用户名: 密码: 验证码:
足下垂患者康复保健关键技术研究与实现
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着经济的高速发展和老龄化社会的到来,人们越来越关注自身和家人的保健与康复,对保健康复类服务和技术的需求日益增长。由于脑卒中(脑中风)引起足下垂患者的数量十分庞大,这些患者的生活质量因足下垂病症而受到较大的影响。如何使足下垂患者通过使用辅具适应日常生活并得到康复是目前研究的焦点之一;由于足下垂患者在日常生活中极容易发生跌倒,如何及时准确检测患者的跌倒和对跌倒进行有效预警是非常重要的保健措施,也是研究的重点之一;足下垂患者需要通过一定的运动锻炼进行康复,伴随家庭运动健身器材的增多,居家无氧运动健身已成为一种时尚,如何评估无氧运动对心血管系统的影响也是研究的热点之一
     本文针对脑中风引起的足下垂患者康复和保健中的足下垂自适应刺激康复、跌倒检测和预警以及运动康复三方面的科学和技术问题进行研究与相应的技术设备实现,主要结果和结论如下:
     (1)针对目前由脑中风引起的足下垂刺激康复技术存在的刺激周期不易与患者行走节奏同步、不能区分患者的日常生活状态、且需要手动开启和关闭刺激信号的发放等问题,本文依据现代信号检测、识别与处理技术,提出了一种足下垂自适应刺激辅助行走与康复技术,并采用双轴倾角传感器和单片机技术进行了完整的系统设计与实现。该技术与系统采用双轴倾角传感器获取人体的姿态信息,采用平滑滤波技术对获取的原始数据进行噪声抑制,引入短时傅里叶变换和小波变换寻找刺激的最佳时刻,达到与患者行走姿态自适应匹配的目的。该技术与系统通过BP神经网对胫骨倾角分类的方法识别患者的行走状态与非行走状态,从而对系统发放的刺激信号脉冲进行自适应开启与关闭的控制。另一方面,该技术与系统能够通过对足下垂患者的自适应刺激,在辅助行走的同时起到一定的康复作用。实验表明,本文提出的足下垂自适应刺激康复系统的刺激时刻正确率在正常行走时超过97.5%,在上楼梯时超过95.8%,在下楼梯时接近99%,具有很好的患者状态自适应功能。
     (2)针对足下垂患者易于发生跌倒,而目前对人体跌倒的检测方法不能实现跌倒预警的现状,本文在研究人体解剖结构的基础上,提出了一种基于人体状态检测识别的跌倒检测与预警新方法,并采用双轴倾角传感器和单片机技术进行了系统的设计与实现。该方法采用双轴倾角传感器监测人体的姿态(状态)信息,利用BP神经网络对人体多种日常与跌倒状态进行粗分类,初步区分跌倒与非跌倒,对于易于与跌倒混淆的弯腰等动作,采用三段数据分析法进行进一步的分析确认,依据数学形态学、倾角变化率和跌倒与倾角关系函数等信号处理手段寻找确认监测信号中倾向于跌倒的特征和可能的跌倒方向,在跌倒发生前及时报警或采取保护措施。实验表明,上述跌倒监测与预警方法可以使96.21%的跌倒在即将发生时得到正确检测,为减小跌倒造成的伤害提供了有效的预警时间,对于足下垂患者和其他老年人的保护具有重要的意义。
     (3)针对足下垂患者运动康复与保健问题中存在的疑问和误区,本文以功率自行车运动为例系统研究了无氧下肢运动对颈总动脉血液动力学特性所产生的影响,试图对足下垂患者及其他人群的运动康复与保健提供有益的指导与参考。本文以不同性别的年轻健康被试作为研究对象,使用功率自行车持续进行四组强度相同的无氧下肢运动训练。用彩色超声多普勒检测系统分别检测被试在静息状态和每组运动训练后的颈总动脉管径与轴心流速波形,同时记录血压和心率。依据经典血液动力学理论对检测数据进行分析,计算颈总动脉的弹性模量和局部血液动力学参数。实验与分析结果表明,上述无氧下肢运动后,被试心率增加,且随着运动的累积,颈总动脉弹性模量呈增加趋势;一个心动周期内轴心血流速度和流量率最大值与平均值上升,流速和流量率最小值下降;收缩压和平均压增高,舒张压无明显改变;周向应变无明显改变;切应力最大值有明显增加趋势,切应力最小值下降趋势明显;振荡剪切指数也有增大趋势。上述血液动力学特性变化表明:无氧下肢运动训练可能降低颈总动脉的弹性功能,并对颈总动脉血液动力学产生负面影响。本文研究不仅为足下垂患者的康复运动选择提供指导,对其他人群的运动锻炼也提供了有益的参考。
     本文的研究结果和结论,不仅有助于进一步开发足下垂自适应刺激康复系统和跌倒检测与预警系统,同时也为正确利用无氧功率自行车开展运动保健、康复工作提供了有价值的血液动力学信息。
As the rapid development of economy and the arrival of the aging society, people pay more and more attentions to themselves as well as their family's healthcare and rehabilitation, thus the demands of the health rehabilitation service and products are growing fast. A huge number of patients who are effected by footdrop are suffering low quality lives because of stroke. Thus, how to help them via all kinds of facilities to adapt their daily lives and get recovered has become one of our main interests. Since the footdroppers are always so easy to fall and hurt themselves, how to detect the falls timely and accurately, and also how to inform the related with prewarnings have become a second one of our main focuse. With the increase in family sports fitness equipment, anaerobic exercise home fitness has become a fad. The footdrop patients also need some exercises to get recovered, so a third one of our hot points is how to evaluate the effects of aerobic exercise on cardiovascular system.
     In order to solve the problems above, this thesis mainly discusses, as well as, realizes three issues of adaptive stimulation of footdrop, the detecting and prewarning of the elderly falls and exercise rehabilitation. The main results and discussions are as follows:
     (1) Since it's always difficult to realize the synchronization between stimulations and the movement of footdrop patients who experienced stroke, and it's also hard to distinguish their normal from disable which makes it a must that the patients manually switch stimulation signal. In order to solve these problems, this paper puts forward a new technology for both adaptive stimulation of footdrop and rehabilation based on morden signal detecting, analyzing and processing, and we are believed to be the first to use the dual-axis inclinometer sensor and MCU to design and realize the whole system. We introduce biaxial inclination sensors for posture, the mean filter and Savitzky-Golay filter for raw data denosing and STFT, wavelet algorithm for optimum moments to send simulation signals. On one hand, BP artificial neural network is put forward to distinguish walking from non-walking using tibial angle information and it helps us when to when to send adaptive stimulation and control signals automatically, and on the other, this techonoly and the new system can do both stimulation and rehabilation just like two birds with one stone. By virtue of the adaptive simulation system, one can obtain97.5%accuracy of walking,95.8%accuracy of up the stairs and almost99%accuracy of down the stairs.
     (2) Since footdrop patients often fall down and get hurt and methods to make prewarnings of falling are still no where to be found, we put forward a new method and a new system which realizes fall detecting and prewarning based on research in anthropomorphology and study in anatomy by dual-axis inclinometer sensor and MCU. Experimentally realize the biaxial inclination sensor detection system to monitor body postures and introduce BP neural network to distinguish normal state from falling state roughly. Moreover, further analysis is made to determine more puzzle postures, e.g. bending over and falling, using three-stage data method. Furthermore, warnings and protection in advance are made based on mathematical morphology and signal processing method such as the function of angle rate which help to identify falling tendency and possible falling direction. Through this method, more than96.21%of the falling can be early warned, providing the effective early warning time to reduce falling damage; Actually distinguish the action in the daily life hence reducing the fall detection errors and improving the practicability of the detection.
     (3) Since there have always been questions and misunderstandings in healthcare and habilation for footdrop patients, systematically research in the effection of hemodynamic function parameters of common carotid artery controlled by anaerobic power bicycle exercises is carried out in order to provide useful guidance for the rehabilation for the rehabilitation, general health and exercise of patients with foot drop, we take young healthy volunteers with different genders as the research object, we use the anaerobic power bicycle to do four sets of the accurate exercise training at the same strength. Color doppler ultrasound imaging detection system were used to detect the resting state, the axis velocity waveform and carotid artery diameter waveform after each set of exercise training. Detect heart rate and blood pressure value via electronic automatic blood pressure meter. Calculate the elastic modulus of the common carotid artery and local hemodynamic parameters, including pressure-strain elastic modulus, flow rate, circumferential strain, wall shear stress and oscillatory shear index through the classical theory of hemodynamic analysis of test data. The results showed that the heart rate increases after the exercise; carotid artery elastic modulus tended to increase with the accumulation of movement; maximum and average value of the axial flow velocity and flow rate in one cardiac cycle are increasing whilst, the minimum value of flow rate decrease; systolic blood pressure and mean pressure increase anddiastolic blood pressure did not change significantly; circumferential strain did not change significantly; the maximum shear stress increases and the minimum value of shear stress decreases obviously; oscillatory shear index is also having an increasing trend. These results suggest that anaerobic power cycling may reduce the elastic function of the carotid artery, meanwhile have a negative impact on the common carotid artery hemodynamics that is different with the aerobic exercise's enhancement on the arterial elasticity. This study provide useful adviceabout rebilitation exercises and sports training for both the footdrop patients and other groups.
     These studies not only contribute to the further development of the elderly fall detection and warning system and rehabilitation system of footdrop adaptive stimulation, but also provide some useful hemodynamic information in order to correctly use anaerobic power bicycle sport for healthcare and rehabilitation.
引文
[1]中华人民共和国卫生部.2003年中国卫生统计年鉴[M].北京:中国协和医科大学出版社,2003:205-245.
    [2]于德春.临床疾病诊断标准与国家体检标准[M].沈阳:辽宁科学技术出版社.1991年:83-90.
    [3]南登昆.实用物理治疗手册[M].北京:人民军医出版社.2001年:1-28,288-417.
    [4]钱开林,王彤.中枢神经损伤后足下垂的康复治疗.中国康复医学杂志,2001年,第16卷,第3期.
    [5]Burridge J H, et al. The effects of common personal stimulation on the effort and speed of walking:a randomized controlled trail with chronichemiplegic patients. Clin Rehabil,1997,11(3):201-210.
    [6]GIBSON M J S, ANDRES R 0, et al. The prevention of falls in later life:a report of the Kellogg International Work Group on the Prevention of Falls by the Elderly [M]. Medical Faculties of the Universities of Copenhagen and Aarhus, and the Danish National Board of Health,1987.34 (Suop14):1-24.
    [7]李汉镜.老年人跌倒危险因素分析及运动干预研究[D].上海:上海体育学院.2010年.
    [8]李宗涛.老年女性跌倒相关的下肢姿势控制能力的研究[D].北京:北京体育大学.2011年.
    [9]BOUTEN C, KOEKKOEK K, VERDUIN M, et al. A triaxial accelerometer and portable Data processing unit for the assessment of daily physical activity[J]. IEEE Transactions on Biomedical Engineering,1997,44(3):136-147.
    [10]霍宏伟,张宏科,Youzhi X U.基于室内无线传感器网络射频信号的老年人跌倒检测研究[J].电子学报,2011,39(1):195-200.
    [11]朱勇,张研,宋佳,邱天爽.基于倾角的跌倒检测方法与系统研究[J].生物医学工程学杂志,2013,30(1):95-100.
    [12]SEALS D R, DESOUZA C A, DONATO AJ, et al. Habitual exercise and arterial aging [J]. Journal of Applied Physiology,2008,105(4):1323-1332.
    [13]GREEN D J,O' DRISCOLL G, JOYNER M J, et al. Exercise and cardiovascular risk reduction:time to update the rationale for exercise [J]. Journal of Applied Physiology,2008,105(2):766-768.
    [14]GREEN D J. Exercise training as vascular medicine:direct impacts on the vasculature in humans[J]. Exercise and sport sciences reviews,2009,37(4): 196-202.
    [15]朱蔚莉,郑陆,杜艳艳.运动训练与人体血管弹性[J].中国运动医学杂志,2009,28(4):460-464.
    [16]HAYASHI K, SUGAWARA J, KOMINE H, et al. Effects of aerobic exercise training on the stiffness of central and peripheral arteries in middle-aged sedentary men [J]. The Japanese journal of physiology,2005,55(4):235-239
    [17]TABARA Y, YUASA T, OSHIUMI A, et al. Effect of acute and long-term aerobic exercise on arterial stiffness in the elderly [J]. Hypertens Res,2007,30(10):895-902.
    [18]BRAITH R W, STEWART K J. Resistance exercise training:its role in the prevention of cardiovascular disease [J]. Circulation,2006,113(22):2642-2650.
    [19]RAKOBOWCHUK M, MCGOWAN C L, DE GROOT PC, et al. Effect of whole body resistance training on arterial compliance in young men [J]. Experimental physiology,2005, 90(4):645-651.
    [20]HEFFERNAN K S, JAE S Y, ECHOLS G H, et al. Arterial stiffness and wave reflection following exercise in resistance-trained men [J]. Medicine and science in sports and exercise,2007,39(5):842.
    [21]MIYACHI M, KAWANO H, SUGAWARA J, et al. Unfavorable effects of resistance training on central arterial compliance:A randomize intervention study [J]. Circulation, 2004,110(18):2858-2863.
    [22][DEVAN A E, ANTON M M, COOK J N, et al. Acute effects of resistance exercise on arterial compliance [J]. Journal of Applied Physiology,2005,98(6):2287-2291.
    [23]HEFFERNAN K S, COLLIER S R, KELLY E E, et al. Arterial stiffness and baroreflex sensitivity following bouts of aerobic and resistance exercise [J]. International journal of sports medicine,2007,28(03):197-203.
    [24]ROSSOW L, FAHS CA, GUERRA M, et al. Acute effects of supramaximal exercise on carotid artery compliance and pulse pressure in young men and women [J]. European journal of applied physiology,2010,110(4):729-737.
    [25]OKAMOTO T, MASUHARA M, IKUTA K. Upper but not lower limb resistance training increases arterial stiffness in humans [J]. European journal of applied physiology, 2009,107(2):127-134.
    [26]RANADIVE S M, FAHS C A, YAN H, et al. Comparison of the acute impact of maximal arm and leg aerobic exercise on arterial stiffness [J]. European journal of applied physiology,2012,112(7):2631-2635.
    [27]MAEDA S, OTSUKI T, IEMITSU M, et al, Tanaka H. Effects of leg resistance training on arterial function in older men [J]. British journal of sports medicine,2006, 40(10):867-869.
    [28]O' KEEFFE D T, GATES D H, BONATO P. A wearable pelvic sensor design for drop foot treatment in Post-Stroke patients [C].29th Annual International Conference of the IEEE in Engineering in Medicine and Biology Society. Lyon, France,2007,8: 23-26.
    [29]LYONS G M, SINKJER T, BURRIDGE J H, et al. A review of portable FES-based neural orthoses for the correction of drop foot[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering,2002,10(4):260-279.
    [30]贾荣娟.一种预防矫正足下垂托[P].中国发明专利:ZL200810139843.4.申请日:20080913.公开号:101669848.授权日:20100317.
    [31]陈赞美.防足下垂之足托板[P].中国发明专利:ZL201210225765.6.申请日:20120703.公开号:102755210A.授权日:20121031.
    [32]赵智博:王海新.一种穿戴式智能足下垂矫正器及矫正方法[P].中国发明专利:ZL201010259558.3.申请日:20100821.公告号:101947153B.授权日:20120613.
    [33]江苏德长医疗科技有限公司.一种足下垂矫正器步态检测装置[P].中国发明专利:ZL201110305663.0.申请日:20111011.公开号:102499690A.授权日:20120620.
    [34]朱玉花.足下垂矫形带[P].中国发明专利:ZL201210453685.6.申请日:20121114.公开号:102961206A.授权日:20130313.
    [35]王玉,胜.康复弹力绷带[P].中国发明专利:ZL201110258970.8.申请日:20110827.公开号:102949254A.授权日:20130306.
    [36]MOE J, POST H. Functional electrical stimulation for ambulation in hemiplegic[J]. The Lancet,1962,82:285-288.
    [37]RICHARD B. STEIN. The assembly of the movement functional electrical stimulation [P], U.S. Patent:5,814,093. Patent Date:1989.1.10.
    [38]ANTOON T, WILLEMSEN M, BLOEMHOF F, et al. Automatic stance-swing phase detection from accelerometer data for peroneal nerve stimulation[J]. IEEE Transactions on Biomedical Engineering,1990,37(12):673-681.
    [39]STEIN R B, CHONG S, JAMES K B, et al. Devices for improved mobility after spinal cord injury and stroke[C]. Proceedings of the 20th Annual IEEE International Conference in Engineering in Medicine and Biology Society,1998. Hong Kong, China 5:2297-2300.
    [40]SUNGJAE HWANG, JUNGYOON KIM, JINBOCK YI,KISIK TAE et al. Development of an active ankle foot orthosis for the prevention of foot drop and toe drag[C]. IEEE Transactions on Biomedical Engineering.2006, Page(s):418-423. IEEE International Conference on Biomedical and Pharmaceutical Engineering,2006: 418-423.
    [41]THOMPSON A K., STEIN R B., CHEN X Y, WOLPAW J R. Modulation in spinal circuits and corticospinal connections following nerve stimulation and operant conditioning[C].28th Annual International Conference of the IEEE in Engineering in Medicine and Biology Society. New York City, USA,2006:2138-2141.
    [42]CHEN Y L, SHI Y Y, CHEN W L et al. Clinical evaluation of the tilt sensors feedback controlled fes for hemiplegia[C].26th Annual International Conference of the IEEE in Engineering in Medicine and Biology Society, San Francisco, CA, USA,2004, 2:4737-4740.
    [43]IONP I, KELLER T, MANGOLD S et al. A reliable Gyroscope-Based Gait-Phase detection[J]. IEEE Sensors Journal,2004,4(2):233-246.
    [44]DAI R C, STEIN R B. Application of tilt sensors in functional electrical stiminlation [J]. IEEE Transactions on Rehabilitation Engineering 1996,4(2):889-898.
    [45]CHEN Y L, CHEN W L, HSIAO C C et al. Development of the FES system with neural network+ PID controller for the stroke[C]. IEEE International Symposium on Circuits and Systems,2005:5119-5121.
    [46]CHEN S W, CHEN S C, CHEN C F, et al. A pelvic motion driven electrical stimulator for drop-foot treatment[C]. Annual International Conference of the IEEE in Engineering in Medicine and Biology Society, Minneapolis, Minnesota, USA,,2009: 666-669.
    [47]http://www.nationalmssociety.org/magazine. New Devices for Foot Drop. Momentum. Fall.2008.
    [48]VINCI P, PAOLONI M, IOPPOLO F et al. Gait analysis in a patient with severe Charcot-Marie-Tooth disease:a case study with a new orthotic device for footdrop[J]. European Journal of Physical and Rehabilitation Medicine. Sep 2010, 46(3):355-361.
    [49]苏州悦安医疗电子有限公司.一种足下垂刺激器[P].中国发明专:ZL201110091366.0.申请日:20110412.公开号:102125727A.授权日:20110720.
    [50]LEON M. GRIGORYEV. Control knee muscles electrical stimulation devices [P].U.S. Patent:4,796,631, Patent Date:1989.1.10.
    [51]ODFS Dropped Foot Stimulator User Manual.http://www.odfs.com.
    [52]WEBER D J, STEIN R B, CHAN K M, et al. BIONic WalkAide for correcting foot drop[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering,2005,13(2): 242-246.
    [53]神经技术无限责任公司.治疗足下垂及其它神经疾病的植入式神经信号传感刺激装置[P].中国发明专利:ZL200480009220.5.申请日:20040402.公告号:1767872B.授权日:20101208.
    [54]PAPPAS I P I, POPOVIC M R, KELLER T, et al. A reliable gait phase detection system [J]. IEEE Transactions On Neural Systems and Rehabilitation Engineering,2001,9(2): 256-273.
    [55]POPOVIC M T. KELLER I P, PAPPAS I, et al. Surface-stimulation technology for grasping and walking neuroprostheses[J]. Engineering in Medicine and Biology Magazine, IEEE,2001,20(1):82-93.
    [56]CRAGO P E, CHIZECK H J. Sensors for use with functional neuromuscular stimulation [J]. Sensors for use with functional neuromuscular stimulation[J]. IEEE Transactions on Biomedical Engineering,1986 (2):256-268.
    [57]0'KEEFFE, D. T, DONNELLY, A. E, LYONS, G. M. The development of a potential optimized stimulation intensity envelope for drop foot applications[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering,2003,11(3):249-256.
    [58]Tanida S, Kikuchi T, Kakehashi T, et al. Intelligently controllable Ankle Foot Orthosis (I-AFO) and its application for a patient of Guillain-Barre syndrome[C]. IEEE International Conference on Rehabilitation Robotics, ICORR. Kyoto, Japan,2009: 857-862.
    [59]杭州共远科技有限公司.利用功能性神经刺激的康复治疗装置[P].中国发明专利:ZL201210256275.2.申请日:20120724.公开号:102743817A.授权日:20121024.
    [60]SUKANT A, SABUT K, MANJUNATHA M. Neuroprosthesis-Functional Electrical Stimulation: Opportunities in Clinical Application for Correction of Drop-Foot[C]. First International Conference on Emerging Trends in Engineering and Technology, Nagpur, Maharashtra, India,2008:950-953.
    [61]BERKELMAN P, ROSSI P, LU T, et al. Passive orthosis linkage for locomotor rehabilitation[C]. IEEE 10th International Conference on Rehabilitation Robotics, Noordwijk,The Netherlands,2007:425-431.
    [62]LIBERSON W, HOLMQUEST H J, SCOT D, DOW M. Functional electrotherapy:Stimulation of the peroneal nerve synchronized with the swing phase of the gait of hemiplegic patients [J]. Archives of Physical Medicine and Rehabilitation,1961,42:101-105.
    [63]HANSEN M, MORTEN K. HAUG L et al. Evaluating robustness of gait event detection based on machine learning and natural sensors[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering,2004,12(1):81-88.
    [64]WEBER D J, STEIN R B, CHAN K M et al. WalkAide for correcting foot drop[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering,2005,13(2): 242-246.
    [65]BITKO S S. Mercury tilt switch:U.S. Patent 3,978,301[P].1976-8-31.
    [66]JEON A Y, KIM J H, KIM I C, et al. Implementation of the personal emergency response system using a 3-axial accelerometer[C].6th International Special Topic Conference on Information Technology Applications in Biomedicine, Tokyo, Japan,2007:223-226.
    [67]YOUNGBUM LEE, KIM J, SON M, et al. Implementation of accelerometer sensor module and fall detection monitoring system based on wireless sensor network[C].29th Annual International Conference of the IEEE in Engineering in Medicine and Biology Society, Lyon, France,2007:2315-2318.
    [68]李冬,梁山.基于加速度传感器的老年人跌倒检测装置设计[J].传感器与微系统,2008,27(9):85-88.
    [69]YIBIN HOU, LI N, HUANG Z. Triaxial accelerometer-based real time fall event detection[C] 2012 IEEE International Conference on Information Society (i-Society),2012:386-390.
    [70]LEE Y, KIM J, SON M, et al. Implementation of accelerometer sensor module and fall detection monitoring system based on wireless sensor etwork[C]. Proceedings of the 29th Annual International Conference of the IEEE EMBS Cite International, Lyon, France August 23-26,2007.
    [71]ANTONIO FERNANDEZ-CABALLERO, MARINA V. SOKOLOVA, JUAN SERRANO-CUERDA AND JOSE CARLOS CASTILLO. HOLDS:Efficient fall detection through accelerometers and computer vision[C]. Eighth International Conference on Intelligent Environments Guanajuato, Mexico,2012:367-370.
    [72]MIIKKA ERMES, JUHA PARK. Detection of Daily Activities and Sports With Wearable Sensors in Controlled and Uncontrolled Conditions[J]. IEEE Transactions on Information Technology in Biomedicine,2008,12(1):20-26.
    [73]FERN' NDEZ-CABALLERO A, SOKOLOVA M. V, SERRANO-CUERDA J, CASTILLO J. C, MORENO V, CASTINEIRA R, REDONDO L. HOLDS:Efficient Fall Detection through Accelerometers and Computer Vision[C].2012 8th International Conference on Intelligent Environments, Guanajuato, Mexico,2012:367-370.
    [74]EKLUND M, HANSEN T, SASTRY S. Information technology for assisted living at home: building a wireless infrastructure for assisted living[C].27th Annual International Conference of the IEEE in Engineering in Medicine and Biology Society, Shanghai, China,2006:3931-3934.
    [75]Zhengming Fu, CULURCIELLO E, LICHTSEINER P, et al. Fall detection using an address-event temporal contrast vision sensor[C]. IEEE International Symposium on Circuits and Systems, ISCAS 2008. Seattle, WA, United states,2008:424-427.
    [76]NYANA M, TAYA F, MAH M. Application of motion analysis system in pre-impact fall detection [J]. Journal of Biomechanics 41(2008):2297-2304.
    [77]ZAMBANINI S, MACHAJDIK J, KAMPEL1 M. Detecting falls at homes using a network of low-resolution cameras [C].2010 10th IEEE International Conference on Information Technology and Applications in Biomedicine (ITAB),2010:1-4.
    [78]ZHAO Z, CHEN Y, LIU J. Fall detecting and alarming based on mobile phone[C]. Ubiquitous Intelligence & Computing and 7th International Conference on Autonomic & Trusted Computing (UIC/ATC),2010 7th International Conference on UIC-ATC,2010:494-497.
    [79]VAIDEHI V, GANAPATHY K, MOHAN K, et al. Video based automatic fall detection in indoor environment[C].2011 International Conference on Recent Trends in Information Technology (ICRTIT), Chennai, India,2011:1016-1020.
    [80]YONEKAWA K,YONEZAWA T,NAKAZAWA J, et al. FASH:Detecting tiredness of walking people using pressure sensors[C].Mobile and Ubiquitous Systems:Networking& Services, MobiQuitous,2009. MobiQuitous' 09.6th Annual International. IEEE,2009: 1-6.
    [81]ARIANI A, REDMOND S J, CHANG D, et al. Software simulation of unobtrusive falls detection at night-time using passive infrared and pressure mat sensors[C]. Engineering in Medicine and Biology Society (EMBC),2010 Annual International Conference of the IEEE. Argentina,2010:2115-2118.
    [82]TZENG H W, CHEN M Y, CHEN J Y. Design of fall detection system with floor pressure and infrared image[C].2010 International Conference on System Science and Engineering (ICSSE),. IEEE,2010:131-135.
    [83]LIU L, POPESCU M, HO K C, et al. Doppler radar sensor positioning in a fall detection system[C].2012 Annual International Conference of the IEEE in Engineering in Medicine and Biology Society (EMBC), San Diego,2012:256-259.
    [84]OJETOLA O, GAURA E.I, BRUSEY J. Fall detection with wearable sensors —safe (smart fall detection) [C].2011 7th International Conference on Intelligent Environments (IE), IEEE, Nottingham, United kingdom,2011:318-321.
    [85]LI Y, HO K C, POPESCU M. A microphone array system for automatic fall detection [J]. IEEE Transactions on Biomedical Engineering,2012,59(5):1291-1301.
    [86]COLLIER S R. Sex differences in the effects of aerobic and anaerobic exercise on blood pressure and arterial stiffness [J]. Gend Med.2008,5(2):115-123.
    [87]GONZALES J U, THOMPSON B C, THISTLETHWAITE J R, et al. Association between exercise hemodynamics and changes in local vascular function following acute exercise [J]. Appl Physiol Nutr Metab,2011,36(1):137-144.
    [88]GREEN D J, BILSBOROUGH W, NAYLOR L H, et al. Comparison of forearm blood flow responses to incremental handgrip and cycle ergometer exercise:relative contribution of nitric oxide [J]. The Journal of physiology,2005,562(2):617-628.
    [89]HARVEY P J, MORRIS B L, KUBO T, et al. Hemodynamic after-effects of acute dynamic exercise in sedentary normotensive postmenopausal women[J]. Journal of hypertension,2005,23(2):285-292.
    [90]GONZALES J U, THOMPSON B C, THISTLETHWAITE J R, et al. Role of retrograde flow in the shear stimulus associated with exercise blood flow [J]. Clinical physiology and functional imaging,2008,28(5):318-325.
    [91]LAUGHLIN M H, NEWCOMER S C, BENDER S B. Importance of hemodynamic forces as signals for exercise-induced changes in endothelial cell phenotype[J]. Journal of Applied Physiology,2008,104(3):588-600.
    [92]TINKEN T M, THIJSSEN D H J, HOPKINS N, et al. Shear stress mediates endothelial adaptations to exercise training in humans [J]. Hypertension,2010,55(2):312-318.
    [93]NEWCOMER S C, THIJSSEN D H J, GREEN D J. Effects of exercise on endothelium and endothelium smooth muscle cross talk:role of exercise-induced hemodynamics[J]. Journal of Applied Physiology,2011,111(1):311-320.
    [94]THIJSSEN D H J, DAWSON E A, VAN DEN MUNCKHOF I C, et al. Exercise-mediated changes in conduit artery wall thickness in humans:role of shear stress[J]. American Journal of Physiology-Heart and Circulatory Physiology,2011,301(1):H241-246.
    [95]ROWLEY N J, DAWSON E A, BIRK G K, et al. Exercise and arterial adaptation in humans: uncoupling localized and systemic effects [J]. Journal of Applied Physiology,2011, 110(5):1190-1195.
    [96]GREEN D J, CHEETHAM C, REED C, et al. Assessment of brachial artery blood flow across the cardiac cycle:retrograde flows during cycle ergometry[J]. Journal of Applied Physiology,2002,93(1):361-368.
    [97]TINKEN T M, THIJSSEN D H, HOPKINS N, et al. Impact of shear rate modulation on vascular function in humans[J]. Hypertension,2009,54(2):278-285.
    [98]THIJSSEN DHJ, DAWSON EA, TINKEN TM, et al. Retrograde flow and shear rate acutely impair endothelial function in humans[J]. Hypertension,2009,53(6):986-992.
    [99]DANCU M B, BERARDI D E, HEUVEL J P, et al. Asynchronous shear stress and circumferential strain reduces endothelial NO synthase and cyclooxygenase-2 but induces endothelin-1 gene expression in endothelial cells [J]. Arteriosclerosis, thrombosis, and vascular biology,2004,24(11):2088-2094.
    [100]DANCU M B, BERARDI D E, HEUVEL J P, et al. Atherogenic endothelial cell eNOS and ET-1 responses to asynchronous hemodynamics are mitigated by conjugated linoleic acid[J]. Annals of biomedical engineering,2007,35(7):1111-1119.
    [101]柳兆荣,李惜惜.血液动力学原理和方法[M].上海:复旦大学出版社,2007.
    [102]NAGAI Y, FLEG JL, KEMPER MK, et al. Carotid arterial stiffness as a surrogate for aortic stiffness:relationship between carotid artery pressure-strain elastic modulus and aortic pulse wave velocity [J]. Ultrasound in medicine & biology, 1999,25(2):181-188.
    [103]FERNHALL B, AGIOVLASITIS S. Arterial function in youth:window into cardiovascular risk[J]. Journal of Applied Physiology,2008,105(1):325-333.
    [104]XU Z, WU H, JIANG Z. Synergy of wall shear stress and circumferential stress in straight arteries[J]. Journal of Hydrodynamics, Ser. B,2005,17(6):752-757.
    [105]姚泰.生理学[M].北京:人民卫生出版社.2005年:389-505.
    [106]郑思竞.人体解剖学(第二版)[M].北京:人民卫生出版社.1985年:6-310.
    [107]The SCA100T dual axis inclinometer series[EB/OL].2009.07.22. http://www. vti. fi.
    [108]胡广书.数字信号处理理论、算法和实现(第二版)[M].北京:清华大学出版社.2005年:169-216,259-294,296-358.
    [109]SAVITZKY A, GOLAY M J E. Smoothing and differentiation of data by simplified least squares procedures[J]. Analytical chemistry,1964,36(8):1627-1639.
    [110]刘小峰,柏林,秦树人.基于瞬时转速的变窗STFT变换[J].振动与冲击.2010 Vo.129No.04.323-327.
    [111]王珍,孙兰,杨阳.短时傅里叶变换的FPGA实现及其应用[J].噪声与振动控制.2012年,第5期:154-158.
    [112]Qu C W, He Y, Su Z G. Aplication of STFT ridges and RT to moving targets detection in SAR[C]. International Conference on Millimeter Wave Technology Proceedings. ICMMT 2008, Nanjing Jiangsu China.
    [113]Guang M X, Bi Q Z. An effective SALS image denoising method based on 2-d discrete wavelet decomposition[C]. National Conference on Information Technology and Computer Science (CITCS 2012). Lanzhou Gansu China.:193-197.
    [114]ZHENGYOU HE, XIAOQING CHEN, YUMEI CAI. A study of algorithm and application in transient signals wavelet post-analysis methods [J]. IEEE/PES Transmission and Distribution Conference & Exhibition:Asia and Pacific, Dalian, China:1-6.
    [115]周延延,吴晓燕,李刚.基于BP神经网络的PID控制器研究[J].空军工程大学学报(自然科学版),2007,18(4):45-48.
    [116]潘琳,张效民,刘义海.基于小波域和BP分类器的舰船目标的分类研究[J].电声技术.2008,36(8):54-57.
    [117]WANG D, WANG X Q, LIANG S, ZHAO Y, ZHU H J. Study on signal denoising of flow sensor based on mathematical morphology [J], Chinese Journal of Sensors and Actuators.25(8):1097-1101.
    [118]HE K WANG Q, XIAO Y C,WANG X B. Image edge detection based on nonsubsampled contourlet transform and mathematical morphology [J]. Journal of Southeast University,2012,28(4):445-450.
    [119]安全气囊.2013.6.10. http://inf.315che. com/qichebaike/kl23-anquanqinang. htm.
    [120]王艳,马楚虹.自行车功率计评价有氧与无氧运动能力的实验研究[J].体育研究与教育.2012年12月,第27卷:183-185.
    [121]李秀丽.有氧运动健身的生物学分析[J].北京体育大学学报.2003,26(6):776-783.
    [122]许浩,邵慧秋,黄晖明,等.有氧运动和力量训练对中老年人体适能的影响[J].体育与科学.2009,30(3):63-39.
    [123]SUGAWARA M, NIKI K, FURUHATA H, et al. Relationship between the pressure and diameter of the carotid artery in humans [J]. Heart and Vessels,2000,15(1):49-51.
    [124]HEFFERNAN K S, JAE S Y, WILUND K R, et al. Racial differences in central blood pressure and vascular function in young men[J]. American Journal of Physiology-Heart and Circulatory Physiology,2008,295(6):H2380-2387.
    [125]HE X, KU DN. Pulsatile flow in the human left coronary artery bifurcation:average conditions[J]. Journal of Biomechanical Engineering,1996,118(1):74-80.
    [126]HIRAI T, SASAYAMA S, KAWASAKI T, et al. Stiffness of systemic arteries in patients with myocardial infarction. A noninvasive method to predict severity of coronary atherosclerosis[J]. Circulation,1989,80(1):78-86.
    [127]郭子义,严志强,张明亮,等.血流切应力变化导致颈总动脉重建及其对血管平滑肌细胞凋亡和分化的影响[J].医用生物力学,2008,23(1):61-65.
    [128]孔翰,张明亮,严志强,等.高血压与低切应力对大鼠颈总动脉血管重建的影响[J].医用生物力学,2011,26(2):109-115.
    [129]KU D N, GIDDENS D P, ZARINS C K, et al. Pulsatile flow and atherosclerosis in the human carotid bifurcation. Positive correlation between plaque location and low oscillating shear stress[J]. Arteriosclerosis, Thrombosis, and Vascular Biology,1985,5(3):293-302.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700