用户名: 密码: 验证码:
纳米银及其复合抗菌材料的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米银(Nano Silver)是指通过一定的化学途径或者物理手段制备的粒径在1-100nm之间的单质银粒子(Silver Nanoparticles,学界简写AgNPs),它具有表面效应、小尺寸效应和宏观量子隧道效应。纳米银在磁性材料、电子材料、光学材料以及高强、高密度材料的烧结、催化、传感等方而有广阔的应用前景,已经成为21世纪最有前途的材料之一。将纳米银掺入到其它材料之中,可以制备出许多种类的载纳米银复合抗菌材料。含银离子抗菌剂在金属离子抗菌剂研究中最受关注。
     本文采用微波加热与化学催化相结合,制备出不同粒径的球形、棒状、线状纳米银粒子。结果表明:PVP有利于提高纳米Ag粉间的静电排斥作用,有利于其分散;升高反应的温度有利于反应的快速进行,增加银颗粒的形核速度,形核速度增加以后,从而降低了颗粒的粒径;延长反应的时间,粒子尺寸增大,粒径和形状易于发生不规则的变化;反应物浓度的升高造成颗粒的长大与团聚;引入Cl-,并适当控制反应的时间,可实现产物从球形纳米银到棒状纳米银的转变。
     采用微波加热并掺入Cl-的还原方法,合成出直径从30-50纳米,长度50nm到数微米的纳米银棒。我们通过透射电子显微镜(TEM)观察其形貌,并利用UV-Vis谱、XRD分析、EDX等手段对其进行表征,研究了其形貌、结构及形成机理间关系。形成机理主要分为三个阶段:第一阶段,在Cl-作用下,生成粒径很小的球形纳米银晶粒;第二阶段,在PVP的模板作用下,生成大量三角形的银纳米颗粒,与此同时少量棒状结构的银纳米颗粒逐渐生成;第三阶段,三角形颗粒结合生成棒状结构的银纳米颗粒,并不断转化、结合、长大成为棒状的结构。
     利用纳米银良好的抗菌性能,以明胶(Gelatin,以下简称GA)和聚乙烯醇(polyvinyl alcohol,以下简称PVA)为主要原料并采用静电纺丝的方法合成出一种含银的明胶/聚乙烯醇抗菌纤维(以下简称:Ag/GA/PVA的复合抗菌材料)。本文通过探讨纺丝条件对纤维结构的影响,制备出一种拉伸强度、弹性、吸水性能等性能优良的纤维材料,运用SEM、XRD、UV-vis等测试手段,及抗菌试验和细胞毒性试验,结果表明,该复合抗菌材料是一种安全无毒的具有良好抗菌性能的三元复合材料。
     本研究还合成了一种性能良好的核壳抗菌剂,结合SEM,抗菌试验等表明,该抗菌剂是一种具有长久抗菌效果的核壳抗菌复合材料。还探讨了纳米银的导电性能和光学性能,制备出性能出色具有自抗菌功能的导电银浆,并对表面增强拉曼散射活性做了初步探讨。
Nano silver are silver nanoparticles, mainly between1nm and100nm in size,which can be prepared by chemical or physical methods. Because of its quantμm sizeeffect, small-size effect, surface effect and macroscopic quantμm tunneling effect, thenano silver has been one of the most promising materials in twenty-first century. Thenano silver has a wide application prospect in magnetic materials, electronic materials,optical materials and high strength, high density material sintering, catalysis, sensing,etc. Various nano silver composite materials with anti-bacterial property can beprepared by adding silver Nanoparticles. Silver ion is of most concern in metal ion usedas.antibacterial agent
     In this study, spherical, rodlike and linear silver nanoparticles with differentdiameters were prepared by the combination of microwave heating and chemicalcatalysis. The results showed that PVP is beneficial to the dispersion of nanoparticles byimproving the electrostatic repulsion between the nano silver powders. The higherreaction temperature is beneficial to the reaction, which accelerated nucleation rate ofthe silver particle and thus reduced the particle size. Increasing the concentration of thereactants would result the increased growth and agglomeration of the particles. By theintroducing Cl-and properly controlling the reaction time, the products could transformfrom spherical to rodlike nanoparticles.
     Rodlike silver nanoparticles with the diameter of30~50nm and the length of50nmwere synthesized by microwave heating method. By transmission electron microscopy(TEM), UV-Vis spectra, and XRD analysis, EDX and other methods, we observed themorphology of the nano particles and studied the relationship between structure andformation mechanism. The formation of Rodlike silver nanoparticles can be dividedinto three stages. Stage Ⅰ, spherical silver with small size were generated in thepresence of Cl-. StageⅡ, with the PVP as templates, a large nμmber of triangular silvernanoparticles were generated with a small amount of rod-like structure of silvernanoparticles. Stage Ⅲ, the triangle particles combined to form rod-like structure silver nanoparticles, which kept constantly transforming and binding, and finally grew into arodlike structure.
     To evaluate the antibacterial Performance of the nano silvers, we fabricatedAg/GA/PVA composite materials by electrospinning technique. By adjusting theelectrospinning parameters, we successfully prepared nanofibrous antibacterialmaterials with high tensile strength, excellent elasticity and good water absorption.Using SEM, XR, UV-vis and other testing methods, we confirmed the goodantibacterial property of Ag/GA/PVA composite materials through antibacterial test andcytotoxicity test.
     In this thesis, we produced composite material with core-shell structure, whichexhibited excellent antibacterial in long term confirmed by the SEM characterizationand antimicrobial test. Furthermore, the electrical properties and optical properties ofnano silvers were investigated. Silver paste with excellent conductive performance wasalso prepared, and the surface Raman scattering activity.was tested.
引文
[1]郑红,汤鸿霄,王怡中.有机污染物半导体多相光催化氧化机理及动力学研究进展[J].环境科学进展,1996,4(3):2-10.
    [2]于向阳,程继健,杜永娟. TiO2光催化抗菌材料[J].玻璃与搪瓷,2000,28(4):40-45.
    [3]王德平,黄文敏.有源无机抗菌材料的研究进展[J].建筑材料报,2000,3(1):53-79.
    [4]陈美婉,温新国,彭新生等.纳米银喷剂的制备与体外抑菌作用的考察[J].中国医院药学杂志,2009,29(23):2006-2009.
    [5] Feng QL, Wu J, Chen GQ, et al. A mechanistic study of the antibacterial effect ofsilver ions on Escherichia coli and Staphylococcus aureus [J]. Biomed Mat Res,2000,52(4):662-668.
    [6]程家宠,严季雄,纳米银妇用抗菌膜及其制备方法和应用:中国,01143405.8[P].2009-01-07.
    [7]谭波.纳米银妇女外用抗菌凝胶的制备方法.中国,200610019909.7[P].2009-02-04.
    [8]李晓平,徐宝琨.纳米TiO2光催化降解水中有机污染物的研究与发展[J].功能材料,1999,30(3):242~248.
    [9]董庆华.半导体光催化.感光科学与光化学,1993,11(2):56-81.
    [10]钟金栋,夏雪山,张若愚,等.纳米银材料抗菌效果研究及其安全性初步评价[J].昆明理工大学学报(理工版),2005,30(5):91-93,98.
    [11]李桂霞,马汇泉,刘婧,等.番茄灰霉病高效拮抗菌株的鉴定及通过导入β-1,3葡聚糖酶基因提高其生物防治效果[J].中国生物工程杂志,2007,27(4):44-49.
    [12] LI Ping, LI Juan, WU Chang-zhu, et al. Synergistic Antibacterial Effect s of β-Lactam Antibiotic Combined with Silver Nanoparticles[J].Nanotechnology,2005(16):1912-1917.
    [13]陈为亮,闫建英,宋宁,等.化学还原法制备纳米银粉的研究[J].纳米科技,2005,2(4):37-40.
    [14]郑丛龙,周广运,景立新,等.纳米银体外抗菌作用的实验观察[J].中国消毒学杂志,2008,25(1):4-6.
    [15] LEE H H, CHOU K S, SHIH Z W. Effect of Nano-sized Silver Particles on theResistivity of Polymeric Conductive Adhesives[J]. International Journal ofAdhesion&Adhesives,2005,25(8):437-441.
    [16] SHARMA V K, YNGARDA R A, LIN Y. Silver Nanoparticles: Green Synthesisand Their Antimicrobial Activities[J]. Advances in Colloid and Interface Science,2009,145(30):83-96.
    [17]吴晓玲,郑丽莉,温秀芳,等.纳米银凝胶抗菌活性的研究[J].中国药品标准,2007,8(4):68-69.
    [18]马楠,季君晖,崔德健,等.纳米抗菌塑料的抗菌性能测定[J].中国消毒学杂志,2006,23(4):319-321.
    [19] Balan L, Malval J P, Schneider R, et al. Silver nanoparticles: New synthesis,characterization and photophysical properties[J]. Mater Chem Phys,2007,104(2-3):417.
    [20] Tsuji T, T hang D H, Okazaki Y, et al. Preparation of silver nanopart icles by laserablation in polyvinylpyrrolidone solutions[J]. Appl Surf Sci,2008,254(16):5224
    [21] Liu S, Yue J, Gedanken A. Sy nthesis of long silver nanowires from AgBr nanocrystals[J]. Adv Mater,2001,13(9):656.
    [22] Zhou Y, Yu S H, Cui X P, et al. Formation of silver nanowires by a novelsolidfiliquid phase arc discharge method[J]. Chem Mater,1999,11(3):545.
    [23] Zhou Y, Yu S H, Wang C Y, et al. A novel ultraviolet irradiation pho to reductiontechnique for the preparation of single crystal ag nanoro ds and ag dendrites [J].Adv Mater,1999,11(10):850.
    [24] Wang Y, Camarg o P H C, Skrabalak S E, et al. A facile,water based sy nthesisof highly branched nanostr uctures of silver[J]. Langmuir,2008,24(20):12042.
    [25]山田善市,竹内聪.抗菌性涂料组成物及よびの制造方法.日本专利,834937,1996.3-8.
    [26]吴迎春,徐章法.液相法制备纳米Ti02微粒的研究进展.盐城工学院学报,2001,14(4):26-28.
    [27]卫志贤,李晓娥,祖庸.溶胶-凝胶法制纳米二氧化钛小试放大研究.无机盐工业,1998(5):5-8.
    [28]张文钲.载银抗菌材料研究与发展.化工新型材料,1997(6):20-22.
    [29]张文钲,王广文.纳米银抗菌材料研发现状.化工新型材料,2003,31(2):42-44.
    [30]肖清华,李博文.载银无机抗菌剂的研究现状和发展趋势.中国非金属矿导报,1999(6):5-7.
    [31]严建华,封孝信,郝挺宇,等.银离子交换法制备载银天然斜发沸石及产品抗菌性能研究.非金属矿,2001,24(5):19-21.
    [32] Russell, A.D., F.R.C. Path, S. Pharm, et al. Antimicrobial activity and acting ofsilver. in: Ellis G. P. Progress in Medicine Chemistry. USA: Elsevier Science Press,1994.351-357.
    [33]黄占杰.磷酸盐陶瓷生物降解研究的进展.功能材料,1997,28(1):1-4.
    [34] Hosono, H., Y. Abe. Silver Ion-Selective porous lithiμm titaniμm phosphateGlass-Ceramics Cation-Exchanger and its application to bacteriostatic materials.Materials Research Bulletin,1994,29(11):1157-1162.
    [35]汪山,程继键.磷酸盐玻璃缓释材料应用进展.玻璃与搪瓷,1999,27(3):53-57.
    [36]张文钲,张羽天.载银抗菌材料及其制品.贵金属1998,19(4):50-53.
    [37] Oya, A., S. Yoshida, Y. Abe, et al. Antibacterial activated Carbon-Fiber derivedfrom phenolic resin containing Silver-Nitrate. Carbon,1993,31(1):71-73.
    [38] Bae, C.H., S.H. Nam, S.M. Park. Formation of silver nanoparticles by laserablation of a silver target in NaCl solution. Applied Surface Science,2002,197:628-634.
    [39] Smetana, A.B., K.J. Klabunde, C.M. Sorensen. Synthesis of spherical silvernanoparticles by digestive ripening, stabilization with various agents, and their3-Dand2-D superlattice formation. Journal of Colloid and Interface Science,2005,284(2):521-526.
    [40] Saito, Y., S. Nakahara, B.K. Teo. Production of ultrafine gold and silver particlesby ans of a gas evaporation and solvent trap technique. Inorganica Chimica Acta,1988,148(1):21-24.
    [41] Chou, K.S., C.Y. Ren. Synthesis of nanosized silver particles by chemicalreduction method. Materials Chemistry and Physics,2000,64(3):241-246.
    [42] Petit, C., P. Lixon, M.P. Pileni. In-Situ synthesis of silver nanocluster in Aotreverse micelles. Journal of Physical Chemistry,1993,97(49):12974-12983.
    [43] Vorobyova, S.A., A.I. Lesnikovich, N.S. Sobal. Preparation of silver nanoparticlesby interphase reduction. Colloids and Surfaces a-Physicochemical and EngineeringAspects,1999,152(3):375-379.
    [44] Zhang, Z.T., B. Zhao, L.M. Hu. PVP protective mechanism of ultrafine silverpowder synthesized by chemical reduction processes. Journal of Solid StateChemistry,1996,121(1):105-110.
    [45] Yakutik, I.M., G.P. Shevchenko. Self-organization of silver nanoparticles formingon chemical reduction to give monodisperse spheres. Surface Science,2004,566:414-418.
    [46] Yoshihiko kikuchi,Kyanosunada. Photocatalytic bactericidal effect of TiO2thinfilms:dynamic view of the active oxygen species responsible fot the effect.Photochem Photobiol A: Chemst ry,1997,106:51.
    [47] Oya A,Wahahara, Yoshida T. Preparation of pitch based antibacterial activatedcarbon fiber. Crabon,1993,31:1243
    [48] Veronica, Vamathevan Helen, Tse Rose Amala, et al. Effect s of Fe3+and Ag+ions on the photocatalytic degradation of sucrose in water. Catalysis Today,2001,68:201.
    [49] Simchi A, Ahmadi R, Seyed RS, et al. Kinetics and mechanisms of nanoparticleformation and growth in vapor phase condensation process. Materials and Design,2007,28:850~856.
    [50] Vigneshwaran N, Nachane RP, Balasubramanya RH, et al. A novel one-pot‘green’synthesis of stable silver nanoparticles using soluble starch. CarbohydrateResearch,2006,341(12):2012~2018.
    [51] Yakutik, I.M., G.P. Shevchenko, S.K. Rakhmanov. The formation of monodispersespherical silver particles. Colloids and Surfaces a-Physicochemical andEngineering Aspects,2004,242(1-3):175-179.
    [52] Huang, H.Z., X.R. Yang. Synthesis of polysaccharide-stabilized gold and silvernanoparticles: a green method. Carbohydrate Research,2004,339(15):2627-2631.
    [53] Zhang, Z.P., M.Y. Han. Template-directed growth from small clusters into uniformsilver nanoparticles. Chemical Physics Letters,2003,374(1-2):91-94.
    [54] Tan, Y.W., Y. Wang, L. Jiang, et al. Thiosalicylic acid-functionalized silvernanoparticles synthesized in one-phase system. Journal of Colloid and InterfaceScience,2002,249(2):336-345.
    [55] Liu, Y.C., L.H. Lin. New pathway for the synthesis of ultrafine silver nanoparticlesfrom bulk silver substrates in aqueous solutions by sonoelectrochemical methods.Electrochemistry Communications,2004,6(11):1163-1168.
    [56] Sandmann, G., H. Dietz, W. Plieth. Preparation of silver nanoparticles on ITOsurfaces by a double-pulse method. Journal of Electroanalytical Chemistry,2000,491(1-2):78-86.
    [57]王洪水,乔学亮,王小健,等.载银沸石抗菌剂的制备及其抗菌性能.材料科学与工程学报,2006,24(1):40.
    [58] Russell A D,Path F R C, Pharm S, et al. Antimicrobial activity and acting of silver
    [A]. Progress Medicine Chemistry[C]. USA: Elsevier Science Press,1994:13-51.
    [59]汪山,程继键.磷酸盐玻璃缓释材料应用进展.玻璃与搪瓷,1999,27(3):53.
    [60] Oya A,Yoshida S,Abe Y,et al. Antibacterial activated carbonfiber derived f romphenolic resin containing silver nitrate. Carbon,1993,31(1):71.
    [61]山田善市,竹内聪.抗菌性涂料组成物及よびの制造方法.JPPat,特开平8349371996.
    [62]丁向阳. TiO2光催化抗菌材料.玻璃与搪瓷,2000,28(4):42.
    [63]王德平,黄文敏.有源无机抗菌材料的研究进展.建筑材料学报,2000,3(1):73.
    [64] Mallick, K., M.J. Witcomb, M.S. Scurrell. Self-assembly of silver nanoparticles ina polymer solvent: Formation of a nanochain through nanoscale soldering.Materials Chemistry and Physics,2005,90(2-3):221-224.
    [65] Keki, S., J. Torok, G. Deak, et al. Silver nanoparticles by PAMAM-assisted photochemical reduction of Ag+. Journal of Colloid and Interface Science,2000,229(2):550-553.
    [66] Troupis A, Triantis T, Hiskia A, et al. Rate-redox-controlled size-selectivesynthesis of silver nanoparticles using polyoxometalates. European Journal ofInorganic Chemistry,2008,2008(36):5579~5586.
    [67] Zhang JH, Liu HY, Zhan P, et al. Controlling the growth and assembly of silvernanoprisms. Advanced Functional Materials,2007,17(9):1558~1566.
    [68] Kim YW, Lee DK, Lee KJ, et al. In situ formation of silver nanoparticles within anamphiphilic graft copolymer film. Journal of Polymer Science Part B: PolymerPhysics,2007,45(11):1283~1290.
    [69] Sato-Berrú R, Redón R, Vázquez-Olmos A, et al. Silver nanoparticles synthesizedby direct photoreduction of metal salts. Application in surface-enhanced Ramanspectroscopy. Journal of Raman Spectroscopy,2009,40(4):376~380.
    [70] Lee T M, Cai H, Hsing I M. Gold Nanoparticle-Catalyzed Silver Electrodepositionon an Indiμm Tin Oxide Electrode and Its Application in DNA HybridizationTransduction.Electroanalysis,2004,16(19):1628~1631.
    [71] Irshad H, Mathias B, Adam JP, et al. Preparation of acrylate-stabilized gold andsilver hydrosols and gold-polymer composite films. Langmuir,2003,19:4831~4835.
    [72] Kim KY, Choia YT, Seo DJ, et al. Preparation of silver colloid and enhancement ofdispersion stability in organic solvent. Materials Chemistry and Physics,2004,88(2-3):377~382.
    [73] Ullah MH, Kim LL, Chang-Sik H. Preparation and optical properties of colloidalsilver nanoparticles at a high Ag+concentration. Materials Letters,2006,60(12):1496~1501.
    [74] Nersisyan HH, Lee H, Son HT, et al. A new and effective chemical reductionmethod for per parathion of nanosized silver powder and colloid dispersion.Materials Research Bulletin,2003,(38):949~956.
    [75]卢寿慈.粉体加工技术[M].北京:中国轻工业出版社,1999.48~50.
    [76] Chen M, Feng YG, Wang X, et al. Silver nanoparticles capped by oleylamine:formation, growth, and self-organization. Langmuir,2007,23:5296~5304.
    [77] Wang DT, Song CX, Hu ZS, et al. Synthesis of silver nanoparticles with flake-likeshapes. Materials Letters,2005,59(14-15):1760~1763.
    [78] Huang HZ, Yang XR. Synthesis of polysaccharide-stabilized gold and silvernanoparticles: a green method. Carbohydrate Research,2004,339:2627~2631.
    [79] Ohde H, Hunt F, Wai CM. Synthesis of silver and copper nanoparticles in awater-in-supercirtical-carbon dioxide microemulsion. Chemistry of Materials,2001,13:4130~4135.
    [80] Capek. Preparation of metal nanoparticles in water-in-oil (W/O) microemulsions.Advances in Colloid and Interface Science,2004,110(1-2):49~74.
    [81] Zhang WZ, Qiao XL, Chen JG, et al. Preparation of silver nanoparticles inwater-in-oil AOT reverse micelles. Journal of Colloid and Interface Science,2006,302(1):370~373.
    [82] Zhang WZ, Qiao XL, Chen JG. Synthesis of silver nanoparticles—Effects ofconcerned parameters in water/oil microemulsion. Materials Science andEngineering B,2007,142,1~15.
    [83] Andersson M, Pedersen JS, Anders EC, et al. Silver nanoparticle formation inmicroemulsions acting both as template and reducing agent. Langmuir,2005,21(24):11387~11396.
    [84] Manuel Baca, Emmanuel de la Rochefoucauld, Emmanuelle Ambroise, Jean-MarcKrafft, Redouane Hajjar, Pascal P. Man, Xavier Carrier, Juliette Blanchard,Characterization of mesoporous alμmina prepared by surface alμmination ofSBA-15[J], Microporous and Mesoporous Materials,2008,110(2-3):232~241.
    [85] Welton T. Room temperature ionic liquids synthesis and catalysis. ChemicalReviews,1999,99:2071~2083.
    [86] Olivier H. Recent developments in the use of nonaqueous ionic liquids fortwo-phase catalysis. Journal of Molecular Catalysis A: Chemical,1999,146:285~289
    [87] Dupont J, Souza RF, Suarez PA. Ionic liquid (molten salt) phase organometalliccatalysis. Chemical Reviews,2002,102(10):3667~3691.
    [88] Whitehead JA, Zhang J, Pereira N, et al. Application of1-alkyl-3-methyl-imidazoliμm ionic liquids in the oxidative leaching of sulphidiccopper, gold and silver ores. Hydrometallurgy,2007,88(1-4):109~120.
    [89] Kosmulski M, Gustafsson J, Rosenholm JB. Thermal stability of low temperatureionic liquids revisited. Thermochimica Acta,2004,412:47~53.
    [90] Antonietti M, Kuang D, Smarsly B, et al. Ionic liquids for the convenient synthesisof functional nanoparticles and other inorganic nanostructures. AngewandteChemie International Edition,2004,43(38):4988~4992.
    [91] Dupont J, Fonseca GS, Μmpierre AP, et al. Transition-metal nanoparticles inimidazoliμm ionic liquids: recycable catalysts for biphasic hydrogenation reactions.Journal of the American Chemical Society,2002,124(16):4228~4229.
    [92] Zeng XF, Wei K, Han X, Luo Y, Shu LJ, Wu Y, Shen ZY. Preparation andproperties of chitosan/polyvinyl alcohol loaded with nano-silver for wounddressing. Zhongguo Zuzhi Gongcheng Yanjiu yu Linchuang Kangfu.2011;15(8):1413-1416.
    [93] Mragract,Lj Li S L., Poon V K M, et al. Antimicrobila activities of silver dressings:An in vitri comparison[J]. J Medical Microbiology,2006,(55):59.
    [94] Silva AM, Araujo CB, Santos-Silva S. Silver nanoparticle in situ growth withincrosslinked poly(ester-co-styrene) induced by UV irradiation: aggregation controlwith exposure time. Journal of Physics and Chemistry of Solids,2007,68:729~733.
    [95] Plieth W, Dietz H, Anders A, et al. Electrochemical preparation of silver and goldnanoparticles: Characterization by confocal and surface enhanced Ramanmicroscopy. Surface Science,2005,597(1-3):119~126.
    [96] Zhu JJ, Wang H, Shu X, et al. Sonochemical method for the preparation ofmonodisperse spherical and rectangular lead selenide nanoparticles. Langmuir,2002,18:3306~3310.
    [97] Mafune. Fμmitaka. J phys Chem B200,104(35):8333~8337.
    [98]王振阳,关晓,何洪,等.超声膜扩散法制备纳米银粒子[J].高等学校化学学报,2007,28(9):1756-1758.
    [99] Ahmed MO, Leong WK. Colloidal silver nanoparticles stabilized by awater-soluble triosmiμm cluster. Journal of Organometallic Chemistry,2006,691:1055~1060.
    [100] Simchi A, Ahmadi R, Seyed RS, et al. Kinetics and mechanisms of nanoparticleformation and growth in vapor phase condensation process. Materials and Design,2007,28:850~856.
    [101] Vigneshwaran N, Nachane RP, Balasubramanya RH, et al. A novel one-pot‘green’ synthesis of stable silver nanoparticles using soluble starch. CarbohydrateResearch,2006,341(12):2012~2018.
    [102] Li TH, Park HG, Choi SH. γ-Irradiation-induced preparation of Ag and Aunanoparticles and their characterizations. Materials Chemistry and Physics,2007,105:325~330.
    [103]贾晓林,谭伟.纳米粉体分散技术发展情况.非金属矿,2003,26(4):1~3.
    [104] Lin X Z, Teng X, Yang H. Direct synthesis of narrowly dispersed silvernanoparticles using a single-source precursor. Langmuir,2003,19(24):10081~10085.
    [105] Tokareva I; Hutter E. Hybridization of oligonucleotide-modified silver and goldnanoparticles in aqueous dispersions and on gold films. Journal of the AmericanChemical Society,2004,126(48):15784~15789.
    [106] Murray BJ, Li O, Newberg JT, et al. Shape-and size-selective electrochemicalsynthesis of dispersed silver(I) oxide colloids. Nano Letters,2005,5(11):2319~2324.
    [107] Fuertes MC, Marchena M, Marchi MC, et al. Controlled deposition of silvernanoparticles in mesoporous single or multilayer thin films: from tuned pore fillingto selective spatial location of nanometric objects. Small,2009,5(2):272~280.
    [108] Chen M, Wang LY, Han JT, et al. Preparation and study ofpolyacryamide-stabilized silver nanoparticles through a one-pot process. Journal ofPhysical Chemistry B,2006,110(23):11224~11231.
    [109] Zhensong Lou, Ruiheng Wang, Hui Sun, Yuan Chen, Yanhui Yang, Directsynthesis of highly ordered Co-SBA-15mesoporous materials by thepH-adjusting approach[J], Microporous and Mesoporous Materials,2008,110(2-3):347-354.
    [110]张宗涛,赵斌,胡黎明,等.化学还原法制备纳米级Ag粉高分子保护机理研究化学学报,2009,54:379~384.
    [111]任俊,卢寿慈,沈健,等.微细颗粒在水、乙醇及煤油中的分散行为特征.科学通报,2000,45(6):583-586.
    [112]汤京龙,奚廷斐.纳米银生物安全性研究.生物医学工程学杂志,2008,25(4):958-962.
    [113]山本英夫,盐路修平.粒子内付着力与分散性的关系.粉体工学会志,1990,27(3):159-164.
    [114] Jeong S H, wang Y H, Yi S C. Antibacterial propetrie of padded PP/PEnonwovens incorporating nano-sized silver colloids[J]. J Mater Sci,2005,40(5):5413.
    [115] Jia H, Xu W, An J, et al. A simple method to synthesize triangular silvernanoparticles by light irradiation. Spectrochimica Acta Part A: Molecular andBiomolecular Spectroscopy,2006,64(4):956~960.
    [116] Silver S. Bacterial silver resisitance: Molecular biology and uses and misuses ofsilver compounds[J]. FEMS Microbiology Rev,2003,27(3):341.
    [117] SendovaM, Sendova,VassilevaM, P iv in J C, et al. Experimental study ofinteraction of laser radiation with silver nanoparticles in SiO2matrix[J]. Nanosci Nanotechnol,2006,6(3):748-755.
    [118] Alt V, Bechert T, PeterSteinruckeP, et al. Aninvitroassess-mentofthe antibacterialproperties and cytotoxicity of nanoparticu-late silver bone cement. Biomaterials,2004;25:4383.
    [119] Alt V, Bechert T, Steinrucke P,etal.Nanoparticulate silver. A New antimicrobialsubstance for bone cement. Orthopade.2004;33(8):885.
    [120] Imai K, Nakamura M. Invitro embryo toxicity testing of metals for dental use bydifferentiation of embryo nicstem celltest. Con-genitAnom(Kyoto),2006;46(1):34.
    [121] SteffensenIL, MesnaOJ, AndruchowE, etal. Cytotoxicity and Accμmulation of Hg,Ag, Cd, Cu, Pb and Zn in hμman peripheral T and B lymphocytes and monocytesinvitro. Gen Pharmacol,1994;25(8):1621.
    [122] Jansson G, Harms-Ringdahl M. Stimulating effects of mercuric-and silver ions onthe superoxide anion production inhμmanpoly-Morphonuclear leukocytes. FreeRadic Res Commun,1993;18(2):87.
    [123] Khanna PK,Subbarao VVVS.Nanosized silver powder via reduction of silvernirate by sodiμm formaldehydesulfoxylate in acidic pH mediμm.Materials Letters.2003;57(15):2242-2245.
    [124] O’Regan B, Grat zel M. A low-cost, high-ef ficiency solar cell based on dyesensitized coll oidal TiO2films[J]. Nature,1991,353(24):737-739.
    [125] McCormick ML, Sanghvi HC, Kinzie B, et al. Preventing postpartμmhemorrhage in low-resource settings. Int J Gynaecol Obstet.2002;77(3):267-275.
    [126] Karl M. Kadish, T akashi Nakanishi et al.[J]. J Phys Chem B,2001,105(40):9817-9821.
    [127] Zhang J, et al.[J]. Synthetic Metals,2005,148:123-126.
    [128] Chandra Ramesh. Nanostruct Mater,1999.11(8):1171~1179.
    [129] E.Oberdorster, Environ. Health Perspect.112,1058(2004).
    [130] Jinglong Tang, Tingfei Xi.et al., Distribution, Translocation and Accμmulationof Silver Nanoparticles in Rats. Journal of Nanoscience and Nanotechnology. Vol.9,1-9,2009.
    [131] Rodriguez Sanchez L, J. phys Ch em, B,2000,104(41):9683~9688.
    [132] US,5352369.
    [133] Claudia P, Andreas K, Horst W. Site-specific photodeposition of silver on ZnOnanorods[J]. Angew Chem Int Ed.2004,43(36):4774.
    [134] Stephan T D, Panittamat K, Pranut P. Colloids and Surfaces A: Physicochemicaland Engineering Aspects[J],2006,289(1-3):105.
    [135] Mirsattari SM, Hammond RR, Sharpe MD, et al. Myoclonic status epilepticusfollowing repeated oral ingestion of colloidal silver. Neurology,2004;62(8):1408.
    [136] Furno F, Morley KS, Wong B, et al. Silver nanoparticles and polymericmedical devices: a new approach to prevention of infection J AntimicrobChemother,2004;54(6):1019.
    [137] Donaldson K, Stone V, Tran CL, et al. Nanotoxicology. Occup Environ Med,2004;61(9):727.
    [138] Mahendra R, Alka Y, Aniket G. Biotechnology Advances[J],2009,27:76.
    [139] Steffensen IL, Mesna OJ, Andruchow E, et al. Cytotoxicity and accμmulationof Hg, Ag, Cd, Cu, Pb and Zn in hμman peripheral T and B lymphocytes andmonocytes i n vit ro. Gen Pharmacol,1994;25(8):1621.
    [140] Wang XW, Wang NZ, Zhang OZ, et al. Tissue deposition of silve followingtopical use of silver sulf adiazine in extensive burns. Burns,1985,11:197-201.
    [141] Yang YW, Liu JL. Latest advances in the researches in and application ofnanoparticle silver. Industrial Catalysis,2003;11(12).
    [142] Boosalis MG, McCall JT,Ahrenholz DH,et al. Serμm and uninary silve levels inthermal injury patients. Surgery,1987,101:40-43.
    [143] Coombs CJ, Wan AT, Masterton JP, et al. Do burn patients have a silver lining.Burns,1992,18:179-184.
    [144] Rahmana M F, Wanga J, Pattersona T A et al. Toxicology Letters[J],2009,187(1):15
    [145] Kalimuthu K, Elayappan B, SureshBabu R K P et al. Colloids and Surfaces B:Biointerfaces[J],2009,73:51.
    [146] Jansson G, Harms2Ringdahl M. Stimulating effects of mercuric and silver ionson the superoxide anion production in hμman polymorphonuclear leukocytes.Free Radic Res Commun,1993;18(2):87.
    [147] Hussain SM, Hess KL, Gearhart JM, et al. In vit ro toxicity of nanoparticles inBRL3A rat liver cells. Toxicol In Vitro,2005;19(7):975.
    [148] Hussain SM, Javorina A, Schrand AM, et al. The interaction of manganesenanoparticles with PC212cells induces dopamine depletion. Toxicol Sci,2006;92(2):456.
    [149] Silver S, Phung L T, Silver G. J Ind Microbiol Biotechnol[J],2006,33:627.
    [150] M. Larhed, A. Hallgerg. Microwave-Promoted Palladiμm-Catalyzed CouplingReactions, J. Org. Chem.16(1996):9582-9584.
    [151] Akncbay H, Senel S, Ay ZY. Application of chitosan gel in the treatment ofchronic periodontitis[J]. J Biomed Mat Res,2007,80(2):290-296.
    [152] Duvvuri S, Janoria KG, Mitra AK. Development of a novel formulationcontaining poly (d, l-lactide-co-glycolide) microspheres dispersed inPLGA-PEG-PLGA gel for sustained delivery of ganciclovir[J]. J Control Release,2005,108(2/3):282-293.
    [153] Jeong B, Bae YH, Kim SW. Thermoreversible gelation of PEGPLGA-PEGtriblock copolymer aqueous solutions[J]. Macromolecules,1999,32(21):7064-7069.
    [154] Lansdown. Silver. I: Its antibacterial properties and mechanism of action[J]. JWound Care,2002,11(4):125-130.
    [155] Berry JA, Biedlingmaier JF, Whelan PJ. In vitro resistance to bacterial biofilmformation on coated fluoroplastic tympanostomy tube[J]. Otolaryngol Head NeckSurg,2000,123(3):246-251.
    [156] Mulligan AM, Wilson M, Knowles JC. Effect of increasing silver content inphosphate-based glasses on biofilms of Streptococcus sanguis[J]. J Biomed MatRes,2003,67(2):401-412.
    [157] Wei G, Xu H, Ding PT, et al. Thermosetting gels with modulated gelationtemperature for ophthalmic use: rheological and gamma sintigraphic studies [J]. JControl Release,2002,83(1):65-74.
    [158]魏培,邓树海,李凌冰,等.原位凝胶缓释给药系统的研究进展[J].中国医药工业杂志,2007,38(12):890-894.
    [159] Chung TW, Lin SY, Liu DZ, et al. Sustained release of5-FU from Poloxamergels interpenetrated by crosslinking chitosan network [J]. Int J Pharm,2009,382(1/2):39-41.
    [160] HuJianqiang(胡建强),WuJihong(吴继红), RenBin(任斌), YangZhilin(杨志林),TianZhongqiong(田中群). Chin. J. LightScatt.(光散射学报),2002,13:226.
    [161] Jana NR,GearheartL,MurphyCJ.Chem.Comm.2001,617
    [162] Tsuji M, Nishizawa Y, Matsμmoto K. Rapid synthesis of silver nanostructures byusing microwave-polyol method with the assistance of Pt seeds andpolyvinylpyrrolidone. Colloids and Surfaces A: Physicochemical and EngineeringAspects,2007,293:185~195.
    [163] Hsu SL, Wu RT. Synthesis of contamination-free silver nanoparticle suspensionsfor micro-interconnects. Materials Letters,2007,61:3719~3722.
    [164] Yoon KY, Byeon JH, Park JH, et al. Susceptibility constants of Escherichia coliand Bacillus subtilis to silver and copper nanoparticles. Science of the TotalEnvironment,2007,373(2-3):572~575.
    [165] Charles F, Heinig J. O3or O2and Ag-new catalyst technology for aqueous phasesanitation. in: Ozone science and engineering. USA: International Ozone Society,1993,533~546.
    [166] Alt V, Bechert T, Steinrücke P, et al. An in vitro assessment of the antibacterialproperties and cytotoxicity of nanoparticulate silver bone cement. Biomaterials,2004,25(18):4383-4391.
    [167] Xu HT, Ma L, Shi HF, et al. Chitosan-hyaluronic acid hybrid film as a novelwound dressing: in vitro and in vivo studies. Polymers for AdvancedTechnologies,2007,18(11):869~875.
    [168] Liu XF, Song L, Li L, et al. Antibacterial effects of chitosan and its water-solublederivatives on E. coli, plasmids DNA, and mRNA. Journal of Applied PolymerScience,2007,103(6):3521~3528.
    [169] Wang RM, He NP, He YF, et al. The preparation of nano-scopechitosan-oligomer copper complexes and their interaction with DNA. Polymersfor Advanced Technologies,2005,16(8):638~641.
    [170] Cuera RG, Osuji G, Washington A. N-carboxyl chitosan inhibition of aflatoxinproduction-role of zinc. Biotechnology Letters,1991,13:441~447.
    [171] Je JY, Kim SK. Chitosan derivatives killed bacteria by disrupting the outer andinner membrane. Journal of Agricultural and Food Chemistry,2006,54(18):6629~6633.
    [172] Muzzarelli RA, Muzzarelli C, Tarsi R, et al. Fungistatic activity of modifiedchitosans against Saprolegnia parastitia. Biomacromolecules,2001,2(1):165~169.
    [173] Zhang J, Liu K, Dai Z, et al. Formation of novel assembled silver nanostructuresfrom polyglycol solution. Materials Chemistry and Physics.2006,100:106~112.
    [174]姜兆华,孙德智,邵光杰等,应用表面化学与技术,哈尔滨:哈尔滨工业大学出版社,2000,31~34.
    [175] Jou CH, Lin SM, Yun L, et al. Biofunctional properties of polyester fibersgrafted with chitosan and collagen. Polymers for Advanced Technologies,2007,18(3):235~239.
    [176] Mia FL, Wu YB, Shyu SS, et al. Asymmetric chitosan membranes prepared bydry/wet phase separation: a new type of wound dressing for controlledantibacterial release. Journal of Membrane Science,2003,212:237~254.
    [177] Donia AM, Atia AA, Elwakeel KZ. Recovery of gold(III) and silver(I) on achemically modified chitosan with magnetic properties. Hydrometallurgy,2007,87:197~206.
    [178] Yu YY, Chien WC, Chen ST. Preparation and morphology of amphiphilicolystyrene-poly(2-vinylpyridine) heteroarm star copolymers prepared by ATRP.olymer International,2008,57(12):1369~1376.
    [179] Lu JM, Yan F, Texter J. Advanced applications of ionic liquids in polymerscience. Progress in Polymer Science,2009,34(5):431~448.
    [180] Wu YZ, Hao XP, Yang JX, et al. Ultrasound-assisted synthesis of anocrystallineZnS in the ionic liquid [BMIM]·BF4. Materials Letters,2006,60:764~2766.
    [181] Scheeren CW, Machado G, Teixeira SR. Synthesis and characterization ofnanoparticles in imidazoliμm ionic liquids. Journal of Physical Chemistry B,006,110:13011~13020.
    [182]张晟卯,张春丽,张经纬等,室温离子液体中银纳米微粒的制备与结构与表征,物理化学学报,2004,20(5):554~55.
    [183] Sun Y, Wiley B, Li ZY, et al. Synthesis and optical properties of nanorattles andmultiple-walled nanoshells/nanotubes made of metal alloys. Journal of AmericanChemical Society,2004,126,9399~9406.
    [184]徐友祥,孙玉来,叶华等.居室环境微生物污染状况调查.劳动医学[J],2001,18(3):184~185.
    [185] He P, Liu HT, Li ZY, et al. Electrochemical deposition of silver inroom-temperature ionic liquids and its surface-enhanced Raman scattering effect.Langmuir,2004,20:10260~10267.
    [186] Zhang ZQ, Patel RC, Kothari R, et al. Stable silver clusters and nanoparticlesprepared in polyacrylate and inverse micellar solutions. Journal of PhysicalChemistry B,2000,104(6):1176~1182.
    [187]吕月仙.导电涂料的导电机理华北工学院学报.1998,19(4):329~331.
    [188]王娴婷,郭忠诚,朱晓云.低温聚合物导体浆料粘结相的选择贵金属.2007,28(3):40~42.
    [189]汤文杰.浅谈导电油墨的应用印刷世界,2008,(6):42~43.
    [190] Henglein A. Physicochemical propert ies of small metal particles in solution:/micro electrode reactions, chemisorption, composite metal particles, and theatom-to-metal transition [J]. J Phys1Chem.1993,97,54571.
    [191] Michaelis M, Henleign A, Mulvaney P. Composite Pd-Ag Par ticles in AqueousSolution [J]. J. Phys Chem.1994,98,6212.
    [192] Huang Z Y, M ill G, Hakec B1Spo ntaneous formation of silv er particles inbasic-propanol [J]. J. Phys1Chem11993,97,11542.
    [193] Sathay e S D, Patil k R, Par anjape D V, et al.Nano cr ystalline silver paticulatefilms by liquid-liquid interface r eact ion t echnique (LLIRT)[J]. MaterialsResear ch Bulletin,2001,36(7/8):1149-1155.
    [194] Ravaine, Br eto n c, Minqo taud C, et al. Electr odposition of two-dimensionalsilver films under dihex adecyl phosphat emonolayres [J]. Matenials Science andEng ineening C,1999,22(8/9):437-444.
    [195]钟福新,将治良,李芳,等.纳米银胶的化学制备及其共振散射光谱研究[J].光谱与光谱分析.2000,20(5):724-726.
    [196]沈理明,姚建林,顾仁敖.金纳米粒子的电化学合成及光谱表征[J].光谱与光谱分析,2005,25(12):1998-2001.
    [197]吴元菲,李剑锋,吴德印.胞嘧啶吸附在粗糙银和金电极上的表面增强拉曼光谱[J].光散射学报,2006,(04):5-10.
    [198]杨海峰,曹晓卫,李霞,等.金电极上Cu, Zn-SOD的表面增强拉曼光谱[J].光散射学报,2004,(02):25-30.
    [199] Altman M S, Chunc W F, H e Z Q, et al. Quantμm size effect in low enr ey electron diffraction of thifilms[J]. Applied surface Science,2001,169/170:82-87.
    [200]孙献文,朱纪春,张振龙等.激光刻蚀银胶的制备及其SERS应用[J].光散射学报,2003,15:123.
    [201]李桂峰,李泓,莫育俊等.锂电池中负极表面固体电解质膜的SERS研究[J].光散射学报,2003,14:224.
    [202] T. T odorov, L. Nikolova, N. Tomov a. Polarizat ion holography.1: A new highefficiency organic material with reversible photo induced birefringence[J]. ApplOpt.,1984,23:4309.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700