用户名: 密码: 验证码:
非圆信号参数估计方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
非圆信号是现代无线通信中常见的一种信号,例如AM、MASK、UQPSK、BPSK、MSK、GMSK和OQPSK信号。本文研究非圆信号的参数估计技术,包括非圆信号的TDOA估计、基于非相参阵列的非圆信号DOA估计、以及非圆信号的稳健Capon波束形成。与圆信号情况下只利用信号的相关统计信息相比,非圆信号参数估计研究的关键在于如何联合利用信号的相关和共轭相关统计信息来提高参数估计的性能。本文的主要工作概括如下:
     1.在高斯非圆复信号和高斯圆噪声的模型下推导了TDOA估计的最大似然算法和CRB。与互相关和共轭互相关算法相比,最大似然算法更全面的利用了非圆信号的二阶统计信息,因此在非圆信号情况下有更好的估计性能。同时,针对非圆信号提出了一种改进传统循环算法的方案,新方案可以同时利用信号的循环相关和共轭循环相关信息。
     2.从信息论的角度出发,在高斯和拉普拉斯两种实信号假设下对比了基于联合熵和互信息两个准则的实信号TDOA估计算法。然后,在非圆高斯复信号和圆高斯复噪声的模型下推导了基于互信息准则的TDOA估计算法。
     3.研究了基于非相参阵列的非圆信号渐进最优二阶DOA估计算法。首先,在非圆高斯复信号和圆高斯噪声的假设下推导了非相参阵列DOA估计的最大似然算法和闭式CRB。接着,提出了改进的广义最小二乘算法,此算法对高斯或非高斯圆信号都是渐进最小方差的二阶算法。随后,提出了一种非圆信号的渐进最小方差二阶算法。
     4.研究了非相参阵列的MUSIC类DOA估计算法,提出了只使用第一协方差矩阵的子阵加权MUSIC算法(w-MUSIC),并把w-MUSIC算法扩展到非圆信号。同时,对比分析了w-MUSIC算法和文献[85]中MUSIC算法的渐进估计方差。
     5.针对SOI和干扰信号都可能是非圆信号的情况提出了稳健的自适应波束形成方法NC-RCB。NC-RCB不但对阵列方向向量误差和协方差矩阵估计误差是稳健的,同时对SOI非圆系数的估计误差也是稳健的。在SOI是非圆信号的情况下,NC-RCB与只利用第一协方差矩阵的稳健Capon波束形成方法相比具有显著的性能提升。
Noncircular signals are usually encountered in radio communications, such as AM,MASK, UQPSK, BPSK, MSK, GMSK and OQPSK signals. This dissertation addressesthe parameter estimation issue for noncircular signals, including time difference ofarrival (TDOA) estimation for noncircular signals, direction of arrival (DOA)estimation for noncircular signals with multiple noncoherent subarrays, and robustCapon beamforming for noncircular signals. Compared to utilizing only thecross-correlation statistics of a signal in the case of circular signals, the key point of theresearch on parameter estimation for noncircular signals is how to jointly utilize thecross-correlation and conjugate cross-correlation statistics of a noncircular singal toimprove the estimation perforamce. The main work and contibutions of this dissertationare as follows.
     1. The maximum likelihood (ML) estimator and the Cramer–Rao lower bound(CRB) of TDOA estimation for Gaussian noncircular signals in Gaussian circular noiseis derived. Compared to the cross-correlation and conjugate cross-correlation estimators,the ML estimator utilizes the second-order statistics (SOS) information of a noncircularsignal more comprehensively and thus has better performance. Then, based on thecyclostationarity of man-made signals, a scheme to modify the traditionalsignal-selective TDOA methods for noncircular signals is proposed. This schemeexploits simultaneously the information contained in both the cyclic cross-correlation(CCC) and the conjugate CCC of a noncircular signal.
     2. For real-valued Gaussian and Laplacian signal models, the TDOA estimatorsusing the two information-theoretic measures, joint entropy and mutual information(MI), have been compared. Then, a method employing the MI to exploit thesecond-order (SO) noncircularity of noncircular signals has been proposed.
     3. The asymptotically-minimum-variance (AMV) SO estimation of DOA fornoncircular sources with multiple noncoherent subarrays has been addressed. First, theML estimator and the closed-form CRB for this problem are derived for noncircularGaussian complex signals and circular Gaussian complex noise. Subsequently, themodified generalized least-squre estimator is proposed, which is anasymptotically-minimum-variance (AMV) SO estimator for both Gaussian and non-Gaussian circular sources. Then, an AMV SO estimator for noncircular sources ispresented.
     4. The MUSIC-like DOA estimation algorithms for multiple noncoherent subarrayshave been studied. A weighted MUSIC (w-MUSIC) algorithm for noncoherentsubarrays using only the first covariance matrix is proposed, and it is subsequentlyextended for noncircular sources. The asymptotic performance of the w-MUSICalgorithm and a previously introduced MUSIC algorithm in [85] for noncoherentsubarrays are analyzed and compared.
     5. A robust Capon beamformer for noncircular signals (termed NC-RCB) has beenproposed for the generalized case with possibly noncircular signal-of-interesting (SOI)and/or noncircular interferences. The NC-RCB exploits the SO noncircularity of theSOI and interferences simultaneously and is robust against the errors in the steeringvector, sample covariance matrix and noncircular parameter of the SOI. For noncircularSOI, the NC-RCB shows distinctly better performance than the robust Caponbeamformer using only the first covariance matrix.
引文
[1] B. Picinbono. On circularity[J]. IEEE Transactions on Signal Processing,1994,42(12):3473-3482
    [2] P. J. Schreier, L. L. Scharf. Statistical signal processing of complex-valued data: the theory ofimproper and noncircular signals[M]. Cambridge University Press,2010
    [3] J. G. Proakis. Digital communications[M]. McGraw-Hill,3dt Edition,1995
    [4] F. D. Nesser, L. Massey. Proper Complex random processes with applications to informationtheory[J]. IEEE Transactions on Information Theory,1993,39(4):1293-1302
    [5] P. O. Amblard, M. Gaeta, J. L. Lacoume. Statistics for complex variables and signals-Part I andII[J]. Signal Processing, Elsevier,1996,53(1):1-25
    [6] F. Barbaresco, P. Chevalier. Noncircularity exploitation in signal processing overview andapplication to radar[C]. IET Waveform Diversity&Digital Radar Conference, London,2008,1-6
    [7] P. Chevalier. Optimal array processing for non-stationary signals[C]. Proceedings of IEEEInternational Conference on Acoustics, Speech, and Signal Processing (ICASSP), Atlanta(USA),1996,2868-2871
    [8] B. Picinbono, P. Chevalier. Widely linear estimation with complex data[J]. IEEE Transactionson Signal Processing,1995,43(8):2030-2033
    [9] W. M. Brown, R. B. Crane. Conjugate linear filtering[J]. IEEE Transactions on InformationTheory,1969,15(4):462-465
    [10] P. Chevalier, F. Pipon. New Insights into optimal widely linear array receivers for thedemodulation of BPSK, MSK and GMSK signals corrupted by noncircular interferences-Application to SAIC[J]. IEEE Transactions on Signal Processing,2006,54(3):870-883
    [11] H. Trigui, D. T. M. Slock. Performance bounds for cochannel interference cancellation withinthe current GSM standard[J]. Signal Processing, Elsevier,2000,80:1335-1346
    [12] M. Austin. SAIC and synchronized networks for increased GSM capacity[C].3G Americas’SAIC Working group,2003
    [13] G. Gelli, L. Paura, A. R. P. Ragozini. Blind widely linear multiuser detection[J]. IEEECommunications Letter,2000,4(6):187-189
    [14] S. Buzzi, M. Lops, A. M. Tulino. A new family of MMSE multiuser receivers for interferencesuppression in DS/CDMA systems employing BPSK modulation[J]. IEEE Transactions onCommunications,2001,49(1):154-167
    [15] A. M. Tulino, S. Verdu. Asymptotic analysis of improved linear receivers for BPSK-CDMAsubject to fading[J]. IEEE Journal on Selected Areas in Communications,2001,19(8):1544-1555
    [16] S. Buzzi, M. Lops. Performance analysis for the improved linear multiuser detectors inBPSK-modulated DS-CDMA systems[J]. IEEE Transactions on Communications,2003,51(1):37-42
    [17] A. Mirbagheri, K. N. Plataniotis, S. Pasupathy. An enhanced widely linear CDMA receiver withOQPSK modulation[J]. IEEE Transactions on Communications,2006,54(2):261-272
    [18] P. J. Schreier, L. L. Scharf, C. T. Mullis. Detection and estimation of improper complex randomsignals[J]. IEEE Transactions on Information Theory,2005,51(1):306-312
    [19] P. Chevalier, A. Blin, F. Pipon, F. Delaveau. GLRT-Based array receivers to detect a knownsignal corrupted by noncircular interferences[J]. Proceedings of EUSIPCO, Poznan (Poland),2007
    [20] P. Chevalier, F. Pipon, F. Delaveau. Second-order optimal array receivers for synchronizationof BPSK, MSK and GMSK signals corrupted by noncircular interferences[J]. EURASIPJournal on Advances in Signal Processing (JASP),2007(3):1-16
    [21] P. Chevalier, A. Blin. Widely linear MVDR beamformer for the reception of an unknown signalcorrupted by noncircular interferences[J]. IEEE Transactions on Signal Processing,2007,55(11):5323-5336
    [22] W. H. Gerstacker, R. Schober, A. Lampe. Receivers with widely linear processing forfrequency-selective channels[J]. IEEE Transactions on Communications,2003,51(9):1512-1523
    [23] D. Darsena, G. Gelli, L. Paura, F. Verde. Widely linear equalization and blind channelidentification for interference-contaminated multicarrier systems[J]. IEEE Transactions onSignal Processing,2005,53(3):1163-1177
    [24] D. Darsena, G. Gelli, F. Verde. Universal linear precoding for NBI-proof widely linearequalization in MC systems[J]. EURASIP Journal on Wireless Communications andNetworking,2008,2008:1-13
    [25] A. Parihar, L. Lampe, R. Schober, C. Leung. Equalization for DS-UWB systems-Part I: BPSKmodulation[J]. IEEE Transactions on Communications,2007,55(6):1164-1173
    [26] A. Parihar, L. Lampe, R. Schober, C. Leung. Equalization for DS-UWB systems-Part II:4BOKmodulation[J]. IEEE Transactions on Communications,2007,55(8),1525-1535
    [27] D. Mattera, L. Paura, F. Sterle. Widely linear MMSE equaliser for MIMO linear time-dispersivechannel[J]. Electronics Letter,2003,39(20):481-1482
    [28] D. Mattera, L. Paura, F. Sterle. Widely linear decision-feedback equalizer for time-dispersivelinear MIMO channels[J]. IEEE Transactions on Signal Processing,2005,53(7):2525-2536
    [29] W. H. Gerstacker, F. Obernosterer, R. Schober, A. T. Lehmann, A. Lampe, P. Gunreben.Equalization concepts for Alamouti’s space-time block code[J]. IEEE Transactions onCommunications,2004,52(7):1178-1190
    [30] S. Buzzi, M. Lops, S. Sardellitti. Widely linear reception strategies for layered space-timewireless communications[J]. IEEE Transactions on Signal Processing,2006,54(6),2252-2262
    [31] M. Witzke. Linear and widely linear filtering applied to iterative detection of generalizedMIMO signals[J]. Annales Télécommunications,2005,60(1):147-168
    [32] F. Sterle. Widely linear MMSE transceivers for MIMO channels[J]. IEEE Transactions onSignal Processing,2007,55(8):4258-4270
    [33] J. Capon. High resolution frequency wave number spectrum analysis[J]. Proceedings of IEEE,1969,57(8):1408-1418
    [34] J. Capon, R. J. Greenfield, R. J. Kolker. Multidimensional maximum likelihood processing of alarge aperture seismic array[J]. Proceeding of IEEE,1967,55(2):191-211
    [35] P. Gounon, C. Adnet, J. Galy. Localisation angulaire de signaux non circulaires[J]. Traitementdu Signal,1998,15(1):17-23
    [36] P. Charge, Y. Wang, J. Saillard. A noncircular source direction finding method usingpolynomial rooting[J]. Signal Processing,2001,81:1765-1770
    [37] P. Chage, Y. Wang, J. Saillard. A Root-MUSIC algorithm for noncircular sources[J].Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing(ICASSP),2001,7-11
    [38] A. Zoubir, P. Charge, Y.Wang. Noncircular sources localization with ESPRIT[C]. Proceedingof European Conference on Wireless Technology (ECWT2003), Munich, Germany,2003
    [39] J. P. Delmas. Asymptotically minimum variance second-order estimation for non-circularsignals with application to DOA estimation[J]. IEEE Transactions on Signal Processing,2004,52(5):1235-1241
    [40] N. Tayem, H. M. Kwon. Conjugate ESPRIT (C-SPRIT)[J]. IEEE Transactions on AntennasPropagation,2004,52(10):2618-2624.
    [41] M. Haardt, F. Romer. Enhancements of unitary ESPRIT for non-circular sources[C]. IEEEICASSP, Montral, QC, Canada,2004,10l-104
    [42] J. P. Delmas, H. Abeida. Stochastic Cramér-Rao bound for noncircular signals with applicationto DOA estimation[J]. IEEE Transactions on Signal Processing,2004,52:3192-2199
    [43] H. Abeida, J. P. Delmas. MUSIC-like estimation of direction of arrival for noncircularsources[J]. IEEE Transactions on Signal Processing,2006,54(7):2678-2690
    [44] A. Salamech, N. Tayem. Conjugate MUSIC for non-circular sources[C]. IEEE ICASSP,Toulouse,2006,877-880
    [45] Y. Xu, Z. Liu. On single-vector-sensor direction finding for linearly polarized sources havingnon-circular constellations[C]. Proceedings of ICSP2006,2006,414-417
    [46] A. Salamech, N. Tayem, H. M. Kwon. Improved2-D root MUSIC for non-circular signals[C].The workshop on sensor array and multichannel (SAM), Waltham,2006,151-156
    [47] F. Romer, M. Haardt. Efficient1-Dand2-D DOA Estimation for non-circular sources withhexagonal shaped espar arrays[C]. IEEE ICASSP,2006,881-884
    [48] F. Gao, Y. Wang, A. Nallanathan. Improved MUSIC by exploiting both real and complexsources[C]. MILCOM2006, Washington DC, USA,2006,1-6
    [49] N. Tayem, A. Salamech, H. M. Kwon. Toeplitz based matrix pencil for non-circular signals[C].IEEE VTC, Montreal, Canada,2006,25-28
    [50] Y. Xu, Z. Liu, J. Cao. Perturbation analysis of conjugate MI-ESPRIT for single acousticvector-sensor-based noncircular signal direction finding[J]. Signal Processing,2007,87(7):1597-1612
    [51] J. P. Delmas. Comments on “Conjugate ESPRIT (C-SPRIT)”[J]. IEEE Transactions onAntennas Propagation,2007,55(2):511
    [52] N. Tayem, H. M. Kwon. Reply to comments on “Conjugate ESPRIT (C-SPRIT)”[J]. IEEETransactions on Antennas Propagation,2007,55(2):512-513
    [53] F. Gao, A. Nallanathan, Y. Wang. Improved MUSIC under the coexistence of both circular andnoncircular sources[J]. IEEE Transactions on Signal Processing,2008,56:3033-3038
    [54] H. Abeida, J. P. Delmas. Statistical performance of MUSIC-like algorithms in resolvingnoncircular sources[J]. IEEE Transactions on Signal Processing,2008,56:4317-4329
    [55] O. Grellier, P. Comon, B. Mourrain, P. Trebuchet. Analytical blind channel identification[J].IEEE Transactions on Signal Processing,2002,50(9):2196-2207
    [56] P. Ciblat, P. Loubaton, E. Serpedin, G. Giannakis. Performance analysis of blind carrierfrequency offset estimators for noncircular transmissions through frequency-selectivechannels[J]. IEEE Transactions on Signal Processing,2002,50(4):130-140
    [57] A. Napolitatno, M. Tanda. Doppler-channel blind identification for non-circular transmissionsin multiple access systems[J]. IEEE Transactions on Communications,2004,52(12):2073-2078
    [58] T. Fusco, M. Tanda. ML-based symbol timing and frequency offset estimation for OFDMsystems with noncircular transmissions[J]. IEEE Transactions on Signal Processing,2006,54(9):3527-3541
    [59] C. H. Knapp, G. C. Carter. The generalized correlation method for estimation of time delay[J].IEEE Transactions on Acoustics, Speech, Signal Processing,1976, ASSP-24:320-327
    [60] G. C. Carter. Coherence and time delay estimation[J]. IEEE Proceedings,1987,75:236-255
    [61] J. P. Ianniello. Time delay estimation via cross-correlation in the presence of large estimationerrors[J]. IEEE Transactions on Acoustics, Speech, Signal Processing.1982, ASSP-30:998-1003
    [62] A. H. Quazi. An overview on the time delay estimate in active and passive systems for targetlocalization[J]. IEEE Transactions on Acoustics, Speech, Signal Processing,1981,29:527-533
    [63] G. C. Carter. Coherence and time delay estimation[M]. IEEE Press,1993
    [64] S. K. Chow, P. Schultheiss. Delay estimation using narrow-band processes[J]. IEEETransactions on Acoustics, Speech, and Signal Processing,1981,29(3):478–484
    [65] A. Weiss, E. Weinstein. Fundamental limitations in passive time delay estimation–Part I:Narrow-band systems[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing,1983,31(2):472–486
    [66] A. Weiss, E. Weinstein. Fundamental limitations in passive time-delay estimation–Part II:Wide-band systems[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing,1984,32(5):1064–1078
    [67] C. Blandin, A. Ozerov, E. Vincent. Multi-source TDOA estimation in reverberant audio usingangular spectra and clustering[J]. Signal Processing,2012,92(8):1950–1960
    [68] W. A. Gardner. Spectral correlation of modulated signals: Part I-Analog modulation[J]. IEEETransactions on Communications,1987,35(6):584-594
    [69] W. A. Gardner, W. A. Brown, C. K. Chen. Spectral correlation of modulated signals: PartII-Digital modulation[J]. IEEE Transactions on Communications,1987,35(6):595-601.
    [70] W. A. Gardner. Exploitation of spectral redundancy on cyclostationary signals[J]. IEEETransactions on Communications,1991,8(4):14-37
    [71] W. A. Gardner, C. K. Chen. Interference-tolerant time-difference-of-arrival estimation formodulated signals[J]. IEEE Transactions on Acoustics, Speech, Signal Processing,1988,36:1385-1395
    [72] W. A. Gardner, C. K. Chen. Signal-selective time-difference-of-arrival estimation for passivelocation of man-made signal sources in highly corruptive environments, Part I: Theory andmethod[J]. IEEE Transactions on Signal Processing,1992,40:1168-1184
    [73] C. K. Chen, W. A. Gardner. Signal-selective time-difference-of-arrival estimation for passivelocation of man-made signal sources in highly corruptive environments, Part II: Algorithms andperformance[J]. IEEE Transactions on Signal Processing,1992,40:1185-1197
    [74] P. Chevalier, F. Pipon, F. Delaveau. Second order optimal array receiver for synchronization ofBPSK, MSK and GMSK signals corrupted by noncircular interferences[J]. EURASIP Journalon Advances in Signal Processing,2007,2007(3):1-17
    [75] F. Haber, M. Zoltowski. Spatial spectrum estimation in a coherent signal environment using anarray in motion[J]. IEEE Transactions on Antennas Propagation,1986,34(3):301-310
    [76] G. S. Edelson, D. W. Tufts. On the ability to estimate narrow-band signal parameters usingtoward arrays[J]. IEEE Journal of Oceanic Engineering,1992,17(1):48-61
    [77] A. Zeira, B. Friedlander. Direction finding with time-varying arrays[J]. IEEE Transactions onSignal Processing,1995,43(4):927-937
    [78] B. Friedlander, A. Zeira. Eigen-analysis algorithms for time-varying arrays[J]. IEEETransactions on Aerospace Electronic Systems,1996,32(2):689-701
    [79] A. Zeira, B. Friedlander. On the performance of direction finding with time-varying arrays[J].Signal Processing,1995,43(2):133-147
    [80] J. Sheinvald, M. Wax, A. J. Weiss. Localization of multiple sources with moving arrays[J].IEEE Transactions on Signal Processing,1998,46:2736-2743
    [81] J. Sheinvald, M. Wax. Detection and localization of multiple signals using subarrays data[M].Advances in Spectrum Analysis and Array Processing, S. Haykin, Ed. Englewood Cliffs, NJ:Prentice-Hall,1995,324-351.
    [82] J. Sheinvald, M. Wax. Direction finding with fewer receivers via time-varying preprocessing[J].IEEE Transactions on Signal Processing,1999,47(1):2-9
    [83] D. Li, K. D. Wong, Y. H. Hu, A. M. Sayeed. Detection, classification, and tracking of targets[J].IEEE Signal Processing Magazine,2002,19(2):17-29
    [84] J. C. Chen, K. Yao, R. E. Hudson. Source localization and beamforming[J]. IEEE SignalProcessing Magazine,2002,19:30-39
    [85] D. Rieken, D. Fuhrmann. Generalizing MUSIC and MVDR for multiple noncoherent arrays[J].IEEE Transactions on Signal Processing,2004,52(9):2396-2406
    [86] O. L. Frost III. An algorithm for linearly constrained adaptive array processing[J]. Proceedingsof IEEE,1972,60:926-935
    [87] K. M. Buckley, L. J. Griffiths. An adaptive generalized sidelobe canceller with derivativeconstraints[J]. IEEE Transactions Antennas Propagation,1986, AP-34:311-319
    [88] R. A. Monzingo, T. W. Miller. Introduction to adaptive arrays[M]. New York: Wiley,1980
    [89] D. D. Feldman, L. J. Griffiths. A projection approach for robust adaptive beamforming[J]. IEEETransactions on Signal Processing,1994,42:867-876
    [90] L. Chang, C. C. Yeh. Performance of DMI and eigenspace-based beamformers[J]. IEEETransactions on Antennas Propagation,1992,40(11):1336-1347
    [91] Y. I. Abramovich, A. I. Nevrev. An analysis of effectiveness of adaptive maximization of thesignal-to-noise ratio which utilizes the inversion of the estimated correlation matrix[J]. RadioEngineering Electronics Physics,1981,26(12):67-74
    [92] M. H. Er, A. Cantoni. An alternative formulation for an optimum beamformer with robustnesscapability[C]. Proceedings of IEE F, Communication, Radar, Signal Processing,1985,132:447-460
    [93] H. Cox, R. M. Zeskind, M. M. Owen. Robust adaptive beam-forming[J]. IEEE Transactions onAcoustics, Speech, Signal Processing,1987, ASSP-35:1365-1376
    [94] B. D. Carlson. Covariance matrix estimation errors and diagonal loading in adaptive arrays[J].IEEE Transactions on Aerospace Electronic Systems,1988,24:397-401
    [95] C. C. Lee, J. H. Lee. Robust adaptive array beamforming under steering vector errors[J]. IEEETransactions on Antennas Propagation,1997,45:168-175
    [96] Z. Tian, K. L. Bell, H. L. Van Trees. A recursive least squares implementation for LCMPbeamforming under quadratic constraints[J]. IEEE Transactions on Signal Processing,2001,49:1138-1145
    [97] S. A. Vorobyov, A. B. Gershman, Z.-Q. Luo. Robust adaptive beamforming using worst-caseperformance optimization: a solution to the signal mismatch problem[J]. IEEE Transactions onSignal Processing,2003,51:313-324
    [98] J. Li, P.Stoica, Z. Wang. On robust Capon beamforming and diagonal loading[J]. IEEETransactions on Signal Processing,2003,51:1702-1715
    [99] R. G. Lorenz, S. P. Boyd. Robust minimum variance beamforming[J]. IEEE Transactions onSignal Processing,2005,53:1684-1696
    [100] J. Li, P. Stoica, Z. Wang. Doubly constrained robust Capon beamformer[J]. IEEE Transactionson Signal Processing,2004,52:2407-2423
    [101] L. Du, J. Li, P. Stoica. Fully automatic computation of diagonal loading levels for robustadaptive beamforming[J]. IEEE Transactions on Aerospace Electronic Systems,2010,46:449-458
    [102] S. Vorobyov, A. B. Gershman, Z.-Q. Luo, N. Ma. Adaptive beamforming with joint robustnessagainst mismathched signal steering vector and interference nonstationary[J]. IEEE SignalProcessing Letter,2004,11:108-111
    [103] S. Shahbazpanahi, A. B. Gershman, Z.-Q. Luo, K. M. Wong. Robust adaptive beamforming forgeneral-rank signal models[J]. IEEE Transactions on Signal Processing,2003,51:2257-2269
    [104] L. Lei, J. P. Lie, A. B. Gershman, C. M. S. See. Robust adaptive beamforming in partlycalibrated sparse sensor arrays[J]. IEEE Transactions on Signal Processing,2010,58:1661-1666
    [105] W. Jin, W. M. Jia, M. L. Yao, Z. Q. Lin. Iterative doubly constrained robust Caponbeamformer[J]. Electronics Letters,2011,47:1372-1373
    [106] S. E. Nai, W. Ser, Z. L. Yu, et al. Iterative robust minimum variance beamforming[J]. IEEETransactions on Signal Processing,2011,59:1601-1611
    [107] W. Jin, W. M. Jia, M. L. Yao, et al. Robust adaptive beamforming based on iterativeimplementation of worst-case performance optimisation[J]. Electronics Letters,2012,48:1389-1391
    [108] M. Rubsamen, A. B. Gershman. Robust adaptive beamforming using multidimensionalcovariance fitting[J]. IEEE Transactions on Signal Processing,2012,60:740-753
    [109] M. Rubsamen, M. Pesavento. Maximally robust Capon beamformer[J]. IEEE Transactions onSignal Processing,2013,61:2030-2041
    [110] P. Chevalier, J. P. Delmas, A. Oukaci. Optimal widely linear MVDR beamforming fornoncircular signals[J]. Proceedings of IEEE International Conferences on Acoustics, Speechand Signal Processing (ICASSP),2009,3573-3576
    [111] A. Bos. The multivariate complex normal distribution-a generalization[J]. IEEE Transactionson Information Theory,1995,41:537-539
    [112] B. Picinbono, P. Bondon. Second-order statistics of complex signals[J]. IEEE Transactions onSignal Processing,1997,45:411-419
    [113] A.N. D’Andrea, U. Mengali, R. Reggiannini. The modified Cramer-Rao bound and itsapplication to synchronization problems[J]. IEEE Transactions on Communications,1994,42:1391-1399
    [114] T. M. Cover, J. A. Thomas. Elements of information theory[J]. Wiley, New York,1991
    [115] S. Watanabe. Information theoretical analysis of multivariate correlation[J]. IBM Journal ofResearch and Development1960,4:66-82
    [116] J. Chen, Y. Huang, J. Benesty. Time delay estimation in room acoustic environments: Anoverview[J]. EURASIP Journal on Advances in Signal Processing,2006,2006(4):1-19
    [117] J. Benesty, J. Chen, Y. Huang. Time delay estimation via minimum entropy[J]. IEEE SignalProcessing Letter,2007,14:157-160
    [118] F. Talantzis, A. G. Constantinides, L. C. Polymenakos. Estimation of direction of arrival usinginformation theory[J]. IEEE Signal Processing Letter,2005,12:561-564
    [119] F. Wen, Q. Wan. Time delay estimation based on mutual information estimation[C].Proceedings of2nd International Conference on Image and Signal Processing, Chengdu,2009,1-5
    [120] F. Wen, Q. Wan. Robust time delay estimation for speech signals using information theory: Acomparison study[J]. EURASIP Journal on Audio, Speech, and Music Processing,2011,2011(1):1-10
    [121] F. Wen, Q. Wan, L. Y. Luo. Time delay estimation for noncircular signals using informationtheory[J]. International Journal of Electronics and Communications, Elsevier, March2013,67(3):242–245
    [122] S. Gazor, G. Zhang. Speech probability distribution[J]. IEEE Signal Processing Letter,2003,10(7):204–207
    [123] J. Villares, G. Vázquez. The Gaussian assumption in second-order estimation problems indigital communications[J]. IEEE Transactions on Signal Processing,2007,55(10):4994-5002
    [124] R. O. Schmidt. Multiple emitter location and signal parameter estimation[J]. IEEE Transactionson Antennas Propagation,1986, AP-34:276-280
    [125] P. Stoica, A. Nehorai. MUSIC, maximum likelihood, and Cramer-Rao bound[J]. IEEETransactions on Acoustics, Speech, Signal Processing,1989,37(5):720-741
    [126] L. M. Bregman. Finding the common point of convex sets by the method of successiveprojections[J]. Doki. Akad. Nauk USSR,1965,162:487–490
    [127] L. G. Gubin, B. T. Polyak, E. V. Raik. The method of projections for finding the common pointof convex sets[J]. USSR Comput. Math. Math.Phys.,1967,7(6):1–24
    [128] A. S. Cacciapuoti, G. Gelli, L. Paura, F. Verde. Finite-sample performance analysis of widelylinear multiuser receivers for DS-CDMA systems[J]. IEEE Trans. on Signal Process.,2008,56:1572–1587
    [129] A. S. Cacciapuoti, G. Gelli, L. Paura, F. Verde. Widely-linear versus linear blind multiuserdetection with subspace-based channel estimation: finite sample-size effects[J]. IEEE Trans. onSignal Process.,2009,57:1426–1443

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700