuilt error. The rebuilt error is taken as matching error and the match with smallest rebuilt error is assumed the best match in processing. The experiment results demonstrate the effectiveness of the proposed approach.
     4. For the non-frontal face image matching problem, a novel face pose estimation approach and two simplification processing operations are proposed. The two simplification processing operations are:aspect ratio modification and flipping image selection. In the face pose estimation process, the locally linear embedding (LLE) method is first used for the dimension reduction of features; then, sparse coding and dictionary learning methods are used for yaw degree classification. For the face image taking in side direction, the width size will be compressed, an aspect ratio (width/height ratio) modification operation is proposed in this paper. When the two matching images are oriented on opposite side and possess larger yaw angles, the matching error is larger if match the two images directly. A flipping image selection operation is proposed which is replacing one of these two images with its left-right symmetric flipping image in matching processing. The experiment results demonstrate that the proposed pose estimation approach is robust and the two simplification processing operations improve the recognition performance obviously.
引文
[1]RATHA N K, SENIOR A, BOILE R M. Automated biometrics [C]. Proceedings of International Conference on Advances in Pattern Recognition-ICAPR 2001. Berlin:Springer, 2001:445-453.
    [2]JAIN A K, ROSS A, PRABHAKAR S. An introduction to biometric recognition [J]. IEEE Transactions on Circuits and Systems for Video Technology,2004,14(1):4-20.
    [3]DING X Q, FANG C H. Discussions on some problems in face recognition [M]. Advances in Biometric Person Authentication. Springer Berlin Heidelberg,2005:47-56.
    [4]BLACHBURN D M, BONE M, PHILLIPSE P J. Face Recognition Vendor Test 2000 [R]. Evaluation Report,2001.
    [5]PHILLIPS P J, GROTHER P, MICHEALS R J, et al. Face Recognition Vendor Test 2002:Overview and Summary [EB/OL]. Gaithersburg, MD:National Institute of Standards and Technology, 2003. [2009-06-04]. http://www.frvt.org/FRVT2002/documents.htm.
    [6]RIZVI S, PHILLIPS P J, MOON H. The FERET Verification Testing Protocol for Face Recognition Algorithms [R]. Technical report:NISTIR 6281, National Institute of Standards and Technology,1998.
    [7]BLEDSOE W W. Man-machine facial recognition [R]. Technical Report RPI 22. Panoramic Research Inc, Palo Alto, CA.1966.
    [8]http://www.face-rec.org/interesting-papers/#PUBLISHEDVSCITATIONS
    [9]BRUNELLI R, POGGIO T. Face recognition:Features versus templates [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,1993,15(10):1042-1052.
    [10]STAROVOITOV V, SAMAL D. A geometric approach to face recognition [C]. Proceedings of IEEE-EURASIP Workshop on Nonlinear Signal and Image Processing,1999,2:210-213.
    [11]TURK M, PENTLAND A. Eigenface for recognition [J]. Journal of Cognitive Neuroscience, 1991,3(1):71-86.
    [12]PENTLAND A, MOGHADDAM B, STARNER T. View-based and modular eigenspaces for face recognition [C]. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition,1994:84-91.
    [13]SWETS D L, WENG J J. Using discriminant eigenfeatures for image retrieval [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,1996,18(8):831-836.
    [14]BELHUMEUR P, HESPANHA J, KRIEGMAN D. Eigenfaces vs. Fisherfaces:Recognition using class specific linear projection [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,1997,19(7):711-720.
    [15]SHAN S G, CAO B, GAO W, et al. Extended Fisherface for face recognition from a single example image per person [C]. IEEE International Symposium on Circuits and Systems, 2002,2:81-84.
    [16]VAPNIK V N.统计学习理论的本质[M].北京:清华大学出版社,2000.
    [17]VAPNIK V N. Statistical Learning Theory [M]. New York,1998.
    [18]SCHOLKOPF B, SMOLA A, MULLER K R. Nonlinear component analysis as a kernel eigenvalue problem [J]. Neural Computation,1998,10(5):1922-1319.
    [19]BAUDAT G, ANOUAR F. Generalized discriminant analysis using a kernel approach [J]. Neural Computation,2000,12(10):2385-2404.
    [20]TENENBAUM J B, DE SILVA V, LANGFORD J C. A Global Geometric Framework for Nonlinear Dimensionality Reduction [J]. Science,2000,290(5500):2319-2323.
    [21]ROWEIS S L, SAUL L. Nonlinear dimensionality reduction by locally linear embedding [J]. Science,2000,290(5500):2323-2326.
    [22]COX T, COX M. Multidimensional Scaling [M]. Chapman & Hall, London,2001.
    [23]LIU D,OU Z, WANG G, et al. Face Recognition Using Hierarchical Isomap [C]. Proceedings of IEEE Workshop on Automatic Identification Advanced Technologies,2007:103-106.
    [24]YANG M H. Face Recognition Using Extended Isomap [C]. Proceedings of International Conference on Image Processing,2002,2:117-120.
    [25]HE X F, NIYOGI P. Locality Preserving Projections [C]. Proceedings of Conference on Advances in Neural Information Processing Systems,2003.
    [26]王国强,欧宗瑛,刘典婷等.基于保持近邻判别嵌入的人脸识别[J].大连理工大学学报,2008,48(3):378-382.
    [27]BLANZ V, VETTER T. A morphable model for the synthesis of 3D face [C]. Proceedings of the 26th annual conference on Computer graphics and interactive techniques, 1999:187-194.
    [28]BLANZ V, ROMDHANI S, VETTER T. Face identification across different poses and illuminations with a 3D morphable model [C]. Proceedings of the Fifth International Conference on Automatic Face and Gesture Recognition,2002:192-197.
    [29]BLANZ V, VETTER T. Face recognition based on fitting a 3D morphable model [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2003,25(9):1063-1074.
    [30]SAMARIA F. Face Recognition Using Hidden Markov Models [D]. Cambridge:University of Cambridge,1994.
    [31]NEFIAN A. Hidden Markov model-based approach for face detection and recognition [D]. School of Electrical and Computer Engineering, Georgia Institute of Technology,1999.
    [32]LADES M, VORBRUEGGEN J C, BUHMANN J, et al. Distortion invariant object recognition in the dynamic link architecture [J]. IEEE Transactions on Computers,1993, 42(3):300-311.
    [33]WISKOTT L, FELLOUS J M, Kruger N, et al. Face recognition by elastic bunch graph matching [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,1997, 19(7):775-779.
    [34]PENEV P S, ATICK J. Local feature analysis:A general statistical theory for object representation [J]. Network:Computation in Neural Systems,1996,7(3):477-500.
    [35]杨琼,丁晓青.鉴别局部特征分析及其在人脸识别中的应用[J].清华大学学报(自然科学版),2004,44(4):530-533.
    [36]INTRATOR N, REISFELD D, YESHURUN Y. Face recognition using a hybrid supervised/unsupervised neural network [J]. Pattern Recognition Letters,1996, 17(1):67-76.
    [37]LAWRENCE S, GILES C L, TSOI A C, et al. Face recognition:A convolutional neural-network approach [J]. IEEE Transactions on Neural Networks,1997,8(1):98-113.
    [38]VAPNIK V N. The nature of statistical learning theory [M]. New York:Springer Verlag, 1995.
    [39]GUO G, LI S Z, CHAN K. Face Recognition by Support Vector Machines [C]. Proceedings of the Fourth IEEE International Conference on Automatic Face and Gesture Recognition, 2000:196-201.
    [40]HEISELE B, HO P, POGGIO T. Face Recognition with Support Vector Machines:Global Versus Component-based Approach [C]. Proceedings of International Conference on Computer Vision,2001,2:688-694.
    [41]LI Y,OU Z, WANG G. Face recognition using Gabor features and support vector machines [J]. Lecture Notes in Computer Science,2005,3611:114-117.
    [42]FREUND Y, SCHAPIRE R E. A decision-theoretic generalization of on-line learning and application to boosting [J]. Journal of Computer and System Sciences,1997,55(1): 119-139.
    [43]VIOLA P, JONES M. Rapid object detection using a boosted cascade of simple features [C]. Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition,2001,1:511-518.
    [44]JONES M J, VIOLA P. Face recognition using boosted local features [C]. Proceedings of International Conference on Computer Vision,2003.
    [45]SHAN S, YANG P, CHEN X, et al. Adaboost Gabor Fisher Classifier for Face Recognition [M]. Analysis and Modelling of Faces and Gestures,2005:279-292.
    [46]GROTHER P J, QUINN G W, PHILLIPS P J. Report on the Evaluation of 2D Still-Image Face Recognition Algorithms [R]. NIST Interagency Rep,2010.
    [47]HUANG G, RAMESH M, BERG T, et al. Labeled Faces in the Wild:A Database for Studying Face Recognition in Unconstrained Environment [R]. Technical Report 07-49, University of Massachusetts,2007.
    [48]HAN Z C, SU T M, TANG X S, et al. Face recognition with integrating multiple cues [J]. Journal of Signal Processing Systems,2013.
    [49]JONES M J. Face Recognition:Where we are and where to go from here [J]. IEEE Transactions on Electronic, Information and Systems,2009,129(5):770-777.
    [50]YIN Q, TANG X, SUN J. An associate-predict model for face recognition [C]. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition,2011:497-504.
    [51]BERG T, BELHUMEUR P N. Tom-vs-Pete Classifiers and Identity-Preserving Alignment for Face Verification [C]. Proceedings of British Machine Vision Conference,2012,1(4):5.
    [52]严严,章毓晋.基于视频的人脸识别研究进展[J].计算机学报,2009,32(5):878-886.
    [53]WANG R, SHAN S, CHEN X, et al. Manifold-manifold distance with application to face recognition based on image set [C]. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition,2008:1-8.
    [54]CEVIKALP H, TRIGGS B. Face recognition based on image sets [C]. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition,2010:2567-2573.
    [55]CHU W S, CHEN J C, LIEN J J J. Kernel discriminant transformation for image set-based face recognition [J]. Pattern Recognition,2011,44(8):1567-1580.
    [56]韩兆翠,苏铁明,欧凡等.单张图像对每人多张注册图像的人脸识别匹配[J].大连理工大学学报,2012,52(6):829-834.
    [57]AHONEN T, HADID A, PIETIKAINEN M. Face description with local binary patterns: Application to face recognition [J]. IEEE Transaction on Pattern Analysis and Machine Intelligence,2006,28(12):2037-2041.
    [58]TAN X, TRIGGS B. Enhanced local texture feature sets for face recognition under difficult lighting conditions [J]. IEEE Transactions on Image Processing,2010,19(6): 1635-1650.
    [59]CAO Z, YIN Q, TANG X, et al. Face recognition with learning-based descriptor [C]. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 2010:2707-2714.
    [60]COX D, PINTO N. Beyond simple features:A large-scale feature search approach to unconstrained face recognition [C]. Proceedings of IEEE International Conference on Automatic Face & Gesture Recognition and Workshops,2011:8-15.
    [61]SEO H J, MILANFAR P. Face verification using the lark representation [J]. IEEE Transactions on Information Forensics and Security,2011,6(4):1275-1286.
    [62]SHARMA G, UL HUSSAIN S, JURIE F. Local higher-order statistics (LHS) for texture categorization and facial analysis [C]. Proceedings of European Conference on Computer Vision,2012:1-12.
    [63]HUSSAIN S U, NAPOLEON T, JURIE F. Face recognition using local quantized patterns [C]. Proceedings of British Machine Vision Conference,2012.
    [64]CHEN D, CAO X, WANG L, et al. Bayesian face revisited:A joint formulation [C]. Proceedings of European Conference on Computer Vision,2012:566-579.
    [65]CUI Z, LI W, XU D, et al. Fusing Robust Face Region Descriptors via Multiple Metric Learning for Face Recognition in the Wild [C]. Computer Vision and Pattern Recognition, 2013.
    [66]TAIGMAN Y, WOLF L. Leveraging billions of faces to overcome performance barriers in unconstrained face recognition [J]. ArXiv e-prints,2011.
    [67]CHEN D, CAO X, WEN F, et al. Blessing of Dimensionality:High-dimensional Feature and Its Efficient Compression for Face Verification [C]. Computer Vision and Pattern Recognition,2013.
    [68]WOLF L, HASSNER T, TAIGMAN Y. Similarity scores based on background samples [M], Computer Vision-ACCV 2009. Springer Berlin Heidelberg,2010:88-97.
    [69]WRIGHT J, YANG A Y, GANESH A. Robust face recognition via sparse representation [J]. Pattern Analysis and Machine Intelligence,2009,31(2):210-227.
    [70]WRIGHT J, MA Y, MAIRAL J, et al. Sparse representation for computer vision and pattern recognition [J]. Proceedings of the IEEE,2010,98(6):1031-1044.
    [71]WAGNER A, WRIGHT J, GANESH A, et al. Toward a practical face recognition system:Robust alignment and illumination by sparse representation [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2012,34(2):372-386.
    [72]YANG J, YANG J Y, ZHANG D, et al. Feature fusion:parallel strategy vs. serial strategy [J]. Pattern Recognition,2003,36(6):1369-1381.
    [73]WANG P, GREEN M B, JI Q, et al. Automatic Eye Detection and Its Validation [C]. Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition,2005:164-171.
    [74]RIOPKA T P, BOULT T. The eyes have it [C]. Proceedings of the 2003 ACM SIGMM workshop on Biometrics methods and applications,2003:9-16.
    [75]山世光,高文,唱轶钲等.人脸识别中的“误配准灾难”问题研究[J].计算机学报,2005,28(5):782-791.
    [76]FENG G C, YUEN P C. Variance projection function and its application to eye detection for human face recognition [J]. Pattern Recognition Letters,1998,19(9):899-906.
    [77]FENG G C, YUEN P C. Multi cues eye detection on gray intensity image [J]. Pattern Recognition,2001,34(5):1033-1046.
    [78]耿新,周志华,陈世福.基于混合投影函数的眼睛定位[J].软件学报,2003,14(8):1394-1400.
    [79]DUDA R O, HART P E. Use of Hough transform to detect lines and curves in pictures [J]. Communications of the ACM,1972,15(1):11-15.
    [80]KIMME C, BALLAND D, SKLANSKY J. Finding circles by an array of accumulators [J]. Communications of the ACM,1975,18(2):120-122.
    [81]YUILLE A, HALLINAN P, COHEN D. Feature exaction from faces using deformable templates [J]. International Journal of Computing Vision,1992,8(2):99-111.
    [82]SMERALDI F, BIGUN J. Retinal vision applied to facial features detection and face authentication [J]. Pattern Recognition Letters,2002,23(4):463-475.
    [83]CRISTINACCE D, COOTES T. Facial feature detection using adaboost with shape constraints [C]. Proceedings of the 14th British Machine Vision Conference,2003:231-240.
    [84]唐旭晟,欧宗瑛,苏铁明等.复杂背景下人脸眼睛的快速定位[J].计算机辅助设计与图形学学报,2006,18(10):1535-1540.
    [85]VALENTI R, GEVERS T. Accurate Eye Center Location and Tracking Using Isophote Curvature [C]. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 2008:1-8.
    [86]车昊,黄磊,刘迎建等.一个基于多层结构的眼睛定位算法[J].中国图象图形学报,2008,13(3):472-479.
    [87]YANG M H, KRIEGMAN D J, AHUJA N. Detecting faces in images:A survey [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2002,24(1):34-58.
    [88]SUNG K, POGGIO T. Example-based learning for view based human face detection [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,1998,20(1):39-51.
    [89]田捷,杨鑫.生物特征识别技术理论与应用[M].北京:电子工业出版社,2005.
    [90]梁路宏,艾海舟,徐光佑等.人脸检测研究综述[J].计算机学报,2002,25(5):449-458.
    [91]YANG G Z, HUANG T S. Human face detection in a complex background [J]. Pattern Recognition,1994,27(1):53-63.
    [92]卢春雨,张长水,闻方等.基于区域特征的快速人脸检测法[J].清华大学学报(自然科学版),1999,39(1):101-105.
    [93]MIAO J, YIN B C, WANG K Q, et al. A hierarchical multiscale and multiangle system for human face detection in a complex background using gravity-center template [J]. Pattern Recognition,1999,32(10):1237-1248.
    [94]KOUZANI A Z, HE F, SAMMUT K. Commonsense knowledge-based face detection [C]. Proceedings of IEEE International Conference on Intelligent Engineering Systems, 1997:215-220.
    [95]梁路宏,艾海舟,何克忠.基于多模板匹配的单人脸检测[J].中国图象图形学报,1999,4A(10):823-830.
    [96]MOGHADDAM B, PENTLAND A. Probabilistic Visual Learning for Object Representation [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,1997,19(7):696-710.
    [97]ROWLEY H A, BALUJA S, KANADE T. Neural network-based face detection [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,1998,20(1):23-38.
    [98]ROWLEY H A, BALUJA S, KANADE T. Rotation invariant neural network-based face detection [C]. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 1998:38-44.
    [99]OSUNNA E, FREUND R, GIROSI F. Training support vector machines:An application to face detection [C]. Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition,1997:130-136.
    [100]SCHNEIDERMAN H, KANADE T. Probabilistic modeling of local appearance and spatial relationships for object recognition [C]. Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition,1998:45-51.
    [101]SCHNEIDERMAN H, KANADE T. A statistical method for 3D object detection applied to faces and cars [C]. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition,2000,1:746-751.
    [102]VIOLA P, JONES M. Robust real-time object detection [J]. International Journal of Computer Vision,2004,57(2):137-154.
    [103]LIENHART R, MAYDT J. An extended set of Haar-like features for rapid object detection [C]. Proceedings of International Conference on Image Processing,2002,1:900-903.
    [104]LI S Z, ZHANG Z Q. Floatboost learning and statistical face detection [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2004,26(9):1112-1123.
    [105]唐旭晟,欧宗瑛,苏铁明.基于AdaBoost和遗传算法的快速人脸定位算法[J].华南理工大学学报,2007,35(1):64-69.
    [106]PAPAGEORGIOU C, OREN M, POGGIO T. A General Framework for Object Detection [C]. Proceedings of International Conference on Computer Vision,1998:555-562.
    [107]CANDES E J, DONOHO D L. Curvelets:A surprisingly effective nonadaptive representation for objects with edges [C]. Vanderbilt University Press,2000:105-120.
    [108]CANDES E J. Ridgelets:theory and applications [D]. Department of Statistics, Stanford University,1998:23-38.
    [109]CANDES E J, DEMANET L, DONOHO D L, et al. Fast Discrete Curvelet Transforms [R]. Applied and Computational Mathematics, California Institute of Technology,2005:1-43.
    [110]The BioID Face Database. http://www.bioid.com
    [111]The JAFFE Database. http://www.kasrl.org/jaffe.html
    [112]GAO W, CAO B, SHAN S G, et al. The CAS-PEAL Large-Scale Chinese Face Database and Baseline Evaluations. http://www.jdl.ac.cn/peal/files/TechReport4CAS-PEAL-Rl.pdf
    [113]ASTERIADIS S, NIKOLAIDIS N, HAJDU A, et al. An eye detection algorithm using pixel to edge information [C]. Int. Symp. on Control, Commun. and Sign. Proc.2006.
    [114]JESORSKY 0, KIRCHBERGAND K J, FRISCHHOLZ R W. Robust face detection using the hausdorff distance [C]. Proceedings of International Conference on Audio-and video-based biometric person authentication. Springer Berlin Heidelberg,2001:90-95.
    [115]CRISTINACCE D, COOTES T, SCOTT I. A multi-stage approach to facial feature detection [C]. Proceedings of the 15th British Machine Vision Conference,2004:277-286.
    [116]TURKAN M, PARDAS M, CETIN A. Human eye localization using edge projection [J]. Comp. Vis. Theory and App,2007.
    [117]BAI L, SHEN L, WANG Y. A novel eye location algorithm based on radial symmetry transform [C]. Proceedings of the 18th International Conference on Pattern Recognition,2006, 3:511-514.
    [118]CAMPADELLI P, LANZAROTTI R, LIPORI G. Precise eye localization through a general-to-specific model definition [C]. Proceedings of British Machine Vision Conference,2006,1:187-196.
    [119]HAMOUZ M, KITTLERAND J, KAMARAINEN J K, et al. Feature-based affine-invariant localization of faces [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2005,27(9):1490-1495.
    [120]GABOR D. Theory of communication [J]. Journal of the Institute of Electrical Engineers, 1946,93(26):429-457.
    [121]MARCELJA S. Mathematical description of the responses of simple cortical cells [J]. Journal of Optical Society of America,1980,70(11):1297-1300.
    [122]DAUGMAN J G. Two-Dimensional Spectral Analysis of Cortical Receptive Field Profile [J]. Vision Research,1980,20(10):847-856.
    [123]JONES J P, PALMER L A. An evaluation of the two-dimensional Gabor filter model of simple receptive fields in cat striate cortex [J]. Journal of Neurophysiology,1987, 58(6):1233-1258.
    [124]OJALA T, PIETIKAINEN M, HARWOOD, D. A comparative study of texture measures with classification based on featured distributions [J]. Pattern Recognition,1996,29(1): 51-59.
    [125]OJALA T, PIETIKAINEN M, MAENPAA T. Multiresolution gray scale and rotation invariant texture classification with local binary patterns [J]. IEEE Transaction on Pattern Analysis and Machine Intelligence,2002,24(7):971-978.
    [126]HOTELLING H. Relations between two sets of variates [J]. Biometrika,1936,28(3/4): 321-377.
    [127]Biometric Authentication Competition (BAC2005). http://www.cbsr.ia.ac.cn/china/Databases%20C-H.asp
    [128]http://mlsp2011.conwiz.dk/
    [129]YAMAGUCHI O, FUKUI K, MAEDA K. Face recognition using temporal image sequence [C]. Proceedings of IEEE International Conference on Automatic Face and Gesture Recognition,1998:318-323.
    [130]ZHOU S K, CHELLAPPA R. From sample similarity to ensemble similarity:probabilistic distance measures in reproducing kernel hilbert space [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2006,28(6):917-929.
    [131]ZHOU S K, CHELLAPPA R. Beyond a single still image:Face recognition from multiple still images and videos [J]. Face Processing:Advanced Modeling and Methods,2005.
    [132]KIM T K, ARANDJELOVIC 0, CIPOLLA R. Boosted Manifold Principal Angles for Image Set-Based Recognition [J]. Pattern Recognition,2007,40(9):2475-2484.
    [133]PHILLIPS P J, FLYNN P J, SCRUGGS T, et al. Overview of the face recognition grand challenge [C]. Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition,2005,1:947-954.
    [134]PHILLIPS P J. Overview of the Multiple Biometric Grand Challenge. http://face.nist.gov/mbgc/mbgc_presentations.htm
    [135]Phillips P J. MBGC Still Face Challenge Problem Version 2 Preliminary Results. http://face.nist.gov/mbgc/2009/FACE_V2_FINAL.pdf
    [136]BEYMER D J. Face recognition under varying pose [C]. Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition,1994:756-761.
    [137]SHAFI M, IQBAL F, ALI I. Face pose estimation using distance transform and normalized cross-correlation [C]. Proceedings of IEEE International Conference on Signal and Image Processing Applications,2011:186-191.
    [138]NG J, GONG S G. Composite support vector machines for detection of faces across views and pose estimation [J]. Image and Vision Computing,2002,20(5):359-368.
    [139]NG J, GONG S G. Multi-view face detection and pose estimation using a composite support vector machine across the view sphere [C]. Proceedings of International Workshop on Recognition, Analysis, and Tracking of Faces and Gestures in Real-Time Systems, 1999:14-21.
    [140]MCKENNA S J, GONG S. Real-time face pose estimation [J]. Real-Time Imaging,1998, 4(5):333-347.
    [141]CHEN L, ZHANG L, HU Y X, et al. Head pose estimation using fisher manifold learning [C]. Proceedings of IEEE International Workshop on Analysis and Modeling of Faces and Gestures,2003:203-207.
    [142]WU J W, TRIVEDI M M. A two-stage head pose estimation framework and evaluation [J]. Pattern Recognition 2008,41 (3):1138-1158.
    [143]GEE A H, CIPOLLA R. Determining the gaze of faces in images [J]. Image and Vision Computing,1994,12(10):639-647.
    [144]WANG J G, SUNG E. EM enhancement of 3D head pose estimated by point at infinity [J]. Image and Vision Computing,2007,25(12):1864-1874.
    [145]SHAFI M, CHUNG P W H. Face Pose Estimation from Eyes and Mouth [J]. International Journal of Advanced Mechatronic Systems,2010,2(1):132-138.
    [146]DE RIDDER D, DUIN R P W. Locally linear embedding for classification [J]. Pattern Recognition Group Technical Report Series, Delft University of Technology,2002.
    [147]http://www. aiar. xjtu. edu. cn/groups/face/Chinese/Homepage.htm
    [148]AGARWAL S, ROTH D. Learning a sparse representation for object detection [C]. Proceedings of European Conference on Computer Vision,2002:113-127.
    [149]DONOHO D L. For most large underdetermined systems of linear equations the minimal I1-norm solution is also the sparest solution [J]. Communications on Pure and Applied Mathematics,2006,59(6):797-829.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700