用户名: 密码: 验证码:
时间交叉模数转换器数字校准技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
信息技术和集成系统的迅速发展使得对高性能模数转换器的需求日趋强烈。然而,随着CMOS工艺的演进,在深亚微米、纳米工艺条件下,器件尺寸按比例缩减、电源电压降低以及晶体管本征增益变低等因素的存在使得电路的非理想效应更加凸显,为高性能模数转换器的设计带来诸多困难,单通道模数转换器的速度与精度性能已趋于现有条件下的物理极限。时间交叉技术是突破物理限制,实现高速、高精度模数转换的必然途径,但是通道问的失调失配、增益失配和采样时间失配严重制约了时间交叉模数转换器的性能。凭借大规模数字集成电路在工艺、集成度、成本、功耗等方面的优势,采用数字校准技术突破模拟电路性能瓶颈是未来高速、高精度时间交叉模数转换器发展的趋势所在。
     本论文研究高性能时间交叉模数转换器的数字辅助设计技术,探讨数字辅助的模拟集成电路的设计原理及设计流程,依靠数字信号处理知识体系的完备性,利用数字后处理技术抑制时间交叉模数转换器通道失配误差对其动态性能的影响,实现数字校准。通过在系统行为级、电路级搭建设计和验证平台,完成完整的设计和验证过程。
     第一,提出了互质通道组的劈分时间交叉模数转换器一般性结构。系统地研究时间交叉模数转换器通道失配误差的来源、误差效应及误差模型,深入讨论带通道失配误差校准的时间交叉模数转换器的系统架构、基础理论以及算法实现。依据劈分通道互校准概念,研究利用劈分设计技术实现时间交叉模数转换器的基本原理,提出了设计互质通道组劈分时间交叉模数转换器的充分条件及设计方法。
     第二,针对所提出的互质通道组的劈分时间交叉模数转换器结构,提出了通道失配误差全数字校准技术。该校准技术能够在后台自适应地对通道失调失配、增益失配和采样时间失配同时进行校准,消除误差对时间交叉模数转换器性能的限制。校准算法基于最小均方迭代原理,具有计算复杂度低、易于硬件实现的优点。为保证高频信号输入时的校准效果,在校准过程中引入针对采样时间高阶误差项的级联补偿技术,使得输入在接近奈奎斯特频率时仍然具有优异的校准效果。以一个7通道劈分时间交叉模数转换器为例完成对所提出的互质通道组劈分时间交叉模数转换器结构及其失配校准技术的示范论证。同时,所提出的结构和校准技术也具有向任意通道数量的时间交叉模数转换系统扩展的特点。
     第三,设计了单通道14位、125MS/s流水线型模数转换器,并以之为通道单元搭建了用于验证所提出转换器结构的电路平台,结合校准算法的FPGA硬件实现,完成了对所提校准方案正确性和可实现性的验证。电路级验证结果表明,在失调失配、增益失配和采样时间失配分别为3%满幅值输入范围、2%和2%采样时钟周期的条件下,经过校准后时间交叉ADC的无杂散动态范围和信号噪声畸变比均提高了50dBc左右,分别达到92dBc和84dBc,有效位数提高了8位,达到13.7位,接近时间交叉ADC中单通道ADC的有效精度。该结果说明,所提出的数字校准技术能够有效消除时间交叉ADC通道失配导致的非理想效应,提高其动态性能。
Rapid developments of information technology and integrated systems have strong growing demand for high performance ADCs. However, with the development of CMOS process, the design of high performance ADCs are challenged by more obvious nonideal factors brought about by scaling down of technology, low supply voltage, low transistor intrinsic gain under deep submicron and nanometer process. The performance of single channel ADC approaches to the technology limitations on speed and accuracy in the present conditions. Multi-channel Time-Interleaved ADC (TIADC) is a necessary and an effective way of breaking through technology restrictions and speeding up high resolution analog-to-digital conversion. Offset mismatch, gain mismatch, and timing skew mismatch among channels, however, severely restrict the performance of TIADC. With large scale integrated circuits' advantages on process, intergration, cost and power, using digital calibration for breaking through the performance bottleneck of analog circuits will be the general trend of high speed high resolution TIADC design in future.
     This thesis researches digitally assisted design technique for high performance TIADC. Exploring universal design principle and design flew of the digital assisted analog integrated circuits. Depending on the completeness of digital signal processing knowledge,achieving digital calibration by using digital post processing technique to inhibit the detrimental effect on dynamic performance of the TIADC resulted from the mismatches among channels. Designing system-level, behavior-level and circuit-level verification platform for completed design and verification
     Firstly, A novel mutual-prime-channel-group TIADC based on split-ADC and its general architecture are presented. The sources of channel mismatch errors and the error effects are studied systematically, and a channel model with mismatch errors is given. System architectures, basic theories, and algorithm implementation of TIADC with channel mismatches calibration are thorough discussed. On the basis of split-ADC calibration concept, basic principle of time-interleaved ADC using split design technique is researched in depth, sufficient conditions and design method of mutual-prime-channel-group TIADC based on split-ADC are presented.
     Secondly, all-digital channel mismatches calibration technique aiming at the mutual-prime-channel-group TIADC is presented. This technique can adaptively calibrate offset mismatch, gain mismatch and timing skew mismatch among channels simultaneously at background, eliminating performance limitations which are brought about by mismatches for TIADC. The calibration algorithm is based on least-mean-square iteration which has advantages of low computational complexity and easy in complementation. To guarantee effective calibration when input frequency of the TIADC is high, a cascaded compensation scheme for correction of high-order timing skew errors is employed and good calibrating performance is demonstrated with normalized input frequency near Nyquist frequency. In this thesis, a7-channel split-ADC based TIADC is taken as an example to prove the architecture of mutual-prime-channel-group TIADC and its mismatches digital background calibration. Moreover, the proposed architecture and the associated calibration technique can be expanded to channels of any number.
     Finally, a14-bit125MS/s pipelined ADC is designed, and using it as channel unit for developing a circuit platform of the proposed TIADC architecture, in combination with the implementation of the calibration algorithm by FPGA, verifications for the correctness and the practicability of the proposed TIADC architecture and calibration scheme are done. Verification results show that, with3%full scale range offset mismatch,2%gain mismatch and2%sampling period timing skew mismatch, spurious free dynamic range and signal to noise and distortion rate improve about50dBc, achieve92dBc and84dBc respectively, effective number of bits improves8bits, achieve13.7bits which approaches the single channel resolution of the TIADC. This reveals the proposed digital calibration technique does eliminate the nonideal effects brought about by channel mismatch and improves TIADC dynamic performance.
引文
[1]S. Borkar. Design challenges of technology scaling[J]. IEEE Micro,1999,19,23-29.
    [2]B. Murmann. Digitally assisted analog circuits-A motivational overview[C]. ISSCC 2007.
    [3]Boris Murmann, Christian Vogel, Heinz Koeppl. Digitally Enhanced Analog Circuits:System Aspects[C]. ISCAS 2008,560-563.
    [4]Nielsen J. H., Malcovati P., Baschirotto A.. Technology scaling impact on embedded ADC design for telecom receivers[C]. IEEE International Symposium on Circuits and Systems,2005, 4614-4617.
    [5]Young, I. A. Analog mixed-signal circuits in advanced nano-scale CMOS technology for microprocessors and SoCs[C]. Proceedings of the ESSCIRC 2010,61-70.
    [6]Dominique Dallet and Jose Machado da Silva. Dynamic characterization of analog-to-digital converters[M]科学出版社,2007.
    [7]R. H. Walden. Analog-to-digital converter survey and analysis[J]. IEEE J. Sel. Areas Commun., 1999,17(4):539-550.
    [8]Franco Maloberti. Data converters[M]. Springer,2007.
    [9]B. Murmann. A/D converter trends:power dissipation, scaling and digitally assisted architecture[C]. Proceedings of the Custom Integrated Circuits Conference,2008,751-758.
    [10]B. Murmann. ADC performance survey 1997-2011. [online]. Available: http://www.stanford.edu/~murmann/adcsurvey.html.
    [11]W. C. Black Jr. and D. A. Hodges. Time-interleaved converter arrays[J]. IEEE J. of Solid State Circuits,1980,15(6):1024-1029.
    [12]C. Vogel and H. Johansson. Time-interleaved analog-to-digital converters:Status and future directions[C]. IEEE ISCAS 2006 conference, Sept. 2006,3386-3389.
    [13]Chiu Y. Inherently linear capacitor error-averaging techniques for pipelined A/D conversion[J]. IEEE Trans. Circuits Syst. Ⅱ,2000,47(3):229-232.
    [14]李福乐.适宜于系统集成的高速高精度模数转换电路设计技术研究[D].清华大学博士论文,2003年1月.
    [15]X. Wang, P. J. Hurst, and S. H. Lewis. A 12b 20-MS/s pipelined ADC with nested digital calibration[J]. IEEE Journal of Solid-State Circuits,2004,39(11):1799-1808.
    [16]Yun Chiu, Cheongyuen W. Tsang, Paul R. Gray. Least mean square adaptive digital background calibration of pipelined analog-to-digital converters[J]. IEEE Transactions on Circuits and Systems-Ⅰ,2004,51(1):38-45.
    [17]Bernard Widrow, Samuel D. Stearns著,王永德,龙宪惠译.自适应信号处理[M].机械工业出版社,2008.
    [18]Y. Oh and B. Murmann. System embedded ADC calibration for OFDM receivers[J]. IEEE Transactions on Circuits and Systems-Ⅰ,2006,53(8):1693-1703.
    [19]R.J.贝克.CMOS混合信号电路设计[M].科学出版社,2005.
    [20]Phillip E. Allen, Douglas R. Holberg. CMOS模拟集成电路设计[M].电子工业出版社,2006.
    [21]Arthur H. M. Van Roermund, Herman Casier, Michiel Steyaert. Analog circuit design:Smart data converters, filters on chip, multimode transmitters[M]. Springer,2009.
    [22]Mikael Gustavsson, J. Jacob Wikner, and Nianxiong Nick Tan. CMOS data converters for communications[M]. Kluwer Academic Publishers,2002.
    [23]洪志良.模拟集成电路分析与设计.科学技术出版社,2005,200-202.
    [24]A. Papoulis. Generalized sampling expansion[J]. IEEE Trans. on Circuits and Systems,1977, 23(11):652-654.
    [25]A. Petraglia and S. K. Mitra. High-speed A/D conversion incorporating a QMF bank[J]. IEEE Trans. on Instrumentation and Measurement,1992,41(3):427-431.
    [26]S. R. Velazquez. Hybrid filter banks for analog/digital conversion[D]. Ph. D. dissertation, Mass. Inst. Technol., Cambridge,1997.
    [27]S. R. Velazquez, T. Q. Nguyen, and S. R. Broadstone. Design of hybrid filter banks for analog/digital conversion[J]. IEEE Trans. Signal Process.,1998,46(4):956-967.
    [28]P. Lowenborg, H. Johansson, and L. Wanhammar. Two-channel digital and hybrid analog/digital multirate filter banks with very low-complexity analysis or synthesis filters[J]. IEEE Trans. on Circuits and Systems Ⅱ:Analog and Digital Signal Processing,2003,50(7):335-367.
    [29]A. Montijo and K. Rush. Accuracy in interleaved ADC systems[J]. Hewlett-Packard J.,1993, 36-42.
    [30]D. Draxelmayr. A 6b 600MHz lOmW ADC array in digital 90nm CMOS[C]. IEEE International Solid-State Circuits Conference,2004,45-48.
    [31]C. S. G Conroy, D. W. Clind, and P. R. Gray. An 8-b 85-MS/s parallel pipeline A/D converter in 1-μ m CMOS[J]. IEEE J. Solid-State Circuits,1993,28(4):447-454.
    [32]郑君里,应启珩,杨为理.信号与系统(上/下册)[M].高等教育出版社,1981.
    [33]Shafiq Mohammad Jamal. Digital background calibration of time-interleaved analog-to-digital converters[D]. Ph. D. dissertation, University of California Davis,2001.
    [34]Naoki Kurosawa, Haruo Kobayashi, and Kaoru Maruyama et al. Explicit Analysis of Channel Mismatch Effects in Time-Interleaved ADC Systems[J]. IEEE Trans. on Circuits and Systems-I:Fundamental and Applications,2001,48(3):261-271.
    [35]Soudan M. and Farrell R. Methodology for mismatch reduction in time-interleaved ADCs[C]. 18th European Conference on Circuit Theory and Design,2007.
    [36]M. Yotsuyanagi, T. Etoh, and K. Hirata. A 10-b 50-MHz pipelined CMOS A/D converter with S/H[J]. IEEE J. Solid-State Circuits,1993,28(3):292-300.
    [37]M.Seo, M.Rodwell, and U.Madhow. Comprehensive digital correction of mismatch errors for a 400-Msamples/s 80-dB SFDR time-interleaved analog-to-digital converter[J], IEEE Trans. on Microwave Theory and Techniques,2005,53(3):1072-1082.
    [38]Y.C.Jenq. Digital spectra of nonuniformly sampled signals:A robust sampling time offset estimation algorithm for ultra high-speed waveform digitizers using interleaving[J], IEEE Trans. on Instrumentation and Measurement,1990,39(1):71-75.
    [39]J.Pereira, P.Girao, and A. Serra. An FFT-based method to evaluate and compensate gain and offset errors of interleaved ADC systems[J], IEEE Trans. on Instrumentation and Measurement, 2004,53(2):423-430.
    [40]吴光林.多通道时间交叉ADC校准技术研究及实现.东南大学博士学位论文[D],2006.
    [41]李瑞梅.高性能时序交错管线式类比至数位转换器设计.国立交通大学博士论文[D],2007.
    [42]Hee-Cheol Choi, Young-Ju Kim, Gil-Cho Ahn, and Seung-Hoon Lee. A 1.2V 12-b 120-MS/s SHA-Free Dual-Channel Nyquist ADC Based on Midcode Calibration[J]. IEEE Trans. on Circuits and Systems-Ⅰ:Regular papers,2009,56(5):894-901.
    [43]H.Jin and E.K.F.Lee. A digital-background calibration technique for minimizing timing-error effects in time-interleaved ADCs[J]. IEEE Trans. on Circuits and Systems Ⅱ:Analog and Digital Signal Processing,2000,47(7):603-613.
    [44]Zheng Liu, Kazutaka Honda, Shoji Kawahito. A New Calibration Method for Sampling Clock Skew in Time-interleaved ADC[C]. IEEE International Instrumentation and Measurement Technology Conference,2008.
    [45]R. L. Burden et al. Numerical analysis:Prindle, Weber & Schmit[M].1981.
    [46]J.Elbronsson, F.Gustafsson, J.E.Eklund. Blind adaptive equalization of mismatch errors in a time-interleaved A/D converter system[J]. IEEE Tran. on circuits and systems-Ⅰ:Regular Papers, 2004,51(1):151-158.
    [47]J.Elbronsson, F.Gustafsson, J.E.Eklund. Blind Equalization of Time Errors in a Time-Interleaved ADC System[J]. IEEE Trans. on Signal Processing,2005,53(4):1413-1424.
    [48]S.Huang, B.C.Levy. Blind calibration of timing offsets for four-channel time-interleaved ADCs[J]. IEEE Trans, on circuits and systems-Ⅰ:Regular Papers,2007,54(4):863-876.
    [49]C.Vogel. A frequency domain method for blind identification of timing mismatches in time-interleaved ADCs[C]. Proceedings of the 24th IEEE Norchip Conference,2006,45-48.
    [50]S.Saleem, C.Vogel. LMS-Based Identification and Compensation of Timing Mismatches in a Two-Channel Time-Interleaved Analog-to-Digital Converter[C]. Proc. IEEE Norchip Conf.,2007, 1-4.
    [51]C.Vogel, S.Saleem, and S.Mendel. Adaptive Blind Compensation of Gain and Time Mismatches in M-Channel Time-interleaved ADCs[C]. Proceedings of the 14th IEEE International Conference on Electronics, Circuits and Systems,2008,49-52.
    [52]J. Elbornsson. Analysis, estimation and compensation of mismatch effects in A/D converters[D]. Ph. D. dissertation, Dept. of Elect. Eng., Linkoping Univ.,2003.
    [53]K. C. Dyer, Daihong Fu, S. H. Lewis et al. An analog background calibration technique for time-interleaved analog-to-digital converters[J]. IEEE J. Solid-State Circuits,1998,33(12): 1912-1919.
    [54]P. J. A. Harpe, J. A. Hegt, and A. H. M. van Roermund. Analog calibration of channel mismatches in time-interleaved ADCs[J]. International Journal of Circuits Theory and Applications, 2009,37(2):301-318.
    [55]David Camarero, Karim Ben Kalaia, Jean-Francois Naviner, and Patrick Loumeau. Mixed-Signal Clock-Skew Calibration Technique for Time-Interleaved ADCs[J]. IEEE Trans. on circuits and systems-Ⅰ:Regular Papers,2008,55(11):3676-3687.
    [56]Afshin Haftbaradaran and Kenneth W. Martin. A background sample-time error calibration technique using random data for wide-band high-resolution time-interleaved ADCs[J]. IEEE Trans. on Circuits and Systems-Ⅱ:Express briefs,2008,55(3):234-238.
    [57]C. Vogel and G. Kubin. Time-interleaved ADCs in the context of hybrid filter banks[C]. Proceedings International Symposium on Signals, Systems, and Electronics,2004,214-217.
    [58]李玉生.超高速并行采样模拟/数字转换的研究[D].中国科学技术大学博士论文,2007.
    [59]R. Prendergast, B. Levy, and P. Hurst. Reconstruction of band-limited periodic nonuniformly sampled signals through multirate filter banks[J]. IEEE Trans. on circuits and systems-Ⅰ:Regular Papers,2004,51(8):1612-1622.
    [60]H. Johansson, P. Lowenborg and K. Vengattaramance. Least-squres and minimax design of polynomial impulse response FIR filters for reconstruction of two-periodic nonuniformly sampled signals[J]. IEEE Trans. on circuits and systems-Ⅰ:Regular Papers,2007,54(4):877-888.
    [62]H. Johansson, P. Lowenborg. A least-squares filter design technique for the compensation of frequency response mismatch errors in time-interleaved A/D converters [J]. IEEE Trans. on circuits and systems-Ⅱ:Express Briefs,2008,55(11):1154-1158.
    [61]H. Johansson, P. Lowenborg and K. Vengattaramance. Reconstruction of M-periodic nonuniformly sampled signals using multivariate impulse response time-varying FIR filters[C]. Proc. XII Eur. Signal Process. Conf.,2006.
    [63]S. Huang and B. C. Levy. Adaptive blind calibration of timing offset and gain mismatch for two-channel time-interleaved A/D converters[J]. IEEE Trans. on circuits and systems-Ⅰ:Regular Papers,2006,53(6):1278-1288.
    [64]Yong-Lu Wang, Xin-Fa Huang. A 2GSPS 8-bit ADC with digital foreground calibration technology[C]. IEEE International Conference on Anti-Counterfeiting, Security and Identification, 2011,143-145.
    [65]Janssen E., Nani C., Zanikopoulos A., and van der Weide G.. A 480 mW 2.6 GS/s 10b time-interleaved ADC with 48.5 dB SNDR up to Nyquist in 65 nm CMOS[J]. IEEE J. of Solid-State Circuits,2011,46(12):2821-2833.
    [66]El-Chammas M., Murmann B. A 12-GS/s 81-mW 5-bit time-interleaved flash ADC with background timing skew calibration[J]. IEEE J. of Solid-State Circuits,2011,46(4):838-847.
    [67]Khalil Raouf, Louerat Marie-Minerve, Petigny Roger, and Gicquel Hugo. Background time skew calibration for time-interleaved ADC using phase detection method[C]. IEEE International on New Circuits and Systems Conference,2012,257-260.
    [68]Chi Ho Law, Hurst P. J., Lewis S. H.. A four-channel time-interleaved ADC with digital calibration of interchannel timing and memory errors[J]. IEEE J. of Solid-State Circuits,2010, 45(10):2091-2103.
    [69]Wenbo Liu and Yun Chiu. Time-interleaved analog-to-digital conversion with online adaptive equalization[J]. IEEE Tran. on circuits and systems-Ⅰ:Regular Papers,2012,59(7):1384-1395.
    [70]S.Tertinek and C.Vogel. Reconstruction of two-periodic nonuniformly sampled bandlimited signals using discrete-time differentiator and a time-varying multiplier[J]. IEEE Trans. on circuits and systems-Ⅱ:Express Briefs,2007,54(7):616-620.
    [71]Stefan Tertinek and Christian Vogel. Reconstruction of Nonuniformly Sampled Bandlimited Signals Using a Differentiator-Multiplier Cascade[J]. IEEE Trans. on Circuits and Systems-I: Regular Papers,2008,55(8):2273-2285.
    [72]J. McNeill, Michael C. W. Coln, and Brian J. Larivee. "Split ADC" architecture for deterministic digital background calibration of a 16-bit 1-MS/s ADC[J]. IEEE J. of Solid-State Circuits,2005,40(12):2437-2445.
    [73]J. McNeill, C. David, and M. Coln. "Split ADC" Calibration for All-Digital Correction of Time-Interleaved ADC Errors[J]. IEEE Trans. on Circuits and Systems Ⅱ:Express Briefs,2009, 56(5):344-348.
    [74]Bernard Widrow and Samuel D. Stearns.自适应信号处理[M].王永德,龙宪惠译.机械工业出版社,2008.
    [75]Chi Ho Law, Paul J. Hurst, and Stephen H. Lewis. A four-channel time-interleaved ADC with digital calibration of interchannel timing and memory errors[J]. IEEE J. of Solid-State Circuits,2010, 45(10):2091-2102.
    [76]叶凡.多通道时间交织模数转换器的校正与集成电路实现方法研究[D].复旦大学博士论文,2010.
    [77]史万明,杨骅飞,吴裕树等.数值分析[M].北京理工大学出版社,2004年.
    [78]J. McNeill, S. Goluguri, and A. Nair. "Split-ADC" digital background correction of open-loop residue amplifier nonlinearity errors in a 14b pipeline ADC[C]. IEEE International Symposium on Circuits and Systems,2007.
    [79]拉扎维.模拟CMOS集成电路设计[M].西安交通大学出版社,2004.
    [80]Dong-Yong Chang. Design techniques for a pipelined ADC without using a front-end sample-and-hold amplifier[J]. IEEE Trans, on Circuits and Systems-Ⅰ:Regular Papers,2004,51(11): 2123-2132.
    [81]Rob Reeder, Mark Looney, and Jim Hand. Pushing the state of the art with multichannel A/D converters[J]. Analog Dialogue,2005,39(5).
    [82]任功全,封建湖,薛宏智著.线性代数(第2版)[M].科学出版社,2012年.
    [83]U. Meyer-Baese著,刘凌译.数字信号处理的FPGA实现(第3版)[M].清华大学出版社,2011年.
    [84]Stephen H. Lewis, H. Scott Fetterman, George F. Gross, R. Ramach, T. R. Viswanathan. A 10-b 20-Msample/s analog-to-digital converter[J]. IEEE J. of Solid-State Circuits,1992,27(3):351-358.
    [85]K. Hadidi, G. C. Temes. Error analysis in pipeline A/D converters and its applications[J]. IEEE Transactions on Circuits and Systems Ⅱ,1992,39(8):506-515.
    [86]朱臻,王涛,易婷,何捷,洪志良.30兆赫采样频率的采样-保持电路和减法-增益电路的误差分析及设计[J].固体电子学研究与进展,2002,22(1):57-63.
    [87]Patrick J. Quinn, Arthur H.M. van Roermund. Design and optimization of multi-bit front-end stage and scaled back-end stages of pipelined ADCs[C]. IEEE International Symposium on Circuits and Systems,2005,1964-1967.
    [88]Mikko Waltari. Circuit techniques for low-voltage and high-speed A/D converters[D]. Helsinki University of Technology,2002.
    [89]Lauri Sumanen. Pipeline analog-to-digital converters for wideband wireless communications[D]. Helsinki University of Technology,2002.
    [90]Wenhua Yang, Dan Kelly, Iuri Mehr, et al. A 3-V 340-mW 14-b 75-Msample/s CMOS ADC with 85-dB SFDR at Nyquist input[J]. IEEE J. Solid-State Circuits,2001,36(12):1931-1936.
    [91]D. W. Cline, P. R. Gray. A power optimized 13-b 5 Msamples/s pipelined analog-to-digital converter in 1.2 u m CMOS[J]. IEEE J. Solid-State Circuits,1996,31(3):294-303.
    [92]Y. Chiu, P. R. Gray, B. Nilolic. A 14-b 12-MS/s CMOS pipeline ADC with over 100-dB SFDR[J]. IEEE J. Solid-State Circuits,2004,39(12):2139-2151.
    [93]Phillip E. Allen, Douglas R. Holberg. CMOS模拟集成电路设计[M],电子工业出版社,2006年.
    [94]Mikko Waltari, Kari Halonen. A 220-MSample/s CMOS Sample-and-Hold Circuit Using Double-Sampling[J]. Analog Integrated Circuits and Signal Processing,1999:21-31.
    [95]Bult K. and Geelen G. J. G. M. A fast-settling CMOS op amp for SC circuits with 90-dB DC gain[J]. IEEE J. of Solid-State Circuits,1990,25(6):1379-1384.
    [96]Mingliang Liu. Demystifying switched-capacitor circuits[M]. Newnes,2006
    [97]Shinaga Wa M., Akaza Wa Y., Wakimoto T.. Jitter analysis of high speed sampling systems [J]. IEEE J. of Solid-State Circuits,1990,25(1):220-224.
    [98]Wang R. M., Liu CH. Y., Lu Y. C.. A Low Jitter DLL-based Pulse width Control Loop With Wide Duty Cycle Adjustment[C]. IEEE Asia Pacific Conference on Circuits and Systems,2008, 418-423.
    [99]Han S. R., Liu S. I.. A Single-Path Pulse width Control Loop With a Built-In Delay-Locked Loop[J]. IEEE J. of Solid-State Circuit,2005,40(5):1130-1135.
    [100]Ryu K. H., Jung D. H., Jung S. O.. A DLL Based Clock Generator for Low-Power Mobile SoCs[J]. IEEE Trans. on Instrumention and Measurement,2010,56(3):1950-1956.
    [101]Alan Hastings.模拟电路版图的艺术(第二版)[M].张为等译.电子工业出版社,2007.
    [102]Willy M.C. Sansen.模拟集成电路设计精粹[M].陈莹梅译.清华大学出版社,2008.
    [103]Jen-Lin Fan, Chung-Yi Wang, and Jieh-Tsorng Wu. A robust and fast digital background calibration technique for pipelined ADCs[J]. IEEE Trans. on Circuits and Systems-Ⅰ:Regular Papers, 2007,54(6):1213-1223.
    [104]Mohammad Taherzadeh-Sani and Anas A. Hamoui. Digital background calibration of a 0.4-pJ/step 10-bit pipelined ADC without PN generator in 90-nm digital CMOS[C]. IEEE Asian Solid-State Circuits Conference,2008,53-56.
    [105]Li-Han Hung and Tai-Cheng Lee. A split-based digital background calibration technique in pipelined ADCs[J]. IEEE Trans. on Circuits and Systems Ⅱ:Express Briefs,2009,56(11):855-859.
    [106]Coherent sampling vs. window sampling[R]. MAXIM Application Note 1040,2002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700