用户名: 密码: 验证码:
膝关节骨关节炎关节软骨T2 Mapping成像
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的①总结健康人膝关节软骨T2值的特点。②基于MRI划分的软骨严重程度,探讨T2Mapping在膝关节骨关节炎关节软骨成像的运用。
     材料与方法对77例健康人(H)和72例膝关节骨关节炎患者(OA)的膝关节进行临床WOMAC评分和胫股关节软骨矢状位T2Mapping成像,测量软骨10个亚区的全层T2值。OA组另行矢状位FS-3D-FSPGR成像和修订的WORMS评分,按修订的MRRecht分级分成轻度(OA1)和重度(OA2)两组。比较:①T2值在H1(20岁-39岁)和H2(40岁-59岁)组间,H2、OA1和OA2组间,各亚区间及性别间的差异;②T2值与年龄、BMI、WORMS及WOMAC的相关性;③T2值测量的观察者内和观察者间信度。
     结果T2值在H2组各亚区(除LFp)均高于H1组(P<0.05),在OA2组的4个亚区(MTa、MFc、MTc和LTc)高于H2组和/或OA1组(P<0.05)。H组T2值在亚区间存在显著性差异(P=0.000),但在性别间无差异。T2值在OA组各亚区(除LFp)与WORMS呈正相关(P<0.01);在H2组6各亚区与年龄呈正相关(P=0.004-0.015,R值=0.376-0.437);与BMI及WOMAC无关。T2值测量的观察者内和观察者间信度在H组和OA组(除LTa)普遍较好(P<0.015,R>0.700)。
     结论T2Mapping能区分基于MRI的OA严重程度,是膝关节OA病情监测的敏感手段。
Objective:①To summarize the characteristics of T2values in healthy knee articular cartilage;②To evaluate T2Mapping of articular cartilage in knee osteoarthritis (OA) based on MRI severity assessment.
     Materials and Methods:One hundred and forty-nine subjects were assessed with WOMAC Index:77healthy (H) and72OA tibiofemoral articular cartilages categorized into OA1and OA2, based on the modified MR Recht Grading System. T2Mapping was performed to calculate the bulk T2values in10subregions, while FS-3D-FSPGR only in OA to obtain the modified WORMS scores. We compared:①the differences of T2values between H1(20-39years) and H2(40-59years); among H2, OA1and OA2; among subregions and between genders;②correlations of T2values with age, BMI, WORMS scores and WOMAC index respectively;③the intra-observer and inter-observer reproducibility of T2values measurement.
     Results:T2values of H2were significantly higher than H1(P<0.05, except LFp), the differences of T2values among H2, OA1and OA2in4subregions (MTa, MFc, MTc and LTc) and among subregions within group were significant (P<0.05), but no significance was found between genders. There was positive correlation of T2values with WORMS scores (P<0.01, except LFp), and with age in6subregions of H2(P=0.004-0.015, R=0.376-0.437), but not with BMI nor WOMAC index. The correlation coefficients for intra-observer and inter-observer reproducibility in H and OA (except LTa) were>0.700(P≤0.015).
     Conclusion:T2Mapping can differentiate the OA severity of knee cartilage assessed by MRI, and is sensitive to monitoring severity.
引文
1.中华医学会风湿病学分会.骨关节炎诊治指南(草案)[J].中华风湿病学杂志,2003,7(11):702-704.
    2. Haq I, Murphy E, Dacre J. Osteoarthritis [J]. Postgrad Med J,2003, 79(933):377-383.
    3. David TF. Osteoarthritis of the knee [J]. NEJM,2006,354(8):841-848.
    4. Nevitt MC, Xu L, Zhang Y, et al. Very low prevalence of hip osteoarthritis among Chinese elderly in Beijing, compared with whites in the United States:the Beijing osteoarthritis study [J]. Arthritis Rheum,2002,46(7):1773-1779.
    5. Zhang Y, Xu L, Nevitt MC, et al. Comparison of the prevalence of knee osteoarthritis between the elderly Chinese population in Beijing and whites in the United States:the Beijing Osteoarthritis Study [J]. Arthritis Rheum,2001, 44(9):2065-2071.
    6. Sharma L, Kapoor D, Issa S, et al. Epidemiology of osteoarthritis:an update [J]. Curr Opin Rheumatol,2006,18(2):147-156
    7.李宁华.中老年人群骨关节炎的流行病学特征[J].中国临床康复,2005,9(38):133-135.
    8. Garstang SV, Stitik TP. Osteoarthritis:epidemiology, risk factors, and pathophysiology [J]. Am J Phys Med Rehabil,2006,85(11 Suppl):S2-S11.
    9. Poitras S, Avouac J, Rossignol M, et al. A critical appraisal of guidelines for the management of knee osteoarthritis using appraisal of guidelines research and evaluation criteria [J]. Arthritis Res Ther,2007,9(6):R126.
    10. Davis CR, Karl J, Granell R, et al. Can biochemical markers serve as surrogates for imaging in knee osteoarthritis? [J]. Arthritis Rheum,2007,56(12):4038-4047.
    11. Garnero P, Delmas PD. Biomarkers in osteoarthritis [J]. Curr Opin Rheumatol, 2003,15(5):641-646.
    12. DeGroot J, Bank RA, Tchetverikov I, et al. Molecular markers for osteoarthritis: the road ahead [J]. Curr Opin Rheumatol,2002,14(5):585-589.
    13. Gray ML, Eckstein F, Peterfy C, et al. Toward imaging biomarkers for osteoarthritis [J]. Clin Orthop Relat Res,2004,427(427 Suppl):S175-S181.
    14. Andersson MLE, Thorstensson CA, Roos EM, et al. Serum levels of Cartilage Oligomeric Matrix Protein (COMP) increase temporarily after physical exercise in patients with knee osteoarthritis [J]. BMC Musculoskeletal Disord,2006,7:98.
    15. Kobayashi T, Yoshihara Y, Samura A, et al. Synovial fluid concentrations of the C-propeptide of type II collagen correlate with body mass index in primary knee osteoarthritis [J]. Ann Rheum Dis,1997,56(8):500-503.
    16. Kobayashi T, Yoshihara Y, Yamada H, et al. Procollagen IIC-peptide as a marker for assessing of obesity and varus alignment mechanical risk factors of knee osteoarthritis:effect of obesity and varus alignment [J]. Ann Rheum Dis,2000, 59(12):982-984.
    17. Sharif M, Shepstone L, Elson CJ, et al. Increased serum C reactive protein may reflect events that precede radiographic progression in osteoarthritis of the knee [J]. Ann Rheum Dis,2000,59(1):71-74.
    18. Mazzuca SA, Brandt KD, German NC, et al. Development of radiographic Changes of osteoarthritis in the "Chingford knee" reflects progression of disease or nonstandardised positioning of the joint rather than incident disease [J]. Ann Rheum Dis,2003,62(11):1061-1065.
    19. Tonnis D. Normal values of the hip joint for the evaluation of X-ray in children and adults [J]. Clin Orthop Relat Res,1976,119:39-47.
    20. Brandt KD, Mazzuca SA, Conrozier T, et al. Which is the best radiographic protocol for a clinical trial of a structure modifying drug in patients with knee osteoarthritis? [J]. J Rheumatol,2002,29(6):1308-1322.
    21. Saal A, Gaertner J, Kuehling B, et al. Macroscopic and radiological grading of osteoarthritis correlates inadequately with cartilage height and histologically demonstrable damage to cartilage structure [J]. Rheumatol Int,2005,25(3):161-168.
    22. Dieppe PA, Cushnaghan J, Shepstone L. The Bristol'OA500'study:progression of osteoarthritis (OA) over 3 years and the relationship between clinical and radiographic changes at the knee joint [J]. Osteoarthritis Cartilage,1997,5(2):87-97.
    23. Mcalindon T, Cooper C, Kirwan J, et al. Determinants of disability in osteoarthritis of the knee [J]. Ann Rheum Dis,1993,52(4):258-262.
    24. Rosemann T, Joos S, Koerner T, et al. Comparison of AIMS2-SF, WOMAC, x-ray and a global physician assessment in order to approach quality of life in patients suffering from osteoarthritis [J]. BMC Musculoskeletal Disord,2006,7:6.
    25. Chang CB, Seong SC, Kim TK. Evaluations of radiographic joint space-do they adequately predict cartilage conditions in the patellofemoral joint of the patients undergoing total knee arthroplasty for advanced knee osteoarthritis? [J]. Osteoarthritis Cartilage,2008,16(10):1160-1166.
    26. Raynauld JP. Quantitative magnetic resonance imaging of articular cartilage in knee osteoarthritis [J]. Curr Opin Rheumatol,2003,15(5):647-650
    27. Chao J, Kalunian K. Ultrasonography in osteoarthritis:recent advances and prospects for the future [J]. Curr Opin Rheumatol,2008,20(5):560-564.
    28. Moller I, Bong D, Naredo E, et al. Ultrasound in the study and monitoring of osteoarthritis [J]. Osteoarthritis Cartilage,2008,16(Suppl 3):S4-S7.
    29. Saarakkala S, Toyras J, Hirvonen J, et al. Ultrasonic quantitation of superficial degradation of articular cartilage [J]. Ultrasound Med Biol,2004,30(6):783-792.
    30. Kiviranta P, Toyras J, Nieminen MT, et al. Comparison of novel clinically applicable methodology for sensitive diagnostics of cartilage degeneration [J]. Eur Cells Mater,2007,13:46-55.
    31. Blumenkrantz G, Majumdar S. Quantitative magnetic resonance imaging of articular cartilage in osteoarthritis [J]. Eur Cells Mater,2007,13:75-86.
    32. Li X, Han ET, Ma CB, et al. In vivo 3 T spiral imaging based multi-slice T1ρ Mapping of knee cartilage in osteoarthritis [J]. Magn Reson Med,2005, 54(4):929-936.
    33. Koff MF, Amrami KK, Kaufman KR. Clinical evaluation of T2 values of patellar cartilage in patients with osteoarthritis [J]. Osteoarthritis Cartilage,2007, 15(2):198-204.
    34. Dunn TC, Lu Y, Jin H, et al. T2 relaxation time of cartilage at MR imaging: comparison with severity of knee osteoarthritis [J]. Radiology,2004, 232(2):592-598.
    35. 杨海涛,王仁法,李锋,等.膝关节骨关节炎软骨磁共振T2-mapping成像与X线分级的对照研究[J].放射学实践,2007,22(11):1158-1160.
    36. Stahl R, Blumenkrantz G, Carballido-Gamio J, et al. MRI-derived T2 relaxation times and cartilage morphometry of the tibio-femoral joint in subjects with and without osteoarthritis during a 1-year follow-up [J]. Osteoarthritis Cartilage,2007, 15(11):1225-1234.
    37. Blumenkrantz G, Lindsey CT, Dunn TC, et al. A pilot, two year longitudinal study of the interrelationship between trabecular bone and articular cartilage in the osteoarthritic knee [J]. Osteoarthritis Cartilage,2004,12(12):997-1005.
    38. Eckstein F, Burstein D, Link TM. Quantitative MRI of cartilage and bone: degenerative changes in osteoarthritis [J]. NMR Biomed,2006,19(7):822-854.
    39. Kellgren JH, Lawrence J. Radiological assessment of osteoarthritis [J]. Ann Rheum Dis,1957,16:494-501.
    40. The Department of Rheumatology and Medical Illustration, University of Manchester and Manchester Royal Infirmary and the Empire Rheumatism Council's Field Unit. Atlas of standard radiographs of arthritis [EB/OL]. http://rheumatology.oxfordjournals.org/cgi/reprint/44/suppl_4/iv43.pdf,2009-5-28.
    41. Abadie E, Ethgen D, Avouac B, et al. Recommendations for the use of new methods to assess the efficacy of disease-modifying drugs in the treatment of osteoarthritis [J]. Osteoarthritis Cartilage,2004,12(4):263-268.
    42. Chan WP, Lang P, Stevens MP, et al. Osteoarthritis of the knee:comparison of radiography, CT, and MR imaging to assess extent and severity [J]. AJR,1991, 157(4):799-806.
    43. 黄加张,顾湘杰,潘哲尔,等.半月板突出在膝骨性关节炎关节间隙狭窄中的作用[J].中国临床康复,2005,9(2):22-23.
    44. Xie F, Li SC, Goeree R, et al. Validation of Chinese Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) in patients scheduled for total knee replacement [J]. Qual Life Res,2008,17(4):595-601.
    45. Faik A, Benbouazza K, Amine B, et al. Translation and validation of Moroccan Western Ontario and Mc Master Universities (WOMAC) osteoarthritis index in knee osteoarthritis [J]. Rheumatol Int,2008,28(7):677-683.
    46. Maier CF, Tan SG, Hariharan H, et al. T2 quantitation of articular cartilage at 1.5 T [J]. J Magn Reson Imaging,2003,17(3):358-364.
    47. Peterfy CG, Guermazi A, Zaim S, et al. Whole-Organ Magnetic Resonance Imaging Score (WORMS) of the knee in osteoarthritis [J]. Osteoarthritis Cartilage, 2004,12(3):177-190.
    48. Dardzinski BJ, Mosher TJ, Li S, et al. Spatial variation of T2 in human articular cartilage [J]. Radiology,1997,205(2):546-550.
    49. Mosher TJ, Smith H, Dardzinski BJ, et al. MR imaging and T2 mapping of femoral cartilage:in vivo determination of the magic angle effect [J]. AJR Am J Roentgenol,2001,177(3):665-669.
    50. Setton LA, Elliott DM, Mow VC, et al. Altered mechanics of cartilage with osteoarthritis:human osteoarthritis and an experimental model of joint degeneration [J]. Osteoarthritis Cartilage,1999,7(1):2-14.
    51. Shirazi R, Shirazi-Adl A, Hurtig M. Role of cartilage collagen fibrils networks in knee joint biomechanics [J]. J Biomech,2008,41(16):3340-3348.
    52. Mollenhauer JA. Perspectives on articular cartilage biology and osteoarthritis [J]. Injury,2008,39(S1):S5-S12.
    53. Guilak F, Ratcliffe A, Mow VC. Chondrocyte deformation and local tissue strain in articular cartilage:A confocal microscopy study [J]. J Orthop Res,1995, 13(3):410-421.
    54. Xia Y. Magic-angle effect in magnetic resonance imaging of articular cartilage:a review [J]. Invest Radiol,2000,35(10):602-621.
    55. Liisse S, Claassen H, Gehrke T, et al. Evaluation of water content by spatially resolved transverse relaxation times of human articular cartilage [J]. Magn Reson Imaging,2000,18(4):423-430.
    56. Chou MC, Tsai PH, Huang GS, et al. Correlation between the MR T2 value at 4.7 T and relative water content in articular cartilage in experimental osteoarthritis induced by ACL transaction [J]. Osteoarthritis Cartilage (2008), doi:10.1016/j.joca.2008.09.009.
    57. Nieminen MT, Toyras J, Rieppo J, et al. Quantitative MR microscopy of enzymatically degraded articular cartilage [J]. Magn Reson Med,2000, 43(5):676-681.
    58. Nissi MJ, J. Rieppo J, Toyras J, et al. T2 relaxation time mapping reveals age-and species-related diversity of collagen network architecture in articular cartilage [J]. Osteoarthritis Cartilage,2006,14(12):1265-1271.
    59. David-Vaudey E, Ghosh S, Ries M, et al. T2 relaxation time measurements in osteoarthritis [J]. Magn Reson Imaging,2004,22(5):673-682.
    60. Mosher TJ, Chen Q, Smith MB.1H magnetic resonance spectroscopy of nanomelic chicken cartilage:effect of aggrecan depletion on cartilage T2 [J]. Osteoarthritis Cartilage,2003, 11(10):709-715.
    61. Mosher TJ, Liu Y, Yang QX, et al. Age dependency of cartilage magnetic resonance imaging T2 relaxation times in asymptomatic women [J]. Arthritis Rheum, 2004,50(9):2820-2828.
    62. Watrin-Pinzano A, Ruaud JP, Olivier P, et al. Effect of proteoglycan depletion on T2 mapping in rat patellar cartilage [J]. Radiology,2005,234(1):162-170.
    63. Huber M, Trattnig S, Lintner F. Anatomy, biochemistry, and physiology of articular cartilage [J]. Invest Radiol,2000,35(10):573-580.
    64. Lusse S, Knauss R, Werner A, et al. Action of compression and cations on the proton and deuterium relaxation in cartilage [J]. Magn Reson Med,1995, 33(4):483-489.
    65. 宋玲玲,梁碧玲,沈君,等.MR T2图评价膝关节软骨的初步探讨[J].中华放射学杂志,2008,42(3):231-235.
    66. Smith HE, Mosher TJ, Dardzinski BJ, et al. Spatial variation in cartilage T2 of the knee [J]. J Magn Reson Imaging,2001,14(1):50-55.
    67. Mosher TJ, Collins CM, Smith HE, et al. Effect of gender on in vivo cartilage magnetic resonance imaging T2 mapping [J]. J Magn Reson Imaging,2004, 19(3):323-328.
    68. Mendlik T, Faber SC, Weber J, et al. T2 quantitation of human articular cartilage in a clinical setting at 1.5 T:implementation and testing of four multiecho pulse sequence designs for validity [J]. Invest Radiol,2004,39(5):288-299.
    69. Pai A, Li X, Majumdar S. A comparative study at 3 T of sequence dependence of T2 quantitation in the knee [J]. Magn Reson Imaging,2008,26(9):1215-1220.
    70. Li X, Ma CB, Link TM, et al. In vivo Tlp and T2 mapping of articular cartilage in osteoarthritis of the knee using 3 T MRI [J]. Osteoarthritis Cartilage,2007, 15(7):789-797.
    71. 马立恒.关节软骨的结构与生物力学的关系及MR成像[J].国外医学临床放射学分册,2006,29(2):123-126.
    72. Mosher TJ, Dardzinski BJ, Smith MB. Human articular cartilage:influence of aging and early symptomatic degeneration on the spatial variation of T2:preliminary findings at 3 T [J]. Radiology,2000,214(1):259-266.
    73. Chaudhari AMW, Briant PL, Bevill SL, et al. Knee kinematics, cartilage morphology, and osteoarthritis after ACL injury [J]. Med Sci Sports Exerc,2008, 40(2):215-222.
    74. Mosher TJ, Smith HE, Collins C, et al. Change in knee cartilage T2 at MR imaging after running:a feasibility study [J]. Radiology,2005,234(1):245-249.
    75. Phan CM, Link TM, Blumenkrantz G, et al. MR imaging findings in the follow-up of patients with different stages of knee osteoarthritis and the correlation with clinical symptoms [J]. Eur Radiol,2006,16(3):608-618.
    76. Raynauld JP, Kauffmann C, Beaudoin G, et al. Reliability of a quantification imaging system using magnetic resonance images to measure cartilage thickness and volume in human normal and osteoarthritic knees [J]. Osteoarthrits Cartilage,2003, 11(5):351-360.
    77. Pelletier JP, Raynauld JP, Berthiaume MJ, et al. Risk factors associated with the loss of cartilage volume on weight-bearing areas in knee osteoarthritis patients assessed by quantitative magnetic resonance imaging:a longitudinal study [J]. Arthritis Res Ther,2007,9(4):R74.
    78. Koo S, Gold GE, Andriacchi TP. Considerations in measuring cartilage thickness using MRI-factors influencing producibility and accuracy [J]. Osteoarthritis Cartilage,2005,13(9):782-789.
    79. Bowers ME, Trinh N, Tung GA, et al. Quantitative MR imaging using "LiveWire" to measure tibiofemoral articular cartilage thickness [J]. Osteoarthritis Cartilage,2008,16(10):1167-1173.
    80. Li G, DeFrate LE, Park SE, et al. In vivo articular cartilage contact kinematics of the knee:an investigation using dual-orthogonal fluoroscopy and magnetic resonance image-based computer models [J]. Am J Sports Med,2005, 33(1):102-107.
    81. Hannila I, Raina, SS, Tervonen O, et al. Topographical variation of T2 relaxation time in young adult knee cartilage at 1.5T [J]. Osteoarthritis Cartilage (2009), doi:10.1016/j.joca.2009.05.011.
    82. Alhadlaq HA, Xia Y. The structural adaptations in compressed articular cartilage by microscopic MRI (μMRI) T2 anisotropy [J]. Osteoarthritis Cartilage,2004, 12(11):887-894.
    83. Mlynarik V, Trattnig S. Physicochemical properties of normal articular cartilage and its MR appearance [J]. Invest Radiol,2000,35(10):589-594.
    84. Mosher TJ, Smith HE, Collins CM, et al. Reproducibility of in vivo cartilage T2 profiles:implication for longitudinal studies (abstr). In:Proceedings of the Ninth Meeting of the International Society for Magnetic Resonance in Medicine [C]. Berkeley, Calif:International Society for Magnetic Resonance in Medicine,2001; 2097.
    85. Berthiaume MJ, Raynauld JP, Martel-Pelletier J, et al. Meniscal tear and extrusion are strongly associated with progression of symptomatic knee osteoarthritis as assessed by quantitative magnetic resonance imaging [J]. Ann Rheum Dis,2005,64(4):556-563.
    86. Hunter DJ, Zhang YQ, Niu JB, et al. The association of meniscal pathologic changes with cartilage loss in symptomatic knee osteoarthritis [J]. Arthritis Rheum, 2006,54(3):795-801.
    87. Kaufman KR, Hughes C, Morrey BF, et al. Gait characteristics of patients with knee osteoarthritis [J]. J Biomech,2001,34(7):907-915.
    88. Felson DT, Zhang Y, Hannan MT, et al. Risk factors for incident radiographic knee osteoarthritis in the elderly [J]. Arthritis Rheum,1997,40(4):728-733.
    89. Cooper C, Snow S, McAlindon TE, et al. Risk factors for the incidence and progression of radiographic knee osteoarthritis [J]. Arthritis Rheum,2000, 43(5):995-1000.
    90. Recht MP, Piraino DW, Paletta GA, et al. Accuracy of fat-suppressed three-dimensional spoiled gradient-echo FLASH MR imaging in the detection of patellofemoral articular cartilage abnormalities [J]. Radiology,1996,198(1): 209-212.
    91. 郑红伟,李小明,罗敏,等.MR T2-mapping成像对诊断早期膝关节骨关节软骨损伤的临床应用价值[J].医学影像学杂志,2008,18(5):532-534.
    92. Blumenkrantz G, Stahl R, Carballido-Gamio J, et al. The feasibility of characterizing the spatial distribution of cartilage T2 using texture analysis [J]. Osteoarthritis Cartilage,2008,16(5):584-590.
    93. Lammentausta E, Kiviranta P, Nissi MJ, et al. T2 relaxation time and delayed gadolinium-enhanced MRI of cartilage (dGEMRIC) of human patellar cartilage at 1.5 T and 9.4 T:relationships with tissue mechanical properties [J]. J Orthop Res, 2006,24(3):366-374.
    94. Quaia E, Toffanin R, Guglielmi G, et al. Fast T2 mapping of the patellar articular cartilage with gradient and spin-echo magnetic resonance imaging at 1.5 T: validation and initial clinical experience in patients with osteoarthritis [J]. Skeletal Radiol,2008,37(6):511-517.
    95. Deoni SC, Rutt BK, Peters TM. Rapid combined T1 and T2 mapping using gradient recalled acquisition in the steady state. Magn Reson Med,2003, 49(3):515-526.
    96. Deoni SC, Peters TM, Rutt BK. High-resolution T1 and T2 mapping of the brain in a clinically acceptable time with DESPOT1 and DESPOT2. Magn Reson Med, 2005,53(1):237-241.
    97. Disler DG, McCauley TR, Wirth CR, et al. Detection of knee hyaline cartilage defects using fat-suppressed three-dimensional spoiled gradient-echo MR Imaging: comparison with standard MR imaging and correlation with arthroscopy [J]. AJR, 1995,165(2):377-382.
    98. Disler DG, McCauley TR, Hospodar PP, et al. Fat-suppressed three-dimensional spoiled gradient-echo MR imaging of hyaline cartilage defects in the knee: comparison with standard MR imaging and arthroscopy [J]. AJR AM J Roentgenol, 1996,167(1):127-132.
    99. Disler DG. Fat-suppressed three-dimensional spoiled gradient-recalled MR imaging:assessment of articular and physeal hyaline cartilage [J]. AJR,1997, 169(4):1117-1123.
    100. Kornaat PR, Bloem JL, Ruth YT, et al. Osteoarthritis of the knee:association between clinical features and MR imaging findings [J]. Radiology,2006, 239(3):811-817.
    101. Eckstein F, Cicuttini F, Raynauld JP, et al. Magnetic resonance imaging (MRI) of articular cartilage in knee osteoarthritis (OA):morphological assessment [J]. Osteoarthritis Cartilage,2006,14 (Suppl 1):46-75.
    102. Bellamy N, Buchanan WW, Goldsmith CH, et al. Validation study of WOMAC: a health status instrument for measuring clinically important patient relevant outcomes following total hip or knee arthroplasty in osteoarthritis [J]. J Orthop Rheumatol,1988,1:95-108.
    103. Bombardier C, Melfi CA, Paul J, et al. Comparison of a generic and a disease-specific measure of pain and physical function after knee replacement surgery [J]. Med Care,1995,33(4 Suppl):AS131-AS144.
    104. Hawker G, Melfi CA, Paul J, et al. Comparison of a generic (SF-36) and a disease specific (WOMAC) (Western Ontarioand McMaster Universities Osteoarthritis Index) instrument in the measurement of outcomes after knee replacement surgery [J]. J Rheumatol,1995,22(6):1193-1196.
    105. Jinks C, Jordan K, Croft P, et al. Measuring the population impact of knee pain and disability with the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) Pain [J].2002,100(1-2):55-64.
    106. Davisa AM, Badley EM, Beaton DE, et al. Rasch analysis of the Western Ontario McMaster (WOMAC) Osteoarthritis Index:results from community and arthroplasty samples [J]. J Clin Epidemiol,2003,56(11):1076-1083.
    107. Faucher M, Poiraudeau S, Lefevre-Colau MM, et al. Assessment of the test-retest reliability and construct validity of a modified WOMAC index in knee osteoarthritis [J]. Joint Bone Spine,2004,71(2):121-127.
    108. Rothenfluh DA, Reedwisch D, Muller U, et al. Construct validity of a 12-item WOMAC for assessment of femoro-acetabular impingement and osteoarthritis of the hip [J]. Osteoarthritis Cartilage,2008,16(9):1032-1038.
    109. Seror R, Tubach F, Baron G, et al. Individualising the Western Ontario and McMaster Universities osteoarthritis index (WOMAC) function subscale: incorporating patient priorities for improvement to measure functional impairment in hip or knee osteoarthritis [J]. Ann Rheum Dis,2008,67(4):494-499.
    110. Hirasawa Y, Okajima S, Ohta M, et al. Nerve distribution to the human knee joint:anatomical and immunohistochemical study [J]. Int Orthop,2000,24(1):1-4.
    111. Cicuttini F, Wluka A, Wang Y, et al. The determinants of change in patella cartilage volume in osteoarthritic knees [J]. J Rheumatol,2002,29(12):2615-2619.
    112. Lindsey CT, Narasimhan A, Adolfo JM, et al. Magnetic resonance evaluation of the interrelationship between articular cartilage and trabecular bone of the osteoarthritic knee [J]. Osteoarthritis Cartilage,2004,12(2):86-96.
    113. Wluka AE, Wolfe R, Stuckey S, et al. How does tibial cartilage volume relate to symptoms in subjects with knee osteoarthritis? [J]. Ann Rheum Dis,2004, 63(3):264-268.
    114. Cicuttini FM, Baker J, Hart DJ, et al. Association of pain with radiological changes in different compartments and views of the knee joint [J]. Osteoarthritis Cartilage,1996,4(2):143-147.
    115. Hill CL, Gale DG, Chaisson CE, et al. Knee effusions, popliteal cysts, and synovial thickening:association with knee pain in osteoarthritis [J]. J Rheumatol, 2001,28(6):1330-1337.
    116. Felson DT, Chaisson CE, Hill CL, et al. The association of bone marrow lesions with pain in knee osteoarthritis [J]. Ann Intern Med,2001,134(7):541-549.
    117. Bhattacharyya T, Gale D, Dewire P, et al. The clinical importance of meniscal tears demonstrated by magnetic resonance imaging in osteoarthritis of the knee [J]. J Bone Joint Surgery Am,2003,85-A(1):4-9.
    118. Hill CL, Seo GS, Gale D, et al. Cruciate ligament integrity in osteoarthritis of the knee [J]. Arthritis Rheum,2005,52(3):794-799.
    119. Felson DT, Lawrence RC, Dieppe PA, et al. Osteoarthritis:new insights. Part 1: the disease and its risk factors [J]. Ann Intern Med,2000,133(8):635-646.
    120. Peterfy C, Woodworth T, Altman R. Workshop for Consensus on Osteoarthritis Imaging:MRI of the knee [J]. Osteoarthritis Cartilage,2006,14(1):44-45.
    1.中华医学会风湿病学分会.骨关节炎诊治指南(草案)[J].中华风湿病学杂志,2003,7(11):702-704.
    2. Haq I, Murphy E, Dacre J. Osteoarthritis [J]. Postgrad Med J,2003, 79(933):377-383.
    3. David TF. Osteoarthritis of the knee [J]. NEJM,2006,354(8):841-848.
    4. Nevitt MC, Xu L, Zhang Y, et al. Very low prevalence of hip osteoarthritis among Chinese elderly in Beijing, compared with whites in the United States:the Beijing osteoarthritis study [J]. Arthritis Rheum,2002,46(7):1773-1779.
    5. Zhang Y, Xu L, Nevitt MC, et al. Comparison of the prevalence of knee osteoarthritis between the elderly Chinese population in Beijing and whites in the United States:the Beijing Osteoarthritis Study [J]. Arthritis Rheum,2001, 44(9):2065-2071.
    6. Sharma L, Kapoor D, Issa S, et al. Epidemiology of osteoarthritis:an update [J]. Curr Opin Rheumatol,2006,18(2):147-156.
    7.李宁华.中老年人群骨关节炎的流行病学特征[J].中国临床康复,2005,9(38):133-135.
    8. Garstang SV, Stitik TP. Osteoarthritis:epidemiology, risk factors, and pathophysiology [J]. Am J Phys Med Rehabil,2006,85(11 Suppl):S2-S11.
    9. Poitras S, Avouac J, Rossignol M, et al. A critical appraisal of guidelines for the management of knee osteoarthritis using appraisal of guidelines research and evaluation criteria [J]. Arthritis Res Ther,2007,9(6):R126.
    10. Davis CR, Karl J, Granell R, et al. Can biochemical markers serve as surrogates for imaging in knee osteoarthritis? [J]. Arthritis Rheum,2007,56(12):4038-4047.
    11. Garnero P, Delmas PD. Biomarkers in osteoarthritis [J]. Curr Opin Rheumatol, 2003,15(5):641-646.
    12. DeGroot J, Bank RA, Tchetverikov I, et al. Molecular markers for osteoarthritis: the road ahead [J]. Curr Opin Rheumatol,2002,14(5):585-589.
    13. Gray ML, Eckstein F, Peterfy C, et al. Toward imaging biomarkers for osteoarthritis [J]. Clin Orthop Relat Res,2004,427(427 Suppl):S175-S181.
    14. Andersson MLE, Thorstensson CA, Roos EM, et al. Serum levels of Cartilage Oligomeric Matrix Protein (COMP) increase temporarily after physical exercise in patients with knee osteoarthritis [J]. BMC Musculoskeletal Disord,2006,7:98.
    15. Kobayashi T, Yoshihara Y, Samura A, et al. Synovial fluid concentrations of the C-propeptide of type Ⅱ collagen correlate with body mass index in primary knee osteoarthritis [J]. Ann Rheum Dis,1997,56(8):500-503.
    16. Kobayashi T, Yoshihara Y, Yamada H, et al. Procollagen IIC-peptide as a marker for assessing of obesity and varus alignment mechanical risk factors of knee osteoarthritis:effect of obesity and varus alignment [J]. Ann Rheum Dis,2000, 59(12):982-984.
    17. Sharif M, Shepstone L, Elson CJ, et al. Increased serum C reactive protein may reflect events that precede radiographic progression in osteoarthritis of the knee [J]. Ann Rheum Dis,2000,59(1):71-74.
    18. Mazzuca SA, Brandt KD, German NC, et al. Development of radiographic Changes of osteoarthritis in the "Chingford knee" reflects progression of disease or nonstandardised positioning of the joint rather than incident disease [J]. Ann Rheum Dis,2003,62(11):1061-1065.
    19. Tonnis D. Normal values of the hip joint for the evaluation of X-ray in children and adults [J]. Clin Orthop Relat Res,1976,119:39-47.
    20. Brandt KD, Mazzuca SA, Conrozier T, et al. Which is the best radiographic protocol for a clinical trial of a structure modifying drug in patients with knee osteoarthritis? [J]. J Rheumatol,2002,29(6):1308-1322.
    21. Saal A, Gaertner J, Kuehling B, et al. Macroscopic and radiological grading of osteoarthritis correlates inadequately with cartilage height and histologically demonstrable damage to cartilage structure [J]. Rheumatol Int,2005,25(3):161-168.
    22. Dieppe PA, Cushnaghan J, Shepstone L. The Bristol'OA500'study:progression of osteoarthritis (OA) over 3 years and the relationship between clinical and radiographic changes at the knee joint [J]. Osteoarthritis Cartilage,1997,5(2):87-97.
    23. Mcalindon T, Cooper C, Kirwan J, et al. Determinants of disability in osteoarthritis of the knee [J]. Ann Rheum Dis,1993,52(4):258-262.
    24. Rosemann T, Joos S, Koerner T, et al. Comparison of AIMS2-SF, WOMAC, x-ray and a global physician assessment in order to approach quality of life in patients suffering from osteoarthritis [J]. BMC Musculoskeletal Disord,2006,7:6.
    25. Chang CB, Seong SC, Kim TK. Evaluations of radiographic joint space-do they adequately predict cartilage conditions in the patellofemoral joint of the patients undergoing total knee arthroplasty for advanced knee osteoarthritis? [J]. Osteoarthritis Cartilage,2008,16(10):1160-1166.
    26. Raynauld JP. Quantitative magnetic resonance imaging of articular cartilage in knee osteoarthritis [J]. Curr Opin Rheumatol,2003,15(5):647-650.
    27. Chao J, Kalunian K. Ultrasonography in osteoarthritis:recent advances and prospects for the future [J]. Curr Opin Rheumatol,2008,20(5):560-564.
    28. Moller I, Bong D, Naredo E, et al. Ultrasound in the study and monitoring of osteoarthritis [J]. Osteoarthritis Cartilage,2008,16(Suppl 3):S4-S7.
    29. Saarakkala S, Toyras J, Hirvonen J, et al. Ultrasonic quantitation of superficial degradation of articular cartilage [J]. Ultrasound Med Biol,2004,30(6):783-792.
    30. Kiviranta P, Toyras J, Nieminen MT, et al. Comparison of novel clinically applicable methodology for sensitive diagnostics of cartilage degeneration [J]. Eur Cells Mater,2007,13:46-55.
    31. Peterfy C, Woodworth T, Altman R. Workshop for Consensus on Osteoarthritis Imaging:MRI of the knee [J]. Osteoarthritis Cartilage,2006,14(1):44-45.
    32. Mosher TJ, Smith H, Dardzinski BJ, et al. MR imaging and T2 mapping of femoral cartilage:in vivo determination of the magic angle effect [J]. AJR Am J Roentgenol,2001,177(3):665-669.
    33. Setton LA, Elliott DM, Mow VC, et al. Altered mechanics of cartilage with osteoarthritis:human osteoarthritis and an experimental model of joint degeneration [J]. Osteoarthritis Cartilage,1999,7(1):2-14.
    34. Shirazi R, Shirazi-Adl A, Hurtig M. Role of cartilage collagen fibrils networks in knee joint biomechanics [J]. J Biomech,2008,41(16):3340-3348.
    35. Mollenhauer JA. Perspectives on articular cartilage biology and osteoarthritis [J]. Injury,2008,39(S1):S5-S12.
    36. Guilak F, Ratcliffe A, Mow VC. Chondrocyte deformation and local tissue strain in articular cartilage:A confocal microscopy study [J]. J Orthop Res,1995, 13(3):410-421.
    37. Huber M, Trattnig S, Lintner F. Anatomy, biochemistry, and physiology of articular cartilage [J]. Invest Radiol,2000,35(10):573-580.
    38. Karsdal MA, Leeming DJ, Dam EB, et al. Should subchondral bone turnover be targeted when treating osteoarthritis? [J]. Osteoarthritis Cartilage,2008, 16(6):638-646.
    39. Bolbos RI, Zuo J, Banerjee S, et al. Relationship between trabecular bone structure and articular cartilage morphology and relaxation times in early OA of the knee joint using parallel MRI at 3 T [J]. Osteoarthritis Cartilage,2008, 16(10):1150-1159.
    40. Lories RJU. Joint homeostasis, restoration, and remodeling in osteoarthritis [J]. Best Pract Res Clin Rheumatol,2008,22(2):209-220.
    41. Lajeunesse D, Reboul P. Subchondral bone in osteoarthritis:a biologic link with articular cartilage leading to abnormal remodeling [J]. Curre Opin Rheumatol,2003, 15(5):628-633.
    42. Martel-Pelletier J, Boileau C, Pelletier JP, et al. Cartilage in normal and osteoarthritis conditions [J]. Best Pract Res Clin Rheumatol,2008,22(2):351-384.
    43. Reichenbach S, Guermazi A, Niu J, et al. Prevalence of bone attrition on knee radiographs and MRI in a community-based cohort [J]. Osteoarthritis Cartilage, 2008,16(9):1005-1010.
    44. Mosher TJ, Smith HE, Collins C, et al. Change in knee cartilage T2 at MR imaging after running:a feasibility study [J]. Radiology,2005,234(1):245-249.
    45. Yao L, Gentili A, Thomas A, et al. Incidental magnetization transfer contrast in fast spin-echo imaging of cartilage [J]. J Magn Reson Imaging,1996,6(1):180-184.
    46. Sonin AH, Pensy RA, Mulligan ME, et al. Grading articular cartilage of the knee using fast spin-echo proton density-weighted MR imaging without fat suppression [J].AJR,2002,179(5):1159-1166.
    47. Bredella MA, Tirman PFJ, Genant HK, et al. Accuracy of T2-weighted fast spin-echo MR imaging with fat saturation in detecting cartilage defects in the knee: comparison with arthroscopy in 130 patients [J]. AJR Am J Roentgenol,1999, 172(4):1073-1080.
    48. Loeuille D, Olivier P, Mainark D, et al. Magnetic resonance imaging of normal and osteoarthritic cartilage [J]. Arthritis Rheum,1998,41(6):963-975.
    49. Kornaat PR, Bloem JL, Ruth YT, et al. Osteoarthritis of the knee:association between clinical features and MR imaging findings [J]. Radiology,2006,239:811--817.
    50. Hill CL, Gale DG, Chaisson CE, et al. Knee effusions, popliteal cysts, and synovial thickening:association with knee pain in osteoarthritis [J]. J Rheumatol, 2001,28:1330-1337.
    51. Felson DT, Chaisson CE, Hill CL, et al. The association of bone marrow lesions with pain in knee osteoarthritis [J]. Ann Intern Med,2001,134:541-549.
    52. Bhattacharyya T, Gale D, Dewire P, et al. The clinical importance of meniscal tears demonstrated by magnetic resonance imaging in osteoarthritis of the knee [J]. J Bone Joint Surgery Am,2003,85:4-9.
    53. Hill CL, Seo GS, Gale D, et al. Cruciate ligament integrity in osteoarthritis of the knee [J]. Arthritis Rheum,2005,52:794-799.
    54. Cicuttini FM, Baker J, Hart DJ, et al. Association of pain with radiological changes in different compartments and views of the knee joint [J]. Osteoarthritis Cartilage,1996,4(2):143-147.
    55. Felson DT, Lawrence RC, Dieppe PA, et al. Osteoarthritis:new insights [J]. Ann Intern Med,2000,133:635-646.
    56. Peterfy CG, Gold G, Eckstein F, et al. MRI protocols for whole-organ assessment of the knee in osteoarthritis [J]. Osteoarthritis Cartilage,2006,14 (Suppl 1):95-111./
    57. Gold GE, Burstein D, Dardzinski B, et al. MRI of articular cartilage in OA: novel pulse sequences and compositional/functional markers [J]. Osteoarthritis Cartilage,2006,14 (Suppl 1):76-86.
    58. Eckstein F, Cicuttini F, Raynauld JP, et al. Magnetic resonance imaging (MRI) of articular cartilage in knee osteoarthritis (OA):morphological assessment [J]. Osteoarthritis Cartilage,2006,14 (Suppl 1):A46-A75.
    59. Recht MP, Piraino DW, Paletta GA, et al. Accuracy of fat-suppressed three-dimensional spoiled gradient-echo FLASH MR imaging in the detection of patellofemoral articular cartilage abnormalities [J]. Radiology,1996, 198(1):209-212.
    60. Disler DG, McCauley TR, Wirth CR, et al. Detection of knee hyaline cartilage defects using fat-suppressed three-dimensional spoiled gradient-echo MR Imaging: comparison with standard MR imaging and correlation with arthroscopy [J]. AJR, 1995,165(2):377-382.
    61. Disler DG, McCauley TR, Hospodar PP, et al. Fat-suppressed three-dimensional spoiled gradient-echo MR imaging of hyaline cartilage defects in the knee: comparison with standard MR imaging and arthroscopy [J]. AJR Am J Roentgenol 1996,167(1):127-132.
    62. Disler DG. Fat-suppressed three-dimensional spoiled gradient-recalled MR imaging:assessment of articular and physeal hyaline cartilage [J]. AJR,1997, 169(4):1117-1123.
    63. Yoshioka H, Stevens K, Hargreaves BA, et al. Magnetic resonance imaging of articular cartilage of the knee:comparison between fat-suppressed three-dimensional SPGR imaging, fat-suppressed FSE imaging, and fat-suppressed three dimensional DEFT imaging, and correlation with arthroscopy [J]. J Magn Reson Imaging,2004, 20(5):857-864.
    64. Stahl R, Krug R, Kelley DA. Assessment of cartilage-dedicated sequences at ultra-high-field MRI:comparison of imaging performance and diagnostic confidence between 3.0 and 7.0 T with respect to osteoarthritis-induced changes at the knee joint [J]. Skeletal Radiol (2009), doi:DOI 10.1007/s00256-009-0676-z.
    65. Peterfy CG, Guermazi A, Zaim S, et al, Whole-Organ Magnetic Resonance Imaging Score (WORMS) of the knee in osteoarthritis [J]. Osteoarthritis Cartilage, 2004,12:177-190.
    66. 杨正汉,冯逢,王霄英,等.磁共振成像技术指南——检查规范、临床策略及新技术应用[M].北京:人民军医出版社,2007:148.
    67. Due SR, Pfimmann CW, Sclunid MR, et al. Articular cartilage defects detected with 3D water-excitation true FISP:prospective comparison with sequences commonly used for knee imaging [J].Radiology,2007,245(1):216-223.
    68. Kornaat PR, Reeder SB, Koo S, et al. MR imaging of articular cartilage at 1.5 T and 3.0 T:comparison of SPGR and SSFP sequences [J]. Osteoarthritis Cartilage, 2005,13(4):338-344.
    69. Gold GE, Hargreaves BA, Vasanawala SS, et al. Articular cartilage of the knee: evaluation with fluctuating equilibrium MR imaging-initial experience in healthy volunteers [J]. Radiology,2006,238(2):712-718.
    70. Woertler K, Strothmann M, Tomhach B, et al. Detection of articular cartilage lesions:experimental evaluation of low-and high-field strength MR imaging at 0.18 and 1.0 T [J]. J Magn Reson Imaging,2000,116:678-685.
    71. Karantanas AH, Iibis AH, Kitsoulis P. Fat-suppressed 3D-T1-weighted-echo planar imaging:comparison with fat-suppressed 3D-T1-weighted-gradient echo imaging the cartilage of the knee [J]. Comput Med Imag Grap,2002, 626(3):159-165.
    72. Gold GE, Beaulieu CF. Future of MR imaging of articular cartilage [J]. Semin Musculoskelet Radil,2001,5(4):313-327.
    73. Gold GE, Fuller SE, Hargreaves BA, et al. Driven equilibrium magnetic resonance imaging of articular cartilage:initial clinical experience [J]. J Magn Reson Imaging,2005,21(4):476-481.
    74. Schulte-Altedorneburg G, Gebhard M, Wohlgemuth WA, et al. MR arthrography: pharmacology, efficacy and safety in clinical trials [J]. Skeletal Radiol,2003, 32(1):1-12.
    75. Kramer J, Recht MP, Imhof H, et al. Post-contrast MR arthrography in assessment of cartilage lesions [J]. J Comput Assist Tomogr,1994,18(2):218-223.
    76. Maroudas A, Muir H, Wingham J. The correlation of fixed negative charge with glycosaminoglycan content of human articular cartilage [J]. Biochim Biophys Acta, 1969; 177(3):492-500.
    77. Samosky J, Burstein D, Grimson E, et al. Spatially-localized correlation of dGEMRIC-measured GAG distribution and mechanical stiffness in the human tibial plateau [J]. J Orthop Res,2005,23(1):93-101.
    78. Williams A, Gillis A, McKenzie C, et al. Glycosaminoglycan distribution in cartilage as determined by delayed gadolinium-enhanced MRI of cartilage (dGEMRIC):potential clinical applications [J]. AJR American Journal of Roentgenology,2004,182:167-172.
    79. Kurkijarvi JE, Nissi MJ, Kiviranta I, et al. Delayed gadolinium-enhanced MRI of cartilage (dGEMRIC) and T2 characteristics of human knee articular cartilage: topographical variation and relationships to mechanical properties [J]. Magn Reson Med,2004,52:41-46.
    80. Burstein D, Velyis J, Scott KT, et al. Protocol issues for delayed Gd(DTPA)(2-)-enhanced MRI (dGEMRIC) for clinical evaluation of articular cartilage [J]. Magn reson Med,2001,45:36-41.
    81. Tiderius CJ, Olsson LE, Leander P, et al. Delayed gadolinium-enhanced MRI of cartilage (dGEMRIC) in early knee osteoarthritis [J]. Magn Reson Med,2003, 49:488-492.
    82. Multaneny J, Rauvalaz E, Lammentausta E, et al. Reproducibility of imaging human knee cartilage by delayed gadoliniumenhanced MRI of cartilage (dGEMRIC) at 1.5 Tesla [J]. Osteoarthritis Cartilage (2009), doi:10.1016/j.joca.2008.12.001.
    83. McKenzie CA, Williams A, Prasad PV, et al. Three-dimensional delayed gadolinium-enhanced MRI of cartilage (dGEMRIC) at 1.5T and 3.0T [J]. J Magn Reson Imaging,2006,24:928-933.
    84. Wang L, Schweitzer ME, Padua A, et al. Rapid 3D-T1 mapping of cartilage with variable flip angle and parallel imaging at 3.0T [J]. J Magn Reson Imaging,2008, 27:154-161.
    85. Zuo J, Li X, Banerjee S. Parallel imaging of knee cartilage at 3 Tesla [J]. J Magn Reson Imaging,2007,26(4):1001-1009.
    86. Deichmann R. Fast high-resolution T1 mapping of the human brain [J]. Magn Reson Med,2005,54(1):20-27.
    87. Li W, Scheidegger R, Wu Y, et al. Accuracy of T1 measurement with 3-D Look-Locker technique for dGEMRIC [J]. Magn Reson Med,2008,27(3):678-68.
    88. Deoni SC, Rutt BK, Peters TM. Rapid combined T1 and T2 mapping using gradient recalled acquisition in the steady state [J]. Magn Reson Med,2003, 49(3):515-526.
    89. Deoni SC, Peters TM, Rutt BK. High-resolution T1 and T2 mapping of the brain in a clinically acceptable time with DESPOTl and DESPOT [J]. Magn Reson Med 2005,53:237-241.
    90. Trattnig S, Marlovits S, Gebetsroither S, et al. Three-dimensional delayed gadolinium-enhanced MRI of cartilage (dGEMRIC) for in vivo evaluation of reparative cartilage after matrix-associated autologous chondrocyte transplantation at 3.0T:Preliminary results. J Magn Reson Imaging [J].2007,26:974-982.
    91. Watanabe A, Wada Y, Obata T, et al. Delayed gadolinium-enhanced MR to determine glycosaminoglycan concentration in reparative cartilage after autologous chondrocyte implantation:preliminary results [J]. Radiology,2006,239(1):201-208.
    92. Bashir A, Gray ML, Hartke J, et al. Nondestructive imaging of human cartilage glycosaminoglycan concentration by MRI [J]. Magn Reson Med 1999,41:857-865.
    93. Nieminen MT, Rieppo J, Silvennoinen J, et al. Spatial assessment of articular cartilage proteoglycans with Gd-DTPA-enhanced T1 imaging [J]. Magn Reson Med, 2002,48:640-648.
    94. Li W, Du H, Scheidegger R, et al. Value of precontrast T1 for dGEMRIC of native articular cartilage [J]. J Magn Reson Imaing,2009,29:494-497.
    95. Baldassarri M, Goodwin JS, Farley ML, et al. Relationship between cartilage stiffness and dGEMRIC index:correlation and prediction [J]. J Orthop Res,2007, 25:904-912.
    96. June RK, Fyhrie DP. Molecular NMR T2 values can predict cartilage stress-relaxation parameters [J]. Biochem Biophys Res Commun,2008,377:57-61.
    97. Nojiri T, Watanabe N, Namura T, et al. Utiilty of delayed gadolinium-enhanced MRI (dGEMRIC) for qualitative evaluation of articular cartilage of patellofemoral joint [J]. Knee Surg Sports Traumatol Arthrosc,2006,14(8):718-723.
    98. Lammentausta E, Kiviranta P, Nissi MJ, et al. T2 relaxation time and delayed Gadolinium-enhanced MRI of cartilage (dGEMRIC) of human patellar cartilage at 1.5T and 9.4T:relationships with tissue mechanical properties [J]. J Orthop Res, 2006,24(3):366-374.
    99. Duewell SH, Ceckler TL, Ong K, et al. Musculoskeletal MR imaging at 4 T and at 1.5 T:comparison of relaxation times and image contrast [J]. Radiology,1995, 196:551-555.
    100. Bashir A, Gray ML, Boutin RD, et al. Glycosaminoglycan in articular cartilage: in vivo assessment with delayed Gd-DTPA2-enhanced MR imaging [J]. Radiology, 1997,205:551-558.
    101. Tiderius CJ, Olsson LE, de Verdier H, et al. Gd-DTPA2-enhanced MRI of femoral knee cartilage:A dose-response study in healthy volunteers [J]. Magn Reson Med,2001,46:1067-1071.
    102. Watanabe A, Boesch C, Anderson SE, et al. Ability of dGEMRIC and T2 mapping to evaluate cartilage repair after microfracture:a goat study [J]. Osteoarthritis Cartilage (2009), doi:10.1016/j.joca.2009.03.022.
    103. Burstein D, Gray ML. Is MRI fulfilling its promise for molecular imaging of cartilage in arthritis? [J]. Osteoarthritis Cartilage,2006,14:1087-1090.
    104. Gillis A, Gray M, Burstein D. Relaxivity and diffusion of gadolinium agents in cartilage [J]. Magn Reson Med,2002,48:1068-1071.
    105. Tiderius C, Hori M, Williams A, et al. dGEMRIC as a function of BMI [J]. Osteoarthritis Cartilage,2006,14(11):1091-1097.
    106. Roos EM, Dahlberg L. Positive effects of moderate exercise on glycosaminoglycan content in knee cartilage:a four-month, randomized, controlled trial in patients at risk of osteoarthritis [J]. Arthritis Rheum,2005,52(11):3507-3514.
    107. Racunica TL, Teichtahl AJ, Wang Y, et al. Effect of physical activity on articular knee joint structures in community-based adults [J]. Arthritis Rheum,2007, 57(7):1261-1268.
    108. Ericsson YB, Tjornstrand J, Tiderius CJ, et al. Relationship between cartilage glycosaminoglycan content (assessed with dGEMRIC) and OA risk factors in meniscectomized patients [J]. Osteoarthritis Cartilage (2008), doi:10.1016/j.joca.2008.10.009.
    109. Wayne JS, Kraft KA, Shields KJ, et al. MR imaging of normal and matrix-depleted cartilage:correlation with biomechanical function and biochemical composition [J]. Radiology,2003,228:493-499.
    110. Trattnig S, Marlovits S, Gebetsroither S, et al. Three-dimensional delayed gadolinium-enhanced MRI of cartilage (dGEMRIC) for in vivo evaluation of reparative cartilage after matrix-associated autologous chondrocyte transplantation at 3.0T:Preliminary results [J]. J Magn Reson Imaging,2007,26:974-982.
    111. Domayer SE, Welsch GH, Nehrer S, et al. T2 mapping and dGEMRIC after autologous chondrocyte implantation with a fibrin-based scaffold in the knee: preliminary results [J]. Eur J Radiol (2009), doi:10.1016/j.ejrad.2008.12.006.
    112. Tins BJ, McCall IW, Takahashi T, et al. Autologous chondrocyte implantation in knee joint:MR imaging and histologic features at 1-year follow-up [J]. Radiology, 2005,234:501-508.
    113. Lusse S, Claassen H, Gehrke T, et al. Evaluation of water content by spatially resolved transverse relaxation times of human articular cartilage [J]. Magn Reson Imaging,2000,18(4):423-430.
    114. Chou MC, Tsai PH, Huang GS, et al. Correlation between the MR T2 value at 4.7 T and relative water content in articular cartilage in experimental osteoarthritis induced by ACL transaction [J]. Osteoarthritis Cartilage (2008), doi:10.1016/j.joca.2008.09.009.
    115. Nieminen MT, Toyras J, Rieppo J, et al. Quantitative MR microscopy of enzymatically degraded articular cartilage [J]. Magn Reson Med,2000,43:676-681.
    116. Xia Y. Magic-angle effect in magnetic resonance imaging of articular cartilage:a review [J]. Invest Radiol,2000,35:602-621.
    117. Nissi MJ, J. Rieppo J, Toyras J, et al. T2 relaxation time mapping reveals age-and species-related diversity of collagen network architecture in articular cartilage [J]. Osteoarthritis Cartilage,2006,14(12):1265-1271.
    118. David-Vaudey E, Ghosh S, Ries M, et al. T2 relaxation time measurements in osteoarthritis [J]. Magnetic Resonance Imaging,2004,22(5):673-682.
    119. Mosher TJ, Chen Q, Smith MB.1H magnetic resonance spectroscopy of nanomelic chicken cartilage:effect of aggrecan depletion on cartilage T2 [J]. Osteoarthritis Cartilage,2003,11:709-715.
    120. Mosher TJ, Liu Y, Yang QX, et al. Age dependency of cartilage magnetic resonance imaging T2 relaxation times in asymptomatic women [J]. Arthritis Rheum, 2004,50(9):2820-2828.
    121. Watrin-Pinzano A, Ruaud JP, Olivier P, et al. Effect of proteoglycan depletion on T2 mapping in rat patellar cartilage [J]. Radiology,2005,234:162-170.
    122. Watrin A, Ruaud JP, Olivier PT, et al. T2 mapping of rat patellar cartilage [J]. Radiology,1997,205:546-550.
    123. Lusse S, Knauss R, Werner A, et al. Action of compression and cations on the proton and deuterium relaxation in cartilage [J]. Magn Reson Med,1995, 33:483-489.
    124. Koff MF, Amrami KK, Kaufman KR. Clinical evaluation of T2 values of patellar cartilage in patients with osteoarthritis [J]. Osteoarthritis Cartilage,2007, 15:198-204.
    125. Mendlik T, Faber SC, Weber J, et al. T2 quantitation of human articular cartilage in a clinical setting at 1.5 T:implementation and testing of four multiecho pulse sequence designs for validity [J]. Invest Radiol,2004,39:288-299.
    126. Pai A, Li X, Majumdar S. A comparative study at 3 T of sequence dependence of T2 quantitation in the knee [J]. Magn Reson Imaging,2008,26(9):1215-1220.
    127. Maier CF, Tan SG, Hariharan H, et al. T2 quantitation of articular cartilage at 1.5 T [J]. J Magn Reson Imaging,2003,17:358-364.
    128. Li X, Ma CB, Link TM, et al. In vivo Tlp and T2 mapping of articular cartilage in osteoarthritis of the knee using 3 T MRI [J]. Osteoarthritis Cartilage,2007, 15:789-797.
    129. Smith HE, Mosher TJ, Dardzinski BJ, et al. Spatial variation in cartilage T2 of the knee [J]. J Magn Reson Imaging,2001,14:50-55.
    130. Mosher TJ, Dardzinski BJ, Smith MB. Human articular cartilage:influence of aging and early symptomatic degeneration on the spatial variation of T2:preliminary findings at 3 T [J]. Radiology,2000,214:259-266.
    131. Eckstein F, Ateshian G, Burgkart R, et al. Proposal for a nomenclature for Magnetic Resonance Imaging based measures of articular cartilage in osteoarthritis [J]. Osteoarthritis Cartilage,2006,14:974-983.
    132. Lo GH, Hunter DJ, Nevitt M, et al. Strong association of MRI meniscal derangement and bone marrow lesions in knee osteoarthritis:data from the osteoarthritis initiative [J]. Osteoarthritis Cartilage (2009), doi:10.1016/j.joca.2008.11.014.
    133. 宋玲玲,梁碧玲,沈君,等.MR T2图评价膝关节软骨的初步探讨[J].中华放射学杂志,2008,42(3):231-235.
    134. Alhadlaq HA, Xia Y. The structural adaptations in compressed articular cartilage by microscopic MRI (μMRI) T2 anisotropy [J]. Osteoarthritis Cartilage,2004, 12(11):887-894.
    135. Mlynarik V, Trattnig S. Physicochemical properties of normal articular cartilage and its MR appearance [J]. Invest Radiol,2000,35(10):589-594.
    136. Goodwin DW, Wadghiri YZ, Dunn JF. Micro-imaging of articular cartilage:T2, proton density, and the magic angle effect [J]. Acad Radiol,1998,5(11):790-798.
    137. Xia Y. Relaxation anisotropy in cartilage by NMR microscopy (muMRI) at 14μm resolution [J]. Magn Reson Med,1998,39:941-949.
    138. Mosher TJ, Smith H, Dardzinski BJ, et al. MR imaging and T2 mapping of femoral cartilage:in vivo determination of the magic angle effect [J]. AJR Am J Roentgenol,2001,177(3):665-669.
    139. Dunn TC, Lu Y, Jin H, et al. T2 relaxation time of cartilage at MR imaging: comparison with severity of knee osteoarthritis [J]. Radiology,2004,232:592-598.
    140. Blumenkrantz G, Stahl R, Carballido-Gamio J, et al. The feasibility of characterizing the spatial distribution of cartilage T2 using texture analysis [J]. Osteoarthritis Cartilage,2008,16:584-590.
    141. Peterfy CG Imaging of the disease process [J]. Curr Opin Rheumatol,2002, 14(5):590-596.
    142. Blumenkrantz G, Carballido-Gamio J, Hyun B, et al. Longitudinal changes in the spatial distribution of cartilage MR T2 in a subset of patients from the osteoarthritis initiative (Abtstract) [J]. Osteoarthritis Cartilage,2008,16(4):S179.
    143. Watrin-Pinzano A, Ruaud JP, Cheli Y, et al. Evaluation of cartilage repair tissue after biomaterial implantation in rat patella by using T2 mapping [J]. Magma,2004, 17:219-228.
    144. White LM, Sussman MS, Hurtig M, et al. Cartilage T2 assessment: differentiation of normal hyaline cartilage and reparative tissue after arthroscopic cartilage repair in equine subjects [J]. Radiology,2006,241(2):407-414.
    145. Kurkijarvi JE, Mattila L, Ojala RO, et al. Evaluation of cartilage repair in the distal femur after autologous chondrocyte transplantation using T2 relaxation time and dGEMRIC [J]. Osteoarthritis Cartilage,2007,15:372-378.
    146. Trattnig S, Mamisch TC, Welsh GH, et al. Quantitative T2 Mapping of Matrix-Associated Autologous Chondrocyte Transplantation at 3 Tesla:an in vivo cross-sectional study [J]. Invest Radiol,2007,42(6):442-448.
    147. Quirbach S, Welsch GH, Scheffler K, et al. Evaluation of cartilage repair tissue using novel contrast mechanism-initial results of magnetization transfer contrast compared to T2 relaxation (Abstract) [J]. Osteoarthritis Cartilage,2008,16(Suppl 4): S21.
    148. Blumenkrantz G, Lindsey CT, Dunn TC, et al. A pilot, two-year longitudinal study of the interrelationship between trabecular bone and articular cartilage in the osteoarthritic knee [J]. Osteoarthritis Cartilage,2004,12:997-1005.
    149. Quaia E, Toffanin R, Guglielmi G, et al. Fast T2 mapping of the patellar articular cartilage with gradient and spin-echo magnetic resonance imaging at 1.5 T: validation and initial clinical experience in patients with osteoarthritis [J]. Skeletal Radiol,2008,37:511-517.
    150. Blumenkrantz G, Majumdar S. Quantitative magnetic resonance imaging of articular cartilage in osteoarthritis [J]. European Cells & Materials,2007,13:75-86.
    151. Duvvuri U, Goldberg AD, Kranz JK, et al. Water magnetic relaxation dispersion in biological systems:the contribution of proton exchange and implications for the noninvasive detection of cartilage degradation [J]. Proc Natl Acad Sci USA,2001, 98(22):12479-12484.
    152. Duvvuri U, Reddy R, Patel SD, et al. Tlρ-relaxation in articular cartilage: effects of enzymatic degradation [J]. Magn Reson Med,1997,38(6):863-837.
    153. Duvvuri U, Charagundla SR, Kudchodkar SB, et al. Human knee:in vivo Tlρ-weighted MR imaging at 1.5 T-preliminary experience [J]. Radiology,2001, 220:822-826.
    154. Regatte R, Akella S, Lonner J, et al. Tlρ relaxation mapping in human osteoarthritis (OA) cartilage:comparison of Tlρ with T2 [J]. J Magn Reson Imaging, 2006,23(4):547-553.
    155. Li X, Han ET, Ma CB, et al. In vivo 3-T spiral imaging based multi-slice Tlρ mapping of knee cartilage in osteoarthritis [J]. Magn Reson Med,2005,54:929-936.
    156. Borthakur A, Mellon E, Niyogi S, et al. Sodium and Tlρ MRI for molecular and diagnostic imaging of articular cartilage [J]. NMR Biomed,2006,19(7):781-821.
    157. 周智洋,单鸿,Ringgaard S,等.7.0 TMR关节软骨自旋锁定三维自旋-晶格弛豫时间成像与量化分析的实验研究[J].中华放射学杂志,2008,42(10):1101-1105.
    158. Akella SVS, Regatte RR, Gougoutas AJ, et al. Proteoglycan induced changes in Tlρ-relaxation of articular cartilage at 4 T [J]. Magn Reson Med,2001,46(3): 419-423.
    159. Paul PK, O'Byrne EM, Gupta RK, Jelicks LA. Detection of cartilage degradation with sodium NMR (letter) [J]. Br J Rheumatol,1991,30:318.
    160. Borthakur A, Shapiro EM, Beers J, et al. Sensitivity of MRI to proteoglycan depletion in cartilage:comparison of sodium and proton MRI [J]. Osteoarthritis Cartilage,2000,8(4):288-293.
    161. Insko EK, Kaufman JH, Leigh JS, et al. Sodium NMR evaluation of articular cartilage degradation [J]. Magn Reson Med,1999,41:30-34.
    162. Shapiro EM, Borthakur A, Dandora R, Kriss A, Leigh JS, Reddy R. Sodium visibility and quantitation in intact bovine articular cartilage using high field 23Na MRI and MRS [J]. J Magn Reson,2000,142(1):24-31.
    163. Lesperance LM, Gray ML, Burstein D. Determination of fixed charge-density in cartilage using nuclear magnetic resonance [J]. J Orthoped Res,1992,10(1):1-13.
    164. Wheaton AJ, Borthakur A, Dodge GR, et al. Sodium magnetic resonance imaging of proteoglycan depletion in an in vivo model of osteoarthritis [J]. Acad Radiol,2004,11(1):21-28.
    165. Lattanzio PJ, Marshall KW, Damyanovich AZ, et al. HMacromolecule and water magnetization exchange modeling in articular cartilage [J]. Magn Reson Med,2000, 44(6):840-851.
    166. ahlensieck M, Dombrowski F, Leutner C, Wagner U, Reiser M. Magnetization transfer contrast (MTC) and MTC-subtraction:enhancement of cartilage lesions and intracartilaginous degeneration in vitro [J]. Skeletal Radiol.1994,3(7):535-539.
    167. 倪红艳,祁吉,张文波,等.磁化传递技术在提高膝关节磁共振影像对比中的应用[J].临床放射学杂志,1999,18:561-564.
    168. Wolff SD, Balaban RS. Magnetization transfer imaging:practical aspects and clinical applications [J]. Radiology,1994,191:199-202.
    169. Laurent D, Wasvary J, Yin J, et al. Quantitative and qualitative assessment of articular cartilage in the goat knee with magnetization transfer imaging [J]. Magn Reson Imaging,2001,19(10):1279-1286.
    170. Seo GS, Aoki J, Moriya H, et al. Hyaline cartilage:in vivo and in vitro assessment with magnetization transfer imaging [J]. Radiology,1996,201:525.
    171. Kim DK, Ceckler T, Hascall VC, et al. Analysis of water-macromolecule proton magnetization transfer in articular cartilage [J]. Magn Reson Med,1993,29:211.
    172. Quirbach S, Welsch GH, Scheffier K, et al. Evaluation of cartilage repair tissue using novel contrast mechanism-initial results of magnetization transfer contrast compared to T2 relaxation [J]. Osteoarthritis Cartilage,2008,16(4):S21.
    173. 瞿楠,姚伟武,陆志华,等.正常及退变髌软骨磁化传递率的定量研究[J].临床放射学杂志,2009,28(1):104-107.
    174. Petersen EF, Fishbein KW, Laouar L, et al. Ex vivo magnetic resonance microscopy of an osteochondral transfer [J]. J Magn Reson Imaging,2003,17:603.
    175. Van Breuseghem I. Ultrastructural MR imaging techniques of the knee articular cartilage:problems for routine clinical application [J]. Eur Radiol,2004, 14(2):184-192.
    176. Hohe J, Faber S, Stammberger T, et al. A technique for 3D in vivo quantification of proton density and magnetization transfer coefficients of knee joint cartilage [J]. Osteoarthritis Cartilage,2000,8:426-433.
    177. Vahlensieck M, Dombrowski F, Leutner C, et al. Magnetization transfer contrast (MTC) and MTC-subtraction:enhancement of cartilage lesions and intracartilaginous degeneration in vitro [J]. Skeletal Radiol,1994,23:535.
    178. Martirosian P, Boss A, Deimling M, et al. Systematic variation of off-resonance prepulses for clinical magnetization transfer contrast imaging at 0.2,1.5, and 3.0 tesla [J]. Invest Radiol,2008,43(1):16-26.
    179. Baur A, Reiser MF. Diffusion-weighted imaging of the musculoskeletal system in humans [J]. Skeletal Radiol,2000,29:555-562.
    180. Mlynarik V, Sulzbacher I, Bittsansky M, et al. Investigation of apparent diffusion constant as an indicator of early degenerative disease in articular cartilage [J]. J Magn Reson Imaging,2003,17(4):440-444.
    181. McCauley TR, Kornaat PR, Jee VH. Central osteophytes in the knee:prevalence and association with cartilage defects on MR imaging [J]. AJR,2001,176:359-364.
    182. 刘斯润,朱天缘,陈汗方,等.MR扩散加权成像诊断膝关节骨关节病髌骨软骨病变的价值[J].中华放射学杂志,2006,40(10):1098-1101.
    183. Welsch GH, Trattnig S, Domayer S, et al. Multimodal approach in the use of clinical scoring, morphological MRI and biochemical T2 mapping and diffusion-weighted imaging in their ability to assess differences between cartilage repair tissue after microfracture therapy and matrix-associated autologous chondrocyte transplantation:a pilot study [J]. Osteoarthritis Cartilage (2009), doi:10.1016/j.joca.2009.03.018.
    184. Mlynarik V, Sulzbacher I, Bittsansky M, et al. Investigation of apparent diffusion constant as an indicator of early degenerative disease in articular cartilage [J]. J Magn Reson Imaging,2003,17(4):440-444.
    185. Mamisch TC, Menzel MI, Welsch GH, et al. Steady-state diffusion imaging for MR in-vivo evaluation of reparative cartilage after matrix-associated autologous chondrocyte transplantation at 3 Tesla-preliminary results [J]. Eur J Radiol,2008, 65(1):72-79.
    186. Friedrich KM, Mamisch TC, Plank C, et al. Diffusion-weighted imaging for the follow-up of patients after matrix-associated autologous chondrocyte transplantation [J]. Eur J Radiol (2009), doi:10.1016/j.ejrad.2008.12.017.
    187. Briggs TW, Mahroof S, David LA, et al. Histological evaluation of chondral defects after autologous chondrocyte implantation of the knee [J]. J Bone Joint Surg Br,2003,85(7):1077-1083.
    188. Xia Y, Farquhar T, Burton-Wurster N, et al. Self-diffusion monitors degraded cartilage [J]. Arch Biochem Biophys,1995,323:323-328.
    189. Butts K, Pauly J, De Crespigny A, et al. Isotropic diffusion weighted and spiral-navigated interleaved EPI for routine imaging of acute stroke [J]. Magn Reson Med,1997,38:741-749.
    190. Miller KL, Hargreaves BA, Gold GE, et al. Steady-state diffusion-weighted imaging of in vivo knee cartilage [J]. Magn Reson Med,2004,51(2):394-398.
    191. Shapiro EM, Borthakur A, Kaufinan JH, et al. Water distribution patterns inside bovine articular cartilage as visualized by 1H magnetic resonance imaging [J]. Osteoarthritis Cartilage,2001,9:533-538.
    192. Goodwin DW, Zhu H, Dunn JF. In vitro MR imaging of hyaline cartilage: correlation with scanning electron microscopy [J]. AJR,2000,174:405-409.
    193. Xia Y, Farquhar T, Burton-Wurster N, et al. Origin of cartilage laminae in MRI [J]. J Magn Reson Imaging,1997,7:887-894.
    194. Grunder W, Wagner M, Werner A. MR-microscopic visualization of anisotropic internal cartilage structures using the magic angle technique [J]. Magn Reson Med, 1998,39:376-382.
    195. Cova M, Toffanin R, Frezza F, et al. Magnetic resonance imaging of articular cartilage:ex vivo study on normal cartilage correlated with magnetic resonance microscopy [J]. Eur Radiol,1998,8:1130-1136.
    196. 郑卓肇,谢敬霞,范家栋.间接法MRI膝关节造影对半月板撕裂的评价[J].实用放射学杂志,2002,18(11):968-970,973.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700