用户名: 密码: 验证码:
多波束透镜天线理论与应用技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高数据率卫星通信技术、局部点对多点通信以及毫米波成像等技术的发展,对多波束天线提出了极为苛刻的要求。传统的多波束天线如抛物面反射器、相控阵天线等具有波束覆盖范围有限、波束差异性较大、工作频带窄、损耗大、且相移网络复杂、昂贵等固有缺点,都不能满足低成本高效毫米波通信系统的要求。而利用光学成像和聚焦领域的透镜将不同形式发散的能量转变为平面波这一特性则可以极大地丰富多波束天线的设计。透镜天线的低成本、宽频带、宽角范围内多波束扫描且馈电网络简单等特性,倍受天线设计人员的青睐。但是透镜天线也具有一些传统性的缺点,如在较低频段,透镜天线的尺寸和重量都相对庞大;长期以来因复合材料工艺不成熟在很大程度上限制了透镜天线技术的发展。因此,对多波束透镜天线技术开展系统的理论研究、分析方法研究、设计与实验研究以及应用基础研究等,并充分发掘其潜在的技术优势显得尤为必要。
     正是基于此目的,本文从透镜天线的基本原理和分析方法着手,开展电大尺寸多波束透镜天线的快速计算与高效优化设计、多目标、多尺度方法优化设计透镜天线、透镜天线的新型馈源阵列及多波束扫描特性、基于新型高阻抗电磁表面的多波束透镜天线技术以及透镜天线在船载多波束卫星通信及跟踪系统的应用等多方面、较为深入的研究工作。本文的主要内容可概述如下:
     1.简述了多波束透镜天线的研究背景以及国内外研究动态和进展。其次,介绍了透镜天线的主要分类及基本原理,并回顾了具有代表性分析设计方法,如几何光学/物理光学法(GO/PO)、具有特殊形状透镜天线的严格解析方法以及电磁全波数值分析方法等。最后,以龙伯透镜天线为例介绍其辐射机理,并对比分析了现有龙伯透镜天线的实现方法。
     2.首次将实际馈源模型的口径面近场分布结合透镜天线的结构参数作为优化变量进行一体化优化设计,实现了实际馈源——透镜天线系统辐射特性的快速计算和高效设计,该方法特别适用于电大尺寸透镜天线的优化设计。同时,研究了透镜天线优化设计的收敛速度和全局最优解,以及馈源焦距和透镜口径尺寸对较少分层数目的透镜天线增益(效率)的影响。其次,研究了任意馈源口径近场分布照射下透镜天线的辐射特性。最后,设计并实验实现了最少分层数目的电大尺寸高效龙伯透镜天线,大大降低了电大尺寸透镜天线加工工艺的复杂度。
     3.针对多频段透镜天线设计中,各频段达到最佳增益/口径效率且具有较低的方向图旁瓣包络等相互矛盾的设计目标,首次采用多目标、多尺度优化算法(MOEA/D)设计龙伯透镜天线,实现透镜天线的多频段高增益最优设计以及某一频段内增益和方向图旁瓣包络特性的最优设计。所设计的透镜天线性能明显优于目前国内外报道中大多采用的单目标优化方法,且优化设计过程无需多次选取权值系数,一次运行即可得到Pareto最优解集,为设计者根据具体应用需求选取最优解提供了更多的自由度。
     4.在透镜天线的馈源阵列设计中,提出将四维天线阵这一阵列设计思想引入圆环阵列天线,构成四维天线圆环阵,在均匀/较低动态范围比的幅度激励下实现超低且均匀副瓣(-45dB)方向图综合、波束赋形以及波束电扫描(控制),有效地抑制了谐波频率的辐射,极大地简化了阵列馈电网络。此外,采用Vivaldi天线作为馈源,组成水平面半圆环阵照射龙伯透镜天线,在透镜天线赤道面较宽频带内实现178o (-3dB波束交叠)宽角范围的多波束覆盖。
     5.首先简要介绍了高阻抗电磁表面的研究背景,并对其传输特性、辐射机理以及应用优势和前景进行了阐述。其次,提出了一系列新型的高阻抗电磁表面单元结构(如开槽蘑菇型高阻表面单元、电容加载式带状高阻表面单元以及弯折臂式高阻表面单元),并分析其表面阻抗和局部色散特性。采用渐变表面阻抗技术,通过逐渐改变单元尺寸来控制电磁表面波的局部色散特性和相速度,改变表面波的传播路径,实现透镜天线所需的渐变折射率分布特性。最后,优化设计出低剖面、轻质、高效平板多波束半Maxwell Fish-Eye透镜天线,并对其单波束辐射特性和宽角范围多波束扫描特性进行了实验验证。该设计方法及高阻表面单元模型特别适用于较大折射率变化范围的透镜天线设计,具有较好的普适性。
     6.设计了一种基于龙伯透镜天线的船载多波束卫星通信及跟踪系统方案,采用一副半球透镜天线样机即可实现同时跟踪多颗同步轨道卫星,并与全球透镜天线样机的跟踪性能进行对比分析。所设计的跟踪系统的最大优势在于,在满足船载多波束卫星通信系统技术指标前提下,可至少取代三副抛物面天线,占据船载空间显著减小。其次,初步提出了一种基于半球透镜天线组阵的卫星网络通信方案。最后,对两波束半球透镜天线跟踪系统原理样机进行地面对星实验验证,实现了同时接收两颗同步卫星信号的能力。
Nowadays, rapid developments of high date rate satellite communication, localpoint-to-multipoint communication and millimeter wave imaging technologies havebeen leading to strict requirements for multi-beam antennas. Traditional multi-beamantennas, such as parabolic reflector antenna and phased array antenna, have eitherlimited scan coverage and poor beam uniformity, or narrow bandwidth, high losses,complicated and expensive phase-shift network, which can not meet the needs of lowcost and efficient millimeter wave communication systems. Lens, in the field of opticalimaging and focusing, has the capability of converting different kinds of divergentenergy into planar waves, which greatly enriches multi-beam antenna design. Lensantennas often have many attractive features such as low cost, broad bandwidth, widemulti-beam scan coverage and simple feed network. However, they still have someshortcomings, such as their large size and heavy weight especially at lower frequencies.Meanwhile, unstable composite material technologies have greatly hindered thedevelopment of lens antennas for a long time. Therefore, it is particularly necessary tocarry out studies on multi-beam lens technologies, including the theories, analysismethods, design, experiments and applications, so as to make the best of its potentialtechnical advantages.
     For these purposes, a number of studies on multi-beam lens antennas are carriedout in this dissertation. The studies include basic principles and analysis methods of lensantenna, fast calculation and efficient optimization design of electrically large sizemulti-beam lens antenna, multi-objective and multi-scaling optimization design of lensantenna, novel feed arrays and multi-beam scanning properties of lens antenna,multi-beam lens antennas using high impedance surfaces, and use of lens antenna inshipborne multi-beam satellite communication and tracking systems, etc. The maincontent of this dissertation are as follows:
     1. Domestic and international relevant research backgrounds and progresses ofmulti-beam lens antennas are introduced. Then, main classification and basic principlesare described; and some typical analysis and design approaches are reviewed, includingthe geometrical optics/physical optics methods, full wave analysis method, and exactanalytical solution of special shaped lens. In addition, a Luneburg lens antenna (LLA) is taken as an example to describe its radiation mechanism. Finally, some implementationtechniques of LLA are compared and investigated.
     2. Near-field aperture distributions of practical feed models are for the first timetaken into account in the lens antenna optimization with structural parameters of thelens. In this way, the radiation characteristics of practical feed-lens system can beaccurately evaluated and efficiently designed. This is especially feasible for the optimaldesign of electrically large size lens antenna. Meanwhile, the convergence rate andglobal optimum solution of the design procedure are analyzed. An investigation of theinfluences of the various lens-to-feed distances as well as aperture sizes of lens antennaon the aperture efficiency for a less-layer design is also proposed. Moreover, theradiation characteristics of lens antenna fed by arbitrary near-field distributions of feedsare described. Finally, the design, fabrication and measurement of electrically large andefficient lens antenna with minimum number of layers are detailed, and this designgreatly reduces the complexity of manufacturing processes.
     3. In the multi-band lens antenna design, goals of maximizing aperture efficienciesat separated frequency bands simultaneously and keeping the sidelobe envelope lowerenough contradict with each other. A multi-objective and multi-scaling optimizationalgorithm is firstly adopted for the optimal design of LLA. Two typical examples arepresented to verify the design procedure. The first example is to maximum apertureefficiency at each frequency band, and the other one is to achieve high gain and keepthe sidelobe level lower enough over one frequency band. Compared with previousworks obtained by single objective optimization algorithm, the proposed designprocedure provides much better radiation performances. Many Pareto-optimizationsolutions can be obtained in a single run without the need of selecting the weightingfactors. The proposed method offers great design freedom to the designers. They canchoose the Pareto-optimal solutions as needed.
     4. An innovative design concept of four dimensional antenna arrays is firstlyintroduced in the circular antenna arrays for the feed array design of lens antennas. Fourdimensional circular antenna arrays with low amplitude excitation dynamic-range ratiosor even uniform amplitude excitations can be used to synthesize low and equal-ripplesidelobe patterns (-45dB), flat-topped patterns and scanning sum beams without anypattern deterioration, and also suppress sidebands radiation. This design greatlysimplifies the array feed network. In addition, LLA can be used to launch multiple beams by implementing a semicircular array of Vivaldi antenna elements at theperiphery of the lens. A scan coverage of178o with-3dB beam crossover is achieved inthe desired frequency band.
     5. The research background of high impedance surfaces is briefly reviewed. Thetransmission characteristics, radiation mechanism, and promising application of highimpedance surfaces are also described. Then, several kinds of novel high impedancemetallic cells are proposed, including slotted metallic cells, capacitively-loaded stripmetallic cells and bended-arm metallic cells. The surface impedance and localdispersion characteristics of these cells are also investigated. Based on thesecharacteristics, the variable surface impedance technique is adopted for the lens antennadesign. The local dispersion characteristics, phase velocity and propagation paths ofsurface waves are controlled by gradually changing geometrical parameters of metalliccells. In this way, the necessary refractive index distribution of the lens is achieved.Finally, a low profile, lightweight and efficient planar half Maxwell fish-eye (HMFE)lens antenna is optimally designed. Both radiation performance of single beamconfiguration and wide multi-beam scanning properties of multiple-beam configurationare characterized and experimentally verified. The proposed approach and unit cellmodels are especially feasible for lens antennas with index gradient varying in a largerange and have good universality.
     6. A shipborne multi-beam satellite communication and tracking system based onLLA is presented. A half LLA prototype is adopted for tracking several geosynchronoussatellites simultaneously. The tracking performances of half LLA and LLA are alsocompared and investigated. The proposed tracking system meets the requirements ofshipborne multi-beam satellite communication system. It has a major advantage ofreplacing at least three parabolic reflector antennas and occupying less ship space. Inaddition, a satellite network communication solution based on half LLA arrays ispreliminarily proposed. Finally, the ground tracking satellites experiment verified theeffectiveness and feasibility of the proposed tracking system. The results show that the2-beam half LLA tracking system prototype can receive two geosynchronous satellitesignals simultaneously.
引文
[1] J. L. Volakis. Antenna Engineering Handbook,4th ed[M]. New York: McGraw-Hill Companies,2007.
    [2] X. Wu and J. Laurin. Fan-beam millimeter-wave antenna design based on the cylindricalLuneburg lens[J]. IEEE. Tran. Antennas. Propag., Aug.2007,55(8):2147-2156.
    [3] T. L. AP Rhys. The design of radially symmetric lenses[J]. IEEE. Tran. Antennas. Propag., Jul.1970,18(4):497-506.
    [4] A. V. Boriskin, G. Godi, R. Sauleau, et al. Small hemielliptic dielectric lens antenna analysis in2-D: boundary integral equations versus geometrical and physical optics[J]. IEEE. Tran.Antennas. Propag., Feb.2008,56(2):485-492.
    [5] R. Sauleau and B. Barès. A complete procedure for the design and optimization of arbitrarilyshaped integrated lens antennas[J]. IEEE. Tran. Antennas. Propag., Apr.2006,54(4):1122-1133.
    [6] G. Godi, R. Sauleau, L. Le Coq, et al. Design and optimization of three-dimensional integratedlens antennas with genetic algorithm[J]. IEEE. Tran. Antennas. Propag., Mar.2007,55(3):770-775.
    [7] A. V. Boriskin, A. Rolland, R. Sauleau, et al. Assessment of FDTD accuracy in the compacthemielliptic dielectric lens antenna analysis[J]. IEEE. Tran. Antennas. Propag., Mar.2008,56(3):758-764.
    [8] A. V. Boriskin, G. Godi, R. Sauleau, et al. Small hemielliptic dielectric lens antenna analysis in2-D: boundary integral equations versus geometrical and physical optics[J]. IEEE. Tran.Antennas. Propag., Feb.2008,56(2):485-492.
    [9] C. T. Tai. The electromagnetic theory of the spherical Luneburg lens[J]. Appl. Sci. Res., Sep.1957, B(7):113-130.
    [10] J. R. Sanford. Scattering by spherically stratified microwave lens antennas[J]. IEEE. Tran.Antennas. Propag., May1994,42(5):690-698.
    [11] B. Fuchs, L. Le Coq, et al. Design optimization of multishell Luneburg lenses[J]. IEEE. Tran.Antennas. Propag., Feb.2007,55(2):283-289.
    [12] B. Fuchs, O. Lafond, S. Rondineau, et al. Design and characterization of half Maxwell Fish-eyelens antennas in millimeter waves[J]. IEEE. Tran. Antennas. Propag., Jun.2006,54(6):2292-2300.
    [13] H. Mosallaei and Y. Rahmat-Samii. Nonuniform Luneburg and two-shell lens antennas:radiation characteristics and design optimization[J]. IEEE. Tran. Antennas. Propag., Jan.2001,49(1):60-69.
    [14] M. P. Carpenter, M. M. Osward, and D. A. Gibbs. Lens of gradient dielectric constant andmethods of production[P]. U. S.,6433936B1,2002.
    [15]所寿男,佐佐木一敏,篠原充,等. Luneburg介电透镜及其制造方法[P].中国,发明专利,CN101057370,2007.
    [16] Zimmerman et al. Luneburg lens and method of constructing same[P]. U. S.,5677796A,1997.
    [17] S. Rondineau, M. Himdi, and J. Sorieux. A sliced spherical Luneburg lens[J]. IEEE AntennasWireless Propag. Lett.,2003,2:163-166.
    [18] L. Xue and V.F. Fusco.24GHz automotive radar planar Luneburg lens[J]. IET Microw.Antennas Propag.,2007,1(3):624-628.
    [19] L. Xue and V.F. Fusco. Patch fed2D planar Luneburg lens[J]. Microwave Opt. Techn. Lett.,2007,49(12):2922-2924.
    [20] J. Thornton. Wide-scanning multi-layer hemisphere lens antenna for Ka band[J]. IEE Proc.–Microw. Antennas Propag., Dec.2006,153(6):573-578.
    [21] Y. J. Park, A. Herschlein, and W. Wiesbeck. A photonic bandgap (PBG) structure for guidingand suppressing surface waves in millimeter-wave antennas[J]. IEEE Trans. Microwave TheoryTech., Oct.2001,49(10):1854–1859.
    [22] Q. Cheng, H. F. Ma, and T. J. Cui. Broadband planar Luneburg lens based on complementarymetamaterials[J]. Appl. Phys. Lett.,2009,95:181901.
    [23] C. Hua, X. Wu, N. Yang, et al. Air-filled parallel-plate cylindrical modified Luneburg lensantenna for multiple-beam scanning at millimeter-wave frequencies[J]. IEEE Trans. MicrowaveTheory Tech., Jan.2013,61(1):436–443.
    [24] Z. Liu, S. Yang, and Z. Nie. A dielectric lens antenna design by using the effective mediumtheories[C]. International Symp. on Intelligent Signal Processing and Communication Systems(ISPACS), Chengdu, Dec.2010,1-4.
    [25]刘志佳.基于开孔结构的龙伯透镜天线技术[D].成都:电子科技大学,2011.
    [26]杨仕文,黄明,熊伟,等.一种分层数目最少的电大尺寸高效龙伯透镜天线[P].中国,国家发明专利, CN102176545A,2011.
    [27] M. Huang, S. Yang, W. Xiong, et al. Design and optimization of spherical lens antennasincluding practical feed models[J]. Prog. Electromagn. Res.,2011,120:355-370.
    [28] C. A. Balanis. Antenna Theory Analysis and Design,3rd ed[M]. New Jersey: A John Wiley&Sons, Inc.,2005.
    [29]袁宁,梁昌洪,郑家俊. Rotman透镜多波束形成网络的数值分析[J].电子学报,1999,27(12):39-42.
    [30] B. Chantraine-Barès, R. Sauleau, L. Le Coq, et al. A new accurate design method formillimeter-wave homogeneous dielectric substrate lens antennas of arbitrary shape[J]. IEEE.Tran. Antennas. Propag., Mar.2005,53(3):1069-1082.
    [31]王哲.毫米波无源成像系统中多波束透镜天线设计[D].成都:电子科技大学,2009.
    [32] S. Enoch, G. Tayeb, P. Sabouroux, et al. A metamaterial for directive emission[J]. Phys. Rev.Lett., Nov.2002,89(21):213902.
    [33] B.-I. Wu, W. Wang, J. Pacheco, et al. A study of using metamaterials as antenna substrate toenhance gain[J]. Prog. Electromagn. Res.,2005,51:295-328.
    [34] A. Alù, M. G. Silveirinha, A. Salandrino, et al. Epsilon-near-zero metamaterials andelectromagnetic sources: tailoring the radiation phase pattern[J]. Phys. Rev. B,2007,75:155410.
    [35] J. B. Pendry. Negative refraction makes a perfect lens[J]. Phys. Rev. Lett., Oct.2000,85(18):3966-3969.
    [36] R. A. Shelby, D. R. Smith, and S. Schultz. Experimental verification of a negative index ofrefraction[J]. Science, Apr.2001,292:77-79.
    [37] H. Nonogaki. Dielectric lens and dielectric lens manufacturing method[P]. U. S.,20020174685A1,2002.
    [38] B. Fuchs, R. Golubovic, A. K. Skrivervik, et al. Spherical lens antenna designs with particleswarm optimization[J]. Microw. Opt. Techn. Lett., Jul.2010,52(7):1655-1659.
    [39] E. Agastra, G. Bellaveglia, L. Lucci, et al. Genetic algorithm optimization of high-efficiencywide-band multimodal square horns for discrete lenses[J]. Prog. Electromagn. Res.,2008,83:335-352.
    [40] S. A. Hosseini and Z. Atlasbaf. Optimization of side lobe level and fixing quasi-nulls in both ofthe sum and difference patterns by using continuous Ant Colony Optimization (ACO)method[J]. Prog. Electromagn. Res.,2008,79:321-337.
    [41] R. Storn. On the usage of differential evolution for function optimization[C]. BiennialConference of the North American, Berkeley, CA, Jun.1996,519-523.
    [42] A.Qing. Electromagnetic inverse scattering of multiple two-dimensional perfectly conductingobjects by the differential evolution strategy[J]. IEEE Trans. Antennas Propag., Jun.2003,51(6):1251-1262.
    [43] S. Yang, Y. B. Gan, and A. Qing. Antenna-array pattern nulling using a differential evolutionalgorithm. Int. J. RF Microwave Comput. Aided Eng.[J], Jan.2004,14(1):57-63.
    [44] M. Zhong, S. Yang, and Z. Nie. Optimization of a Luneberg lens antenna using the differentialevolution algorithm[C]. IEEE Antennas Propag. Symp., San Diego, CA, Jul.2008,1-4.
    [45]钟鸣海.分层龙伯透镜天线技术研究[D].成都:电子科技大学,2009.
    [46] J.-Y. Li and J. L. Guo. Optimization technique using differential evolution for Yagi-Udaantennas[J]. J. Electromagn.Waves Appl.,2009,23(4):449-461.
    [47] G. Li, S. Yang, M. Huang, et al. Sidelobe suppression in time modulated linear arrays withunequal element spacing[J]. J. Electromagn. Waves Appl.,2010,24(5-6):775-783.
    [48]王卓.高性能双频段馈源分析与设计[D].成都:电子科技大学,2009.
    [49] S. Chamaani, S. A. Mirtaheri, M. Teshnehlab, et al. Modified multi-objective particle swarmoptimization for electromagnetic absorber design[J]. Prog. Electromagn. Res.,2008,79:353-366.
    [50] Y. H. Lee, B. J. Cahill, S. J. Porter, et al. A novel evolutionary learning technique formulti-objective array antenna optimization[J]. Prog. Electromagn. Res.,2004,48:125-144.
    [51] Q. Zhang and H. Li. MOEA/D: A multiobjective evolutionary algorithm based ondecomposition[J]. IEEE Trans. Evol. Comput., Dec.2007,11(6):712-731.
    [52] S. Pal, S. Das, and A. Basak. Design of time-modulated linear arrays with a multi-objectiveoptimization approach[J]. Prog. Electromagn. Res. B,2010,23:83-107.
    [53] Y. Chen, S. Yang, and Z. Nie. Improving conflicting specifications of time-modulated antennaarrays by using a multiobjective evolutionary algorithm[J]. Int. J. Numer. Model. El., Jul.2011.
    [54] S. K. Goudos, K. Siakavara, E. E. Vafiadis, et al. Pareto optimal Yagi-Uda antenna design usingmulti-objective differential evolution[J]. Prog. Electromagn. Res.,2010,105:231-251.
    [55] T. Maruyama, K. Yamamori, and Y. Kuwahara. Design of multibeam dielectric lens antennasby multiobjective optimization[J]. IEEE Trans. Antennas Propag., Jan.2009,57(1):57-63.
    [56]滕静华.双频双极化龙伯透镜馈源天线技术研究[D].成都:电子科技大学,2011.
    [57] J. Sanford and Z. Sipus. Sidelobe reduction with array fed spherical lenses[C]. IEEE AntennasPropag. Symp., Newport Beach, CA, Jun.1995,1:670-673.
    [58]刘璟,杨仕文,钟鸣海,等. Ku、Ka频段龙伯透镜馈源阵列技术研究[J].电波科学学报,2010,25(2):363-367.
    [59]刘璟.多波束龙伯透镜天线技术研究[D].成都:电子科技大学,2010.
    [60] H. E. Shanks, R. W. Bickmore. Four-dimensional electromagnetic radiators[J]. Canad. J. Phys.,1959,37(3):263-275.
    [61] W. H. Kummer, A. T. Villeneuve, T. S. Fong, et al. Ultra-low sidelobes from time-modulatedarrays[J]. IEEE Trans. Antennas Propag., Nov.1963,11(5):633-639.
    [62] B. L. Lewis and J. B. Evins. A new technique for reducing radar response to signals enteringantenna sidelobes[J]. IEEE Trans. Antennas Propag.,1983,31(6):993-996.
    [63] S. Yang, Y. B. Gan, and A. Qing. Sideband suppression in time-modulated linear arrays by thedifferential evolution algorithm[J]. IEEE Antennas Wireless Propag. Lett.,2002,1:173-175.
    [64] S. Yang, Y. B. Gan, and A. Qing. Moving phase center antenna arrays with optimized staticexcitations[J]. Microwave Opt. Techn. Lett., July2003,38(1):83-85.
    [65] Y. Chen, S. Yang, and Z. Nie. Synthesis of optimal sum and difference patterns from timemodulated hexagonal planar arrays[J]. Int. J. Infrared Millim. Waves, Oct.2008,29(10):933-945.
    [66] S. Yang, Y. Chen, and Z. Nie. Multiple patterns from time-modulated linear antenna arrays[J].Electromagnetics,2008,28(8):562-571.
    [67] Y. Chen, S. Yang, and Z. Nie. Synthesis of satellite footprint patterns from time-modulatedplanar arrays with very low dynamic range ratios[J]. Int. J. Numer. Modell. Electron. NetworksDevices Fields,2008,21(6):493-506.
    [68] S. Yang, Y. B. Gan, P. K. Tan. Comparative study of low sidelobe time modulated linear arrayswith different time schemes[J]. J. Electromagn. Waves Appl., Nov.2004,18(11):1443-1458.
    [69] S. Yang. Study of low sidelobe time modulated linear antenna arrays at millimeter-waves[J]. Int.J. Infrared Milli. Waves, Mar.2005,26(3):443-456.
    [70] S. Yang, Y. B. Gan, and P. K. Tan. Linear antenna arrays with bidirectional phase centermotion[J]. IEEE Trans. Antennas Propag., May.2005,53(5):1829-1835.
    [71] S. Yang, Y. B. Gan, and P. K. Tan. Evaluation of directivity and gain for time modulated linearantenna arrays[J]. Microwave Opt. Techn. Lett.,2004,42(2):167-171.
    [72] X. Zhu, S. Yang, and Z. Nie. Full-wave simulation of time modulated linear antenna arrays infrequency domain[J]. IEEE Trans. Antennas Propag.,2008,56(5):1479-1482.
    [73] S. Yang, Y. Chen, and Z. Nie. Simulation of time modulated linear antenna arrays using theFDTD method[J]. Prog. Electromagn. Res.,2009,98:175-190.
    [74] S. Yang and Z. Nie. Mutual coupling compensation in time modulated linear antenna arrays[J].IEEE Trans. Antennas Propag., Dec.2005,53(12):4182-4185.
    [75] G. Li, S. Yang, Y. Chen, et al. A novel electronic beam steering technique in time modulatedantenna arrays[J]. Prog. Electromagn. Res.,2009,97:391-405.
    [76] G. Li, S. Yang, and Z. Nie. Direction of arrival estimation in time modulated linear arrays withunidirectional phase center motion[J]. IEEE Trans. Antennas Propag.,2010,58(4):1105-1111.
    [77] G. Li, S. Yang, Z. Zhao, et al. A study of AM and FM signal reception of time modulated linearantenna arrays[J]. Prog. Electromagn. Res. Lett.,2009,7:171-181.
    [78] Q. Zhu, S. Yang, R. Yao, et al. Unified time-and frequency-domain study on time-modulatedarrays[J]. IEEE Trans. Antennas Propag., Jun.2013,61(6):3069-3076.
    [79] G. Li, S. Yang, and Z. Nie. A study on the application of time modulated antenna arrays toairborne pulsed Doppler radar[J]. IEEE Trans. Antennas Propag.,2009,57(5):1578-1582.
    [80] L. Manica, P. Rocca, L. Poli, et al. Almost time-independent performance in time-modulatedlinear arrays[J]. IEEE Antennas Wireless Propag. Lett.,2009,8:843-846.
    [81] P. Lorenzo, P. Rocca, L. Manica, et al. Handling sideband radiations in time-modulated arraysthrough particle swarm optimization[J]. IEEE Trans. Antennas Propag.,2010,58(4):1408-1411.
    [82] J. Fondevila, J. C. Brégains, F. Ares, et al. Optimizing uniformly excited linear arrays throughtime modulation[J]. IEEE Antennas Wireless Propag. Lett.,2004,3:298-301.
    [83] J. Fondevila, J. C. Brégains, F. Ares, et al. Application of time modulation in the synthesis ofsum and difference patterns by using linear arrays[J]. Microwave. Opt. Techn. Lett.,2006,48(5):829-832.
    [84] J. C. Brégains, J. Fondevila, G. Franceschetti, et al. Signal radiation and power losses oftime-modulated arrays[J]. IEEE Trans. Antennas Propag.,2008,56(6):1799-1804.
    [85] A. Tennant and B. Chambers. A two-element time modulated array with direction-findingproperties[J]. IEEE Antennas Wireless Propag. Lett.,2007,6:64-65.
    [86] A. Tennant. Experimental two-element time-modulated direction finding array[J]. IEEE Trans.Antennas Propag.,2010,58(3):986-988.
    [87] Y. Tong and A. Tennant. Simultaneous control of sidelobe level and harmonic beam steering intime-modulated linear arrays[J]. Electron. Lett.,2010,46(3):201-202.
    [88]汪茂光,吕善伟,刘瑞祥.阵列天线分析与综合[M].成都:电子科技大学出版社,1989.
    [89] N. Goto and Y. Tsunoda. Sidelobe reduction of circular arrays with a constant excitationamplitude[J]. IEEE Trans. Antennas Propag., Nov.1977,25(6):896-898.
    [90] J. D. S. Langley, P. S. Hall, and P. Newham. Balanced antipodal Vivaldi antenna for widebandwidth phased arrays[J]. IEE Proc.-Microw. Antennas propag., Apr.1996,143(2):97-102.
    [91] A. S. Thomas. Radiation from modulated surface wave structures-I[J]. IRE InternationalConvention Record, Mar.1957,5:153-160.
    [92] R. L. Pease. Radiation from modulated surface-wave structures-II[J]. IRE InternationalConvention Record, Mar.1957,5:161-165.
    [93] A. A. Oliner and A. Hessel. Guided waves on sinusoidally-modulated reactance surfaces[J].IEEE Trans. Antennas Propagat, Dec.1959,201-208.
    [94] S. H. Cho and R. J. King. Radiation from a finite sinusoidally modulated reactance surface(SMRS)[J]. Radio Science, Jun.1976,11(6):561-570.
    [95] A. Harvey. Periodic and guiding structures at microwave frequencies[J]. IEEE Trans.Microwave Theory Tech.,1960,8:30-61.
    [96] C. Elachi. Waves in active and passive periodic structures: a review[J]. Proc. IEEE, Dec.1976,64(12):1666-1698.
    [97] L. Brillouin. Wave guides for slow waves[J]. J. Appl. Phys.,1948,19:1023-1041.
    [98] W. Rotman. A study of single-surface corrugated guides[J]. Proc. IRE., Aug.1951.39(8):952-959.
    [99] R. Elliot. On the theory of corrugated plane surfaces[J]. IEEE Trans. Antennas. Propag., Apr.1954,2(2):71-81.
    [100]S. Lee and W. Jones. Surface waves on two-dimensional corrugated surfaces[J]. Radio. Sci.,Sep.1971,6(8):811-818.
    [101]S. Ramo, J. Whinnery, and T. Van Duzer. Fields and Waves in CommunicationElectronics,2nded[M]. New York: Wiley,1984.
    [102]R. Collin. Field Theory of Guided Waves,2nd ed[M]. New York: IEEE Press,1991.
    [103]P. S. Kildal. Artificially soft and hard surfaces in electromagnetics[J]. IEEE Trans. AntennasPropagat., Oct.1990,38(10):1537–1544.
    [104]Z. Ying, P. S. Kildal, and A. Kishk. Study of different realizations and calculation models forsoft surfaces by using a vertical monopole on a soft disk as a test bed[J]. IEEE Trans. AntennasPropagat., Nov.1996,44(11):1474–1481.
    [105]S. Kitson, W. Barnes, and J. Sambles. Full photonic band gap for surface modes in the visible[J].Phys. Rev. Lett.,1996,77(13):2670–2673.
    [106]W. Barnes, T. Priest, S. Kitson, et al. Physical origin of photonic energy gaps in the propagationof surface plasmas on gratings[J]. Phys. Rev. B. Condens. Matter,1996,54(9):6227–6244.
    [107]R. King, D. Thiel, and K. Park. The synthesis of surface reactance using an artificialdielectric[J]. IEEE Trans. Antennas Propag., May1983,31(3):471-476.
    [108]Y. J. Park and W. Wiesbeck. Angular independency of a parallel-plate Luneburg lens withhexagonal lattice and circular metal posts[J]. IEEE Antennas Wireless Propag. Lett.2002,1:128-130.
    [109]D. Sievenpiper, L. Zhang, R. F. J. Broas, et al. High-impedance electromagnetic surfaces with aforbidden frequency band[J]. IEEE Trans. Microwave Theory Tech., Nov.1999,47(11):2059–2074.
    [110]D. Sievenpiper. High-impedance electromagnetic surfaces[D]. Los Angeles, CA: Dept. Elect.Eng., Univ. California at Los Angeles,1999.
    [111]D. Sievenpiper and E. Yablonovitch. Circuit and method for eliminating surface currents onmetals[P]. U. S.,60/079953, Mar.30,1998.
    [112]D. Sievenpiper, J. Schaffner, and J. Navarro. Axial ratio improvement in aperture antennasusing high-impedance ground plane[J]. Electron. Lett., Nov.2002,38(23):1411-1412.
    [113]D. Sievenpiper, H. P. Hsu, J. Schaffner, et al. Low-profile, four-sector diversity antenna onhigh-impedance ground plane[J]. Electron. Lett., Aug.2000,36(16):1343-1345.
    [114]R. F. J. Broas, D. F. Sievenpiper, and E. Yablonovitch. A high-impedance ground plane appliedto a cellphone handset geometry[J]. IEEE Trans. Microwave Theory Tech., Jul.2001,49(7):1262-1265.
    [115]D. Sievenpiper, J. Schaffner, R. Loo, et al. A tunable impedance surface performing as areconfigurable beam steering reflector[J]. IEEE Trans. Antennas Propag., Mar.2002,50(3):384-390.
    [116]D. Sievenpiper, J. Schaffner, B. Loo, et al. Electronic beam steering using a varactor-tunedimpedance surface[C]. IEEE Antennas Propagat. Symp., Boston, MA, Jul.2001,1:174-177.
    [117]D. Sievenpiper and J. Schaffner. Beam steering microwave reflector based on electricallytunable impedance surface[J]. Electron. Lett., Oct.2002,38(21):1237-1238.
    [118]D. Sievenpiper, J. H. Schaffner, H. J. Song, et al. Two-dimensional beam steering using anelectrically tunable impedance surface[J]. IEEE Trans. Antennas Propag., Oct.2003,51(10):2713-2722.
    [119]D. Sievenpiper, J. Schaffner, J. J. Lee, et al. A steerable leaky-wave antenna using a tunableimpedance ground plane[J]. IEEE Antennas Wireless Propag. Lett.,2002,1:179-182.
    [120]D. F. Sievenpiper. Forward and backward leaky wave radiation with large effective aperturefrom an electronically tunable textured surface[J]. IEEE Trans. Antennas Propag., Jan.2005,53(1):236-247.
    [121]D. F. Sievenpiper. Superluminal waveguides based on non-Foster circuits for broadbandleaky-wave antennas[J]. IEEE Antennas Wireless Propag. Lett.,2011,10:231-234.
    [122]R. F. J. Broas, D. F. Sievenpiper, and E. Yablonovitch. An application of high-impedanceground planes to phased array antennas[J]. IEEE Trans. Antennas Propag., Apr.2005,53(4):1377-1381.
    [123]D. F. Sievenpiper, J. Colburn, B. Fong, et al. Holographic artificial impedance surfaces forconformal antennas[C]. IEEE Antennas Propagat. Symp., Washington, DC, Jul.2005,1B:256-259.
    [124]J. S. Colburn, D. F. Sievenpiper, B. H. Fong, et al. Advances in artificial impedance surfaceconformal antennas[C]. IEEE Antennas Propagat. Symp., Honolulu, HI, Jun.2007,3820-3823.
    [125]J. S. Colburn, A. Lai, D. F. Sievenpiper, et al. Adaptive artificial impedance surface conformalantennas[C]. IEEE Antennas Propagat. Symp., Charleston, SC, Jun.2009,1-4.
    [126]B. H. Fong, J. S. Colburn, P. R. Herz, et al. Polarization controlling holographic artificialimpedance surfaces[C]. IEEE Antennas Propagat. Symp., Honolulu, HI, Jun.2007,3824-3827.
    [127]B. H. Fong, J. S. Colburn, J. J. Ottusch, et al. Scalar and tensor holographic artificial impedancesurfaces[J]. IEEE Trans. Antennas Propag., Oct.2010,58(10):3212-3221.
    [128]R. Quarfoth and D. F. Sievenpiper. Simulation of anisotropic artificial impedance surface withrectangular and diamond lattices[C]. IEEE Antennas Propagat. Symp., Spokan, WA, Jul.2011,1498-1501.
    [129]R. Quarfoth and D. F. Sievenpiper. Impedance surface waveguide theory and simulation. IEEEAntenna Propagat. Symp[C]., Spokan, WA, Jul.2011,1159-1162.
    [130]R. Quarfoth and D. Sievenpiper. Artificial tensor impedance surface waveguides[J]. IEEE Trans.Antennas Propag., Jul.2013,61(7):3597-3606.
    [131]R. Quarfoth and D. F. Sievenpiper. Anisotropic surface impedance cloak[C]. IEEE AntennasPropagat. Symp., Chicago, IL, Jul.2012,1-2.
    [132]D. F. Sievenpiper. Nonlinear grounded metasurfaces for suppression of high-power pulsed RFcurrents[J]. IEEE Antennas Wireless Propag. Lett.,2011,10:1516-1519.
    [133]H. Wakatsuchi, S. Kim, J. Rushton, et al. Numerical and experimental demonstration ofnonlinear metamaterial surfaces designed for high power surface current absorption[C].Metamaterials2012: The Sixth International Congress on Advanced Electromagnetic Materialsin Microwaves and Optics, St. Petersburg, Russia,Sep.2012.
    [134]H. Wakatsuchi, S. Kim, J. J. Rushton, et al. Circuit-based nonlinear metasurface absorbers forhigh power surface currents[J]. Appl. Phys. Lett.,2013,102(21):214103.
    [135]S. Kim, H. Wakatsuchi, J. Rushton, et al. Nonlinear metamaterial surfaces for absorption ofhigh power microwave surface currents[C]. IEEE Antennas Propag. Symp., Orlando, Florida,Jul.2013.
    [136]D. J. Gregoire, C. R. White, and J. S. Colburn. Wideband artificial magnetic conductors loadedwith non-Foster negative inductors[J]. IEEE Antennas Wireless Propag. Lett.,2011,10:1586-1589.
    [137]D. J. Gregoire, C. R. White, and J. S. Colburn. A coaxial TEM cell for direct measurement ofUHF artificial magnetic conductors[J]. IEEE Antennas Propag. Mag., Apr.2012,54(2):251-259.
    [138]D. J. Gregoire, J. S. Colburn, and C. R. White. AAMC-loaded cavity-backed slot antennas[C].IEEE Antennas Propag. Symp., Chicago, IL, Jul.2012,1-2.
    [139]D. J. Gregoire and A. V. Kabakian. Surface-wave waveguides[J]. IEEE Antennas WirelessPropag. Lett.,2011,10:1512-1515.
    [140]Sergio Clavijo, Rodolfo E. Díaz, and William E. McKinzie, III. Design methodology forSievenpiper high-impedance surfaces: an artificial magnetic conductor for positive gainelectrically small antennas[J]. IEEE Trans. Antennas Propag., Oct.2003,51(10):2678-2690.
    [141]C. Pfeiffer and A. Grbic. A printed, broadband Luneburg lens antenna[J]. IEEE Trans. Antennas.Propag., Sep.2010,58(9):3055-3059.
    [142]A. M. Patel and A. Grbic. A printed leaky-wave antenna based on a sinusoidally-modulatedreactance surface[J]. IEEE Trans. Antennas Propag., Jun.2011,59(6):2087-2096.
    [143]M. Ettorre and A. Grbic. Generation of propagating Bessel beams using leaky-wave modes[J].IEEE Trans. Antennas Propag., Aug.2012,60(8):3605-3613.
    [144]M. Ettorre, S. M. Rudolph, and A. Grbic. Generation of propagating Bessel beams usingleaky-wave modes: experimental validation[J]. IEEE Trans. Antennas Propag., Jun.2012,60(6):2645-2653.
    [145]A. M. Patel and A. Grbic. Modeling and analysis of printed-circuit tensor impedance surfaces[J].IEEE Trans. Antennas Propag., Jan.2013,61(1):211-220.
    [146]S. Maci and P.-S. Kildal. Hard and soft surfaces realized by FSS printed on a groundeddielectric slab[C]. IEEE Antennas Propagat. Symp., Moterey, CA, Jun.2004,285-288.
    [147]S. Maci, G. Minatti, M. Casaletti, et al. Metasurfing: addressing waves on impenetrablemetasurfaces[J]. IEEE Antennas Wireless Propag. Lett.,2011,(10):1499-1502.
    [148]G. Minatti, F. Caminita, M. Casaletti, et al. Spiral leaky-wave antennas based on modulatedsurface impedance[J]. IEEE Trans. Antennas Propag., Dec.2011,59(12):4436-4444.
    [149]M. Casaletti, F. Caminita, S. Maci, et al. New type of horn based on variable metasurface[C].IEEE Antennas Propagat. Symp., Spokane, WA, Jul.2011,1048-1050.
    [150]M. Bosiljevac, M. Casaletti, F. Caminita, et al. Non-uniform metasurface Luneburg lensantenna design[J]. IEEE. Tran. Antennas. Propag., Sep.2012,60(9):4065-4073.
    [151]F. Costa, A. Monorchio, S. Talarico, et al. An active high-impedance surface for low-profiletunable and steerable antennas[J]. IEEE Antennas Wireless Propag. Lett.,2008,7:676-680.
    [152]H. J. Lee, K. L. Ford, and R. J. Langley. Independently reconfigurable multiband highimpedance surface for L, C, X and Ku Radar Bands[C]. The5thEuropean Conference onAntennas Propag., Rome, Apr.2011,1890-1894.
    [153]U. Leonhardt. Perfect imaging without negative refraction[J]. New J. Phys., Sep.2009,11:093040.
    [154]J. Dong and A. I. Zaghloul. Microwave lens designs: optimization, fast simulation algorithms,and360-degree scanning techniques[D]. Blacksburg, VA: Dept. Elect. Eng., VirginiaPolytechnic Institute and State University,2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700