用户名: 密码: 验证码:
超高频RFID标签芯片中低功耗模拟电路关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超高频(Ultra High Frequency, UHF)射频识别(Radio Frequency Identification,RFID)技术是一种通过无线方式实现远距离目标物品识别的自动识别技术,也是物联网技术中的一个重要组成部分,因此具有很好的发展前景和研究价值。本文以UHF RFID标签芯片的低功耗模拟电路设计关键技术以及其他相关模拟电路的低功耗设计为研究课题,对低功耗高精度时钟产生电路技术、高效率整流电路设计技术、低功耗高可靠性ASK(amplitude shift keying)解调电路设计技术和低电压亚阈值锁存比较器的设计与优化等关键技术展开研究。论文的主要创新性研究成果如下:
     1.论文研究了低功耗时钟产生电路的频率补偿机制,提出了一种具有工艺和温度自适应频率补偿机制的高精度低功耗时钟产生电路。后仿结果显示,中心时钟频率为1.92MHz,电路平均功耗为1.45μW,在考虑温度变化(-40~85°C)和工艺偏差(TT/FF/SS)的因素下,时钟频率的最大偏差约为±5.8%。与其他低功耗时钟电路相比,本文提出的电路在功耗和频率精度上达到了更好的折中,对于RFID标签芯片及其他低功耗系统具有重要应用价值。
     2.研究了基于二极管检波的ASK解调电路中均值产生电路的结构设计,提出了一种基于动态栅极偏置MOS管的均值产生电路。该电路在保证ASK解调电路具有足够大的输入动态范围的同时,有效的减少了解调电路中的无源器件。仿真和测试结果系统的验证了该电路的可靠性。
     3.针对整流电路设计技术,分析了双输出整流电路的设计与优化方法,基于该优化方法设计实现了一款双输出Dickson整流电路,并进行了测试。针对测试中发现的问题,设计了一款双差分整流电路,该设计可以有效解决Dickson整流电路测试中发现的天线“盲区”问题,且仿真得出的整流效率可达到72%。
     4.基于以上研究成果,设计实现了两款符合ISO/IEC18000-6C协议的标签芯片,其中基于Dickson整流电路的标签芯片已经通过流片测试,灵敏度达到-13dBm,达到商用产品水平;另一款为基于双差分整流电路与具有PVT自适应补偿机制的高精度时钟电路的标签芯片,仿真结果显示,预计灵敏度可达到-16dBm。
     5.针对物流领域的特殊应用需求,论文在通用标签芯片的研究基础上提出了一款面向港口、物流应用的特种标签芯片设计,该标签芯片可实现对运输过程中的货柜开启次数的全程监控,同时也兼容ISO/IEC18000-6C协议。论文系统的提出了该标签芯片的一些特有的模块设计,包括:低功耗锁离合状态监控电路、电源管理电路和基带处理器。论文通过仿真验证了各个模块的功能,该设计扩展了RFID标签芯片的功能。
     6.低电压锁存比较器通常是RFID标签芯片和传感器之间的接口电路的重要模块,论文研究了低电压锁存比较器设计技术,提出了亚阈值锁存比较器设计中元件尺寸的优化设计方法,设计了一种低电压全摆幅锁存比较器电路。仿真结果验证了论文所提出的优化设计方法,且该电路的速度明显优于其他全摆幅比较器电路。
     7.论文研究了低功耗传感器唤醒电路中的包络信号检测方法,提出了一种低功耗包络信号下降沿检测电路,该电路能够通过检测输入包络信号的下降沿来将其转换为数字信息,且不需要固定的偏置电流,可有效降低传感器的待机功耗。
Ultra high frequency (UHF) radio frequency identification (RFID) is an advancedauto-identification technology which can remotely identify the targets by employingwireless communication. UHF RFID technology is also an important part of theInternet-of-Things (IOT). Therefore, it has a great prospect and research value. Thisdissertation focuses on the analog and RF front-end of UHF RFID transponders andother relevant circuits, and the main research contributions are as follows:
     1. Frequency compensation mechanisms for low power oscillator are researched,and an ultra-low-power oscillator with process and temperature compensation isproposed. According to the post-simulation results, the center frequency is1.92MHz, and the power consumption is1.45μW. Considering the temperature(-40~85°C) and process (TT, FF, SS) variation, the maximum frequencyvariation of the proposed oscillator is±5.8%. Compared with other low poweroscillator structures, the proposed oscillator achieves outstanding balancebetween clock accuracy and power consumption. Therefore, this circuit issignificant to RFID transponder chip and other low power systems.
     2. Design of the average generator in ASK demodulator is researched, and a novelaverage generator based on an adaptively gate-biased MOS transistor isproposed. This design guarantees that the input dynamic range of the ASKdemodulator is large enough, and effectively reduces passive devices in thedemodulator circuit at the same time. Simulations and Measurement resultssystematically validate that the proposed circuit achieves excellent reliability.
     3. The design and optimization method of dual-output rectifier is analysed. Adual-output Dickson rectifier is implemented and measured. To address theissues exposed in the measurement, a dual-differential rectifier is designed. Thiscircuit structure can effectively avoid the “deadzone” which is observed in themeasurement of Dickson rectifier. The power conversion efficiency reaches72%according to the simulation results.
     4. Based on the above research results, two tag chips in compliance withISO/IEC18000-6C protocol have been implemented. One of them is based on aDickson rectifier, and has already been fabricated. Measurement results show that the sensitivity of the tag chip is-13dBm, which reaches the performance ofcommercial products. The other one is based on the dual-differential rectifierand the low power oscillator with process and temperature compensation.Simulation results predict that the sensitivity of the tag chip reaches-16dBm.
     5. Based on the special application requirements in logistics area, this paper alsoproposes the design of a semi-passive UHF RFID tag IC with freight securitymonitoring function. This tag can record the number of times a container hasbeen opened during transport and is compatible with ISO/IEC18000-6C protocol.Several key modules are proposed, such as the switch-state monitoring unit, thepower management unit and the baseband processor. The proposed modules arevalidated by simulations, and the function of RFID transponder is effectivelyextended.
     6. Low voltage latch-based comparator is a key module in the interface circuitbetween RFID tag and sensor. This paper researches the design techniques oflow voltage latch-based comparators, presents the design of a low voltagerail-to-rail comparator and derives optimal transistor size ratios for bothconventional latch-based and the proposed comparators which operate intransistor sub-threshold region. The proposed optimization method is validatedby simulations and the presented circuit is signicantly faster than existingrail-to-rail comparator designs in ultra-low voltage operation.
     7. The methods of envelope signal detection in ultra-low power sensor wake-upcircuits are researched, and a novel envelope edge detector is proposed. Theproposed circuit extracts digital bits by detecting the falling edge of the envelopesignal. The proposed circuit needs no fixed bias current, which can significantlyreduce the power consumption of sensor in standby mode.
引文
[1] B. Violino. The history of RFID technology[EB/OL]. http://www.rfidjournal.com/articles/view?1338, Jan16,2005
    [2] K. Finkenzeller. Radio-frequency identifications fundamentals and applications[M]. New York:Wiley,2003
    [3] EPCglobal. Radio-frequency identity protocols class-1generation-2UHF RFID protocol forcommunications at860MHz-960MHz[S]. Version1.2.0,2008
    [4]中国信息产业部.800/900MHz频段射频识别(RFID)技术应用规定(试行)[S].北京:中华人民共和国信息产业部无线电管理局,2007年4月20日
    [5] U. Kaiser, W. Steinhagen. A low-power transponder IC for high-performance identificationsystems[J]. IEEE J. Solid-State Circuits,1995,30(3):306–310
    [6] S. Masui, E. Ishii, T. Iwawaki, et al.. A13.56MHz CMOS RF identification transponderintegrated circuit with a dedicated CPU[C]. IEEE International Solid-State Circuits ConferenceProceedings, San Francisco,1999,162–163
    [7] A. Abrial, J. Bouvier, M. Renaudin, et al.. A new contactless smart card IC using an on-chipantenna and an asynchronous microcontroller[J]. IEEE J. Solid-State Circuits,2001,36(7):1101–1107
    [8] U. Karthaus, M. Fischer. Fully integrated passive UHF RFID transponder IC with16.7-μWminimum RF input power[J]. IEEE J. Solid-State Circuits,2003,38(10):1602–1608
    [9] J.-P. Curty, N. Joehl, C. Dehollaini, et al.. Remotely powered addressable UHF RFID integratedsystem[J]. IEEE J. Solid-State Circuits,2005,40(11):2193–2202
    [10] V. Pillai, H. Heinrich, D. Dieska, et al.. An ultra-low-power long range battery/passive RFIDtag for UHF and microwave bands with a current consumption of700nA at1.5V[J]. IEEETrans. Circuits Syst. Regul. Pap.,2007,54(7):1500–1512
    [11] R. Barnett, G. Balachandran, S. Lazar, et al.. A passive UHF RFID transponder for EPC Gen2with-14BQ WIRWMXMZMXy MR0.13μQ CM [C]. IEEE International Solid-State CircuitsConference Preceedings, San Francisco,2007,582–623
    [12] Jong-Wook Lee, Bomson Lee. A long-range UHF-band passive RFID tag IC based on high-Qdesign approach[J]. IEEE Trans. Ind. Electron.,2009,56(7):2308–2316
    [13] J. F. Dickson. On-chip high-voltage generation in MNOS integrated circuits using an improvedvoltage multiplier technique[J]. IEEE J. Solid-State Circuits,1976,11(3):374–378
    [14] A. Ashry, K. Sharaf, M. Ibrahim. A simple and accurate model for RFID rectifier[J]. IEEE Syst.J.,2008,2(4):520–524
    [15] P. N. A. Fahsyar, N. Soin. A proposed low power voltage multiplier for passive UHF RFIDtransponder[C]. IEEE International Conference on Semiconductor Electronics Proceedings,Melaka,2010,334–337
    [16] J. Yi, W.-H. Ki, C.-Y. Tsui. Analysis and design strategy of UHF micro-power CMOS rectifiersfor micro-sensor and RFID applications[J]. IEEE Trans. Circuits Syst. Regul. Pap.,2007,54(1):153–166
    [17] C. Ma, C. Zhang, Z. Wang. Power analysis for the MOS AC/DC rectifier of passive RFIDtransponders[C]. IEEE Asia Pacific Conference on Circuits and Systems Proceedings, Singapore,2006,1350–1353
    [18] E. Bergeret, J. Gaubert, P. Pannier, et al.. Power generation system for UHF passive RFID[J].Electron. Lett.,2006,42(25):1452–1454
    [19] A. Shameli, A. Safarian, A. Rofougaran, et al.. Power harvester design for passive UHF RFIDtag using a voltage boosting technique[J]. IEEE Trans. Microw. Theory Tech.,2007,55(6):1089–1097
    [20] G. Gosset, D. Flandre. Fully-automated and portable design methodology for optimal sizing ofenergy-efficient CMOS voltage rectifiers[J]. IEEE J. Emerg. Sel. Top. Circuits Syst.,2011,1(2):141–149
    [21] H. Nakamoto, D. Yamazaki, T. Yamamoto, et al.. A passive UHF RFID tag LSI with36.6%efficiency CMOS-only rectifier and current-mode demodulator in0.35μm FeRAMtechnology[C]. IEEE International Solid-State Circuits Conference Proceedings, San Francisco,2006,1201–1210
    [22] S. Mandal, R. Sarpeshkar. Low-power CMOS rectifier design for RFID applications[J]. IEEETrans. Circuits Syst. Regul. Pap.,2007,54(6):1177–1188
    [23] K. Kotani, A. Sasaki, T. Ito. High-efficiency differential-drive CMOS rectifier for UHFRFIDs[J]. IEEE J. Solid-State Circuits,2009,44(11):3011–3018
    [24] A. Facen, A. Boni. CMOS power retriever for UHF RFID tags[J]. Electron. Lett.,2007,43(25):1424–1425
    [25] A. Sasaki, K. Kotani, T. Ito. Differential-drive CMOS rectifier for UHF RFIDs with66%PCEat-12dBm Input[C]. IEEE Asian Solid-State Circuits Conference Proceedings, Fukuoka,2008,105–108
    [26] G. K. Balachandran, R. E. Barnett. A passive UHF RFID demodulator with RF overvoltageprotection and automatic weighted threshold adjustment[J]. IEEE Trans. Circuits Syst. Regul.Pap.,2010,57(9):2291–2300
    [27] C. Klapf, A. Missoni, W. Pribyl, et al.. Analyses and design of low power clock generators forRFID Tags[C]. Research in Microelectronics and Electronics Proceedings, Honolulu,2008,181–184
    [28] F. Cilek, K. Seemann, D. Brenk, et al.. Ultra low power oscillator for UHF RFIDtransponder[C]. IEEE International Frequency Control Symposium Proceedings, Honolulu,2008,418–421
    [29] F. Song, J. Yin, H. L. Liao, et al.. Ultra-low-power clock generation circuit for EPC standardUHF RDID transponders[J]. Electron. Lett.,2008,44(3):199–201
    [30] S. Park, C. Min, S. Cho. A95nW ring oscillator-based temperature sensor for RFID tags in0.13μm CMOS[C]. IEEE International Symposium on Circuits and Systems, Taipei,2009,1153–1156
    [31] U. Denier. Analysis and design of an ultra low-power CMOS relaxation oscillator[J]. IEEETrans. Circuits Syst. Regul. Pap.,2010,57(8):1973–1982
    [32] C.-F. Chan, K.-P. Pun, K.-N. Leung, et al.. A low-power continuously-calibrated clock recoverycircuit for UHF RFID EPC class-1generation-2transponders[J]. IEEE J. Solid-State Circuits,2010,45(3):587–599
    [33] K. Sundaresan, P. E. Allen, F. Ayazi. Process and temperature compensation in a7-MHzCMOS clock oscillator[J]. IEEE J. Solid-State Circuits,2006,41(2):433–442
    [34] X. Zhang, A. B. Apsel. A low-power, process-and-temperature-compensated ring oscillatorwith addition-based current source[J]. IEEE Trans. Circuits Syst. Regul. Pap.,2011,58(5):868–878
    [35] K. R. Lakshmikumar, V. Mukundagiri, S. L. J. Gierkink. A process and temperaturecompensated two-stage ring oscillator[C]. IEEE Custom Integrated Circuits ConferenceProceedings, San Jose,2007,691–694
    [36] J. Tang, F. Tang. Temperature and process independent ring-oscillator using compactcompensation technic[C]. International Conference on Anti-Counterfeiting Security andIdentification in Communication Proceedings, Chengdu,2010,49–52
    [37] R. Vijayaraghavan, M. R. Haider, S. K. Islam, et al.. A wideband injection locked frequencydivider based on a process and temperature compensated ring oscillator[C]. IEEE Radio andWireless Symposium Proceedings, Orlando,2008,379–382.
    [38] W. Che, Y. Yang, C. Xu, et al.. Analysis, design and implementation of semi-passive Gen2tag[C]. IEEE International Conference on RFID Proceedings, Orlando,2009,15–19
    [39] W. Che, W. Chen, D. Meng, et al.. Power management unit for battery assisted passive RFIDtag[J]. Electron. Lett.,2010,46(8):589–590
    [40] A. Janek, C. Steger, R. Weiss, et al.. Lifetime extension of semi-passive UHF RFID tags usingspecial power management techniques and energy harvesting devices[C]. AFRICONProceedings, Dallas,2007,1–7
    [41] J. Yin, J. Yi, M. K. Law, et al.. A system-on-chip EPC Gen-2passive UHF RFID tag withembedded temperature sensor[J]. IEEE J. Solid-State Circuits,2010,45(11):2404–2420
    [42] M. Chen, S. Gonzalez, V. Leung, et al.. A2G-RFID-based e-healthcare system[J]. IEEE Wirel.Commun.,2010,17(1):37–43
    [43] M. K. Law, A. Bermak, H. C. Luong. A Sub-μW embedded CMOS temperature sensor forRFID food monitoring application[J]. IEEE J. Solid-State Circuits,2010,45(6):1246–1255
    [44] K. Souri, K. A. A. Makinwa. A0.12mm27.4μW micropower temperature sensor with aninaccuracy of±0.2℃(3σ) From-30℃to125℃[J]. IEEE J. Solid-State Circuits,2011,46(7):1693–1700
    [45] D. Yeager, F. Zhang, A. Zarrasvand, et al.. A9.2μA gen2compatible UHF RFID sensing tagwith-12dBm Sensitivity and1.25μVrmsinput-referred noise floor[C]. IEEE InternationalSolid-State Circuits Conference Proceedings, San Francisco,2010,52–53
    [46]孔金瓯.麦克斯韦方程[M].北京:高等教育出版社,2004
    [47] Y. Wang, G. Wen, W. Mao, et al.. Design of a passive UHF RFID tag for theISO/IEC18000-6C protocol[J].2011, J. Semicond.,32(5):055009
    [48] Impinj,Inc.. Gen2tag clock rate—what you need to know[EB/OL]..MQTMRN. R/aTTPM aXMSRW/aKCPS O aXI2001001.T J, Oct1,2005
    [49]王峥.超高频RFID空中接口协议的研究与系统设计[D].天津:天津大学,2011,102-108
    [50] G. De Vita, F. Marraccini, G. Iannaccone. Low-voltage low-power CMOS oscillator with lowtemperature and process sensitivity[C]. IEEE International Symposium on Circuits and Systems,New Orleans,2007,2152–2155
    [51] R. Barnett, J. Liu. A0.8V1.52MHz MSVC relaxation oscillator with inverted mirror feedbackreference for UHF RFID[C]. IEEE Custom Integrated Circuits Conference, San Jose,2006,769–772
    [52] Y. Wang, J. Liu, L. Xie, et al.. An ultra-low-power oscillator with temperature and processcompensation for UHF RFID transponder[J]. Radioengineering,2013,22(2):505-510
    [53] B. Razavi. Design of analog CMOS integrated circuits[M]. New York: McGraw-Hill,2000.
    [54] K. Ueno, T. Hirose, T. Asai, et al.. A300nW,15ppm/℃,20ppm/V CMOS voltage referencecircuit consisting of subthreshold MOSFETs[J]. IEEE J. Solid-State Circuits,2009,44(7):2047–2054
    [55] F. Aghlmand, M. Atarodi, S. Saeedi. Low phase noise on-chip oscillator for implantablebiomedical applications [C]. IEEE International Symposium on Circuits and SystemsProceedings, Rio De Janeiro,2011,213-216
    [56] S. Ayazian, V. A. Akhavan, E. Soenen. A photovoltaic-driven and energy-autonomous CMOSimplantable sensor[J]. IEEE Transactions on Biomedical Circuits and Systems,2012,6(4):336-343
    [57] K. Choe, O. D. Bernal, D. Nuttman, et al.. A precision relaxation oscillator with a self-clockedoffset-cancellation scheme for implantable biomedical SoCs[C]. IEEE International Solid-StateCircuits Conference Proceedings, San Francisco,2009,402-403
    [58] H. Okada, T. Itoh, T. Masuda. Development of custom CMOS LSI for ultra-low power wirelesssensor node in health monitoring systems[C]. IEEE Sensors Proceedings, Limerick,2011,1197-1200
    [59]王耀,文光俊.一种用于超高频射频识别标签芯片的解调电路[P].中国,发明专利,ZL.201010568305,2012年4月30日
    [60] R. E. Barnett. High efficiency RF to DC conversion and ultra-low-power analog front endcircuits for low-cost field-powered UHF RFID[D]. Dallas: University of Texas at Dallas,2007,30-36
    [61] M. Baghaei-Nejad, D. S. Mendoza, Z. Zou, S. Radiom, et al.. A remote-powered RFID tag with10Mb/s UWB uplink and-18.5dBm senWMXMZMXy HF S RPMRO MR0.18μQ CM [C]. IEEEInternational Solid-State Circuits Conference Proceedings, San Francisco,2009,198–199
    [62]文光俊,王耀,刘佳欣.一种离合状态监控电路及采用该电路的电子标签[P].中国,发明专利, ZL.201110225727.6,2013年4月3日
    [63]王耀,文光俊,咸凛.锁离合状态采集电路及集成该电路的射频识别电子标签[P].中国,发明专利,ZL.201010246841.2,2012年11月7日
    [64] Y. Wang, J. Liu, L. Xie, et al.. Design of a semi-passive UHF RFID tag IC with freight securitymonitoring function[J]. Int. J. Rf Technol. Res. Appl.,2013,4(2):93–105
    [65] D. Schinkel, E. Mensink, E. Klumperink, et al.. A double-tail latch-type voltage sense amplifierwith18ps setup+hold time[C]. IEEE International Solid-State Circuits Conference Proceedings,San Francisco,2007,314–605
    [66] B. Goll, H. Zimmermann. A0.12μm CMOS comparator requiring0.5V at600MHz and1.5V at6GHz[C]. IEEE International Solid-State Circuits Conference Proceedings, San Francisco,2007,316–605
    [67] B. Goll, H. Zimmermann. A comparator with reduced delay time in65-nm CMOS for supplyvoltages down to0.65V[J]. IEEE Trans. Circuits Syst. Ii Express Briefs,2009,56(11):810–814
    [68] Y. Lin, K. Doris, H. Hegt. A dynamic latched comparator for low supply voltages down to0.45V in65-nm CMOS[C]. IEEE International Symposium on Circuits and Systems Proceedings,Seoul,2012,2737–2740
    [69] X. Zhou, Q. Li. A160mV670nW8-bit SAR ADC in0.13μm CMOS[C]. IEEE CustomIntegrated Circuits Conference Proceedings, San Jose,2012,1–4
    [70] A. Nikoozadeh, B. Murmann. An analysis of latch comparator offset due to load capacitormismatch[J]. IEEE Trans. Circuits Syst. Ii Express Briefs,2006,53(12):1398–1402
    [71] S. Okura, H. Shibata, T. Okura, et al.. A frequency model of a continuously driven clockedCMOS comparator[J]. IEEE Trans. Circuits Syst. Ii Express Briefs,2010,57(12):956–960
    [72] B. Razavi, B. A. Wooley. Design techniques for high-speed, high-resolution comparators[J].IEEE J. Solid-State Circuits,1992,27(12):1916–1926
    [73] B. Wicht, T. Nirschl, D. Schmitt-Landsiedel. Yield and speed optimization of a latch-typevoltage sense amplifier[J]. IEEE J. Solid-State Circuits,2004,39(7):1148–1158
    [74] C.-C. Liu, S.-J. Chang, G.-Y. Huang, Y.-Z. Lin. A10-bit50-MS/s SAR ADC with a monotoniccapacitor switching procedure[J]. IEEE J. Solid-State Circuits,2010,45(4):731–740
    [75] G. M. YMR, F. T’X EyR I, W. Sansen. A high-speed CMOS comparator with8-b resolution[J].IEEE J. Solid-State Circuits,1992,27(2):208–211
    [76] K. Kiyoyama, M. Onoda, Y. Tanaka. A low current consumption CMOS latched comparator forbody-implanted chip[C]. IEEE International Symposium on Circuits and Systems Proceedings,Kobe,2005,1940–1943
    [77] B. Goll, H. Zimmermann. A65nm CMOS comparator with modified latch to achieve7GHz/1.3mW at1.2V and700MHz/47μW at0.6V[C]. IEEE International Solid-State CircuitsConference Proceedings, San Francisco,2009,328–329
    [78] H.-C. Hong, G.-M. Lee. A65-fJ/conversion-step0.9-V200-kS/s rail-to-rail8-bit successiveapproximation ADC[J]. IEEE J. Solid-State Circuits,2007,42(10):2161–2168
    [79] C. Fayomi, G. I. Wirth, D. Binkley, et al.. An experimental0.6-V57.5-fJ/conversion-step250-kS/s8-bit rail-to-rail successive approximation ADC in0.18μm CMOS[C].16th IEEEInternational Conference on Electronics, Circuits, and Systems Proceedings, YasmineHammamet,2009,195–198
    [80] M. Kandala, H. Wang. A0.5V high-speed comparator with rail-to-rail input range[J]. AnalogIntegr. Circuits Signal Process.,2012,73(1):415–421
    [81] S. Drago, D. M. W. Leenaerts, F. Sebastiano, et al.. A2.4GHz830pJ/bit duty-cycled wake-upreceiver with-82dBm sensitivity for crystal-less wireless sensor nodes[C]. IEEE InternationalSolid-State Circuits Conference Proceedings, San Francisco,2010,224–225
    [82] N. M. Pletcher, S. Gambini, J. Rabaey. A52μW wake-up receiver with-72dBm sensitivityusing an uncertain-IF architecture[J]. IEEE J. Solid-State Circuits,2009,44(1):269–280
    [83] N. Pletcher, S. Gambini, J. Rabaey. A μW,1.9GHz F XS MKMXaP baWIbaR aOIYT VI IMZIVfor wireless sensor nodes[C]. IEEE Custom Integrated Circuits Conference Proceedings, SanJose,2007,539–542
    [84] N. E. Roberts, D. D. Wentzloff. A98nW wake-up radio for wireless body area networks[C].IEEE Radio Frequency Integrated Circuits Symposium Proceedings, Montreal,2012,373–376
    [85] D. K. Meher, A. Salimath, A. Halder. An ultra-low power symbol detection methodology andits circuit implementation for a wake-up receiver in wireless sensor nodes[C].25th InternationalConference on VLSI Design Proceedings, Hyderabad,2012,274–279
    [86] E. Nilsson, C. Svensson. Ultra low power wake-up radio using envelope detector andtransmission line voltage transformer[J]. IEEE J. Emerg. Sel. Top. Circuits Syst.,2013,3(1):5–12
    [87] C. Hambeck, S. Mahlknecht, T. Herndl. A2.4μW wake-up receiver for wireless sensor nodeswith-71dBm sensitivity[C]. IEEE International Symposium on Circuits and SystemsProceedings, Rio De Janeiro,2011,534–537
    [88] K. Takahagi, H. Matsushita, T. Iida, et al.. Low-power wake-up receiver with subthresholdCMOS circuits for wireless sensor networks[J]. Analog Integr. Circuits Signal Process.,2012,75(2):199–205
    [89] S. Marinkovic, E. Popovici. Nano-power wake-up radio circuit for wireless body areanetworks[C]. IEEE Radio and Wireless Symposium Proceedings, Phoenix,2011,398–401
    [90] T. L. Cochran, J. K. Kim, D. S. Ha. Low power wake-up receiver with unique nodeaddressing[C]. IEEE54th International Midwest Symposium on Circuits and SystemsProceedings, Seoul,2011,1–4
    [91] J. Lim, H. Cho, K. Cho, et al.. High sensitive RF-DC rectifier and ultra low power DC sensingcircuit for waking up wireless system[C]. Asia Pacific Microwave Conference Proceedings,Singapore,2009,237–240
    [92] W. Chen, W. Che, X. Wang, et al.. A two-stage wake-up circuit for semi-passive RFID tag[C].IEEE8th International Conference on ASIC Proceedings, Changsha,2009,553–556
    [93] S. von der Mark, R. Kamp, M. Huber, et al.. Three stage wakeup scheme for sensornetworks[C]. SBMO/IEEE MTT-S International Conference on Microwave and OptoelectronicsProceedings, Brasilia,2005,205–208

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700