用户名: 密码: 验证码:
黄药子中性多糖的结构分析及其抗肿瘤活性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
黄药子(Rhizoma Dioscorea Bulbiferac),是薯蓣科植物黄独(Dioscorea bulbifera L.)的块茎,作为中药在我国已有2000多年的历史,在中药处方中用于治疗咽喉肿痛、癌肿、咳血、疮疡肿毒等。多糖是黄药子的重要活性成分,已有文献报道黄药子多糖具有调节免疫、抗肿瘤等活性,但有关黄药子多糖的结构研究还未见报道,缺乏对黄药子多糖的全面系统的认识。本论文对黄药子多糖进行分级纯化,明确了黄药子中性多糖的组成及结构,并从中获得主要成分进行硫酸化和羧甲基化修饰,再通过对肿瘤细胞增殖和半乳凝素-3抑制活性的测定,比较多糖在修饰前后的抗癌活性,从而为黄药子多糖的进一步研究与开发提供理论基础。
     本论文通过热水煮提和乙醇沉淀得到黄药子水溶性总多糖DBP,将DBP用DEAE-纤维素柱层析进行分级纯化。分别利用浓度为0、0.1、0.3和0.5M的氯化钠水溶液进行分步洗脱,得到相应的四个级分:中性级分DBPN和三个酸性级分DBPA-1、DBPA-2和DBPA-3。通过酶学方法、凝胶渗透色谱和高效液相色谱法分析黄药子多糖各级分的基本结构特征:中性糖DBPN主要由半乳聚糖和葡聚糖组成;DBPA-1含有同聚半乳糖醛酸(homogalacturonan,HG)和半乳聚糖结构;DBPA-2含有HG结构,并可能含有少量I型聚鼠李半乳糖醛酸(rhamnogalacturonan I,RG-I)结构;DBPA-3以典型的HG结构为主。
     利用分级醇沉法,将DBPN进一步分级纯化得到分子量均一的6个级分DBPN-1~DBPN-6,重均分子量依次为22.4、1.0、0.73、0.54、0.36和0.26kDa,这6个级分主要由半乳糖和葡萄糖构成。通过对六个级分酶解特征的分析验证了黄药子中性多糖中存在独立的半乳聚糖和葡聚糖。应用高碘酸氧化、Smith降解、甲基化、傅立叶红外光谱和核磁共振等方法确定了半乳聚糖的结构为没有分支的线性β-1,4-半乳聚糖(DBPN-UD),葡聚糖为以α-1,4-Glcp为主链,并存在少量6位分支的淀粉样多糖。线性β-1,4-半乳聚糖是DBPN的主要成分,这是首次从黄药子中提取得到天然的β-1,4-半乳聚糖。因为β-1,4-半乳聚糖在黄药子中性多糖中含量高并且制备方法简单,所以黄药子是制备β-1,4-半乳聚糖的优良选材。
     以DBPN-UD为底物,利用三氧化硫-吡啶法制备得到6个不同取代度的硫酸化半乳聚糖, S-DBPN-UD-0.1、 S-DBPN-UD-0.25、 S-DBPN-UD-0.5、 S-DBPN-UD-1、 S-DBPN-UD-2和S-DBPN-UD-4,取代度分别为0.12、0.26、0.63、1.42、0.92和1.02;采用氢氧化钠-氯乙酸反应体系,以异丙醇为溶剂,制备得到6个不同取代度的羧甲基化半乳聚糖, CM-DBPN-UD-0.1、 CM-DBPN-UD-0.25、 CM-DBPN-UD-0.5、 CM-DBPN-UD-1、C M-DBPN-UD-2和CM-DBPN-UD-3,取代度分别为0.16、0.21、0.26、0.46、0.62和0.70。
     最后我们利用肿瘤细胞增殖和半乳凝素-3抑制实验比较了修饰前后多糖的抗肿瘤活性。抑制肿瘤细胞增殖实验中,我们以小鼠肉瘤细胞S180和两种人结肠癌细胞株HCT-116和HT-29为实验对象,测定了DBPN及其衍生物的活性,结果表明,硫酸化和羧甲基化修饰可以增强DBPN-UD对肿瘤细胞增殖的抑制活性,抑制活性具有浓度依赖性,并随取代度的增大而增强。对半乳凝素-3的抑制实验结果表明,DBPN-UD具有很好的抑制活性,在12.5mg/mL时可以完全抑制由半乳凝素-3引起的红细胞凝集,因此DBPN-UD具有很好的开发为半乳凝素-3抑制剂的潜力。但硫酸化和羧甲基化修饰会降低DBPN-UD对半乳凝素-3的抑制活性。
     本论文的研究结果为黄药子多糖的进一步研究与开发提供了理论基础。
Dioscorea bulbifera L.(D. bulbifera) is a liana widely distributed throughout the tropics and temperate regions. The rhizome of D. bulbifera has been used as a traditional Chinese Medicine for over2000years to treat thyroid diseases, spasmodic, leprosy and tumors. Polysaccharides are considered as the active components of D. bulbifera. It has been reported that the polysaccharide extracts from D. bulbifera have many pharmaceutical activities. However, there is little information about D. bulbifera polysaccharides regarding their fractionation, structural characterization and biological functions. In this paper, we described the extraction, fractionation and the structural features of a neutral polysaccharide (DBPN) from D. bulbifera. Furthermore, the main fraction of DBPN, DBPN-UD, was isolated. Its sulfated and carboxymethylated derivatives were synthesized.The antitumor activities of DBPN-UD and its derivatives were evaluated. The water-soluble polysaccharides were extracted from the rhizome of D. bulbifera with hot water, precipitated by80%ethanol. The polysaccharide mixture, referred to DBP, was separated on a preparative DEAE-Cellulose column into four fractions: one neutral fraction (DBPN) and three acidic fractions (DBPA-1, DBPA-2and DBPA-3) corresponding to0.0,0.1,0.3and0.5M NaCl elution, respectively. The major structural features of D. bulbifera polysaccharide fractions were elucidated by using high performance liquid chromatography and enzymolysis. The results showed that DBPN was heterogeneous and contained galactan and glucan. DBPA-1might be composed of homogalacturonan (HG) and galactan domains. DBPA-2might contain both homogalacturonan (HG) and small amount of type-I rhamnogalacturonan (RG-I) domains and DBPA-3might be composed of homogalacturonan (HG) domain.
     DBPN was completely fractionated by stepwise ethanol precipitation, which produced six homogenous fractions: DBPN-1(26.0%), DBPN-2(1.8%), DBPN-3(3.0%), DBPN-4(2.0%), DBPN-5(3.2%), and DBPN-6(2.6%) corresponding to final ethanol concentrations of40%,45%,50%,55%.65%, and75%with molecular weight of22.4,1.0,0.73,0.54,0.36and0.26kDa, respectively. Their structural features were elucidated by high performance liquid chromatography, enzymolysis, Fourier transform infrared spectroscopy and13C-nuclear magnetic resonance spectroscopy. The results indicated that DBPN contained galactan and glucan. The galactan was a linear β-(1,4)-D-galactan without side chains and contained galactose (96.9%). The glucan was a starch-like molecule. This is the first report of a linear β-(1,4)-D-galactan without side chains from D. bulbifera. D. bulbifera would be a suitable source for linear β-1,4-D-galactan in good yield and by simple preparation method.
     Sulfation with SO3-pyridine yielded six DBPN-UD sulfates: S-DBPN-UD-0.1, S-DBPN-UD-0.25, S-DBPN-UD-0.5, S-DBPN-UD-1, S-DBPN-UD-2and S-DBPN-UD-4with DS of0.12,0.26,0.63,1.42,0.92and1.02;Carboxymethylation with sodium salt of monochloro acetic acid (SMCA) yielded six DBPN-UD carboxymethylates: CM-DBPN-UD-0.1, CM-DBPN-UD-0.25, CM-DBPN-UD-0.5, CM-DBPN-UD-1, CM-DBPN-UD-2and CM-DBPN-UD-3with DS of0.16、0.21、0.26、0.46、0.62and0.70.
     The anticancer activities of DBPN and its derivatives were determined using an MTT assay and three cancer cell lines including sarcoma180and human colon cancer cells HCT-116and HT-29.. The results showed that sulfation and carboxymethylation of DBPN enhanced its inhibitory activityin a DS dependent manner. DBPN-UD and its derivatives were also tested for their anti-galectin-3activities using a galectin-3-mediated hemagglutination assay. DBPN-UD showed potent inhibition to the agglutination with an MIC of12.5μg/ml, similar to lactose, a standard galectin-3inhibitor. Sulfation and carboxymethylation significantly decreased the anti-galectin-3activity of DBPN-UD. The discovery that DBPN-UD had anti-galectin-3activity is valuable in guiding the preparation of effective pharmaceuticals from D. bulbifera for cancer prevention and treatment.
     The results of this paper will provide the theoretical basis for further research and development of D. bulbifera polysaccharides and improve the application of D. bulbifera polysaccharides.
引文
[1]田云.糖生物学[J].生物学通报,2002,37(8):11-12.
    [2]来鲁华,杨昱婷.寡糖的构象分析[J].生物化学与生物物理进展,1995,22(4):290-294.
    [3] Peters T, Meyer B, Stuike-Prill R, et al. A monte carlo method for conformational analysis ofsaccharides[J]. Carbohydrate Research,1993,238:49-73.
    [4] Dea I C M, McKinnon A A, Rees D A. Tertiary and quaternary structure in aqueous polysaccharidesystems which model cell wall cohesion: reversible changes in conformation and association of agarose,carrageenan and galactomannans[J]. Journal of molecular biology,1972,68(1):153-172.
    [5] Hikino H, Oshima Y, Suzuki Y, et al. Isolation and hypoglycemic activity of panaxans F, G and H,glycans of Panax ginseng roots[J]. Shoyakugaku Zasshi,1985,39(4):331-333.
    [6] Oshima Y, Konno C, Hikino H. Isolation and hypoglycemic activity of panaxans I, J, K and L, glycansof panax ginseng roots[J]. Journal of Ethnopharmacology,1985,14:255-259.
    [7] Chohachi K, Miki M, Yoshiteru O, et al. Isolation and hypoglycemic activity of Panaxans Q, R, S, TAND U, glycans of Panax ginseng roots[J]. Journal of ethnopharmacology,1985,14(1):69-74.
    [8] Tomoda M, Hirabayashi K, Shimizu N, et al. Characterization of two novel polysaccharides havingimmunological activities from the root of Panax ginseng[J]. Biological&Pharmaceutical Bulletin,1993,16(11):1087-1090.
    [9]张惟杰.糖复合物生化研究技术[M].浙江:浙江大学出版社,第二版,2003,3:193-201.
    [10] Tomoda M, Takeda K, Shimizu N, et al. Characterization of two acidic polysaccharides havingimmunological activities from the root of Panax ginseng[J]. Biological&Pharmaceutical Bulletin,1993,16(1):22-26.
    [11] Yanamoto K. Microbial endoglycosidases for analysis of oligosaccharide chains in glycoproteins[J].Journal of biochemistry,1994,116:229-235.
    [12] Edge C J, Rademacher T W, Wormald M R, et al. Fast sequencing of oligosaccharides: thereagent-array analysis method[J]. Proceedings of the National Academy of Sciences,1992,89(14):6338-6342.
    [13]丁侃,方积年.多糖类药物毛细管电泳分析方法及其应用[J].色谱,1999,17(4):346-350.
    [14]王顺春,方积年. Х-射线纤维衍射在多糖构型分析中应用的研究进展[J].天然产物研究与开发,2000,12(2):75-80.
    [15]来鲁华,杨婷.寡糖的构象分析[J].生物化学与生物物理进展,1995,22(4):290-291.
    [16]王展,方积年.高场核磁共振波谱在多糖结构研究中的应用[J].分析化学,2000,28(2):240-247.
    [17] KIM J M, SHIN J E, MYUNG J O O H A N, et al. Inhibitory effect of ginseng saponins andpolysaccharides on infection and vacuolation of Helicobacter pylori[J]. Journal of microbiology andbiotechnology,2003,13(5):706-709.
    [18] Gao Q, Kiyohara H, Cyong J, et al. Chemical properties and anti-complementary activities ofpolysaccharide fractions from roots and leaves of Panax ginseng[J]. Planta medica,1989,55(1):9-12.
    [19]缪平,贺峰,金声.罂粟花粉中阿拉伯半乳聚糖的结构及圆二色性的研究[J].高等学校化学学报,1994,15(3):379-382.
    [20]郭振楚.糖类化学[M].北京:化学工业出版社,2005,80-87.
    [21] Cosgrove D J. Assembly and enlargement of the primary cell wall in plants[J]. Annual review of celland developmental biology,1997,13(1):171-201.
    [22] Pérez S, Rodríguez-Carvajal M A, Doco T. A complex plant cell wall polysaccharide:rhamnogalacturonan II. A structure in quest of a function[J]. Biochimie,2003,85(1):109-121.
    [23] Ridley B L, O'Neill M A, Mohnen D. Pectins: structure, biosynthesis, and oligogalacturonide-relatedsignaling[J]. Phytochemistry,2001,57(6):929-967.
    [24] McNeil M, Darvill A G, Albersheim P. Structure of Plant Cell Walls: X. Rhamnogalacturonan I, astructurally complex pectic polysaccharide in the walls of suspension-cultured sycamore cells[J]. PlantPhysiol,1980,66(6):1128-1134.
    [25] Paulsen B S, Barsett H. Bioactive pectic polysaccharides[J]. Advances in Polymer Science,2005,186:69-101.
    [26] Cartmell A, McKee L S, Pe a M J, et al. The structure and function of an arabinan-specific α-1,2-arabinofuranosidase identified from screening the activities of bacterial GH43glycoside hydrolases[J].Journal of Biological Chemistry,2011,286(17):15483-15495.
    [27] Thakur B R, Singh R K, Handa A K, et al. Chemistry and uses of pectin—a review[J]. CriticalReviews in Food Science&Nutrition,1997,37(1):47-73.
    [28] Beda M Y. Pectic substances: From simple pectic polysaccharides to complex pectins-A newhypothetical model[J]. Carbohydrate polymers,2011,86:373-385.
    [29] Paulsen B S and H. B. Bioactive pectic polysaccharides[J]. Advances in Polymer Science.2005,186:69-101.
    [30] Hurtley S, Service R, Szuromi P. Cinderella's coach is ready[J]. Science,2001,291(5512):2337.
    [31] Bao X, Wang X, Dong Q. Structural features of immonologically active polysaccharides fromGanoderma Lucidum[J]. Phytochemistry,2002,59:172-181.
    [32] Harada N, Kodama N, Nanba H. Relationship between dendritic cells and the D-fraction-induced Th-1dominant response in BALB/c tumor-bearing mice[J]. Cancer letters,2003,192(2):181-187.
    [33]向道斌,李晓玉.多糖的免疫调节作用[J].世界临床药物,1991,12(5):261-264.
    [34]陆琮明,孙桂菊.香菇和黄芪混合多糖抑制S-180肉瘤生长和增强免疫作用的研究[J].预防医学情报杂志,1998,14(4):210-212.
    [35]盛剑秋,杨淑英.香菇多糖的免疫调节作用研究进展[J].胃肠病学和肝病学杂志,1998,7(1):92-94.
    [36]曹荣华.灵芝多糖抗肿瘤的机理研究[J].山东医科大学学报,1992,30(3):203-205.
    [37]宋义平,刘彩玉.牛膝多糖对小鼠细胞免疫功能的影响[J].中药新药与临床药理,1998,9(3):158-160.
    [38] Cheng H, Li S, Fan Y, et al. Comparative studies of the antiproliferative effects of ginsengpolysaccharides on HT-29human colon cancer cells[J]. Medical Oncology.2011,28(1):175-181.
    [39] Zhang X, Yu L, Bi H, et al. Total fractionation and characterization of the water-solublepolysaccharides isolated from Panax ginseng C. A. Meyer[J]. Carbohydrate Polymers.2009,77(3):544-552.
    [40] Bi H, Ni X, Liu X, et al. A novel water-soluble β-(1→6)-d-glucan isolated from the fruit bodies ofBulgaria inquinans (Fries)[J]. Carbohydrate research,2009,344(10):1254-1258.
    [41] Zhou G, Sun Y, Xin H. In vivo anti-tumor andimmunomodulation activities of different molecularweight lambda-carrageenans from Chondrus ocellatus[J]. Pharmacological Research,2004,50:47-53.
    [42] Alper J. Turning sweet on cancer[J]. Science,2003,301(5630):159-160.
    [43] Kim G, Oh Y, Park Y. Acidic polysaccharide isolated from Phelliums Phellinus lintrus induces nitricoxide-mediated tumoricidal ativity of macrophages through protein tyrosine kinase and protein kinase C[J].Biochemical and Biophysical Research Communication,2003,309:399-407.
    [44] Kiyohara H, Hirano M, Wen X, et al. Characterisation of an anti-ulcer pectic polysaccharide fromleaves of Panax ginseng C.A.Meyer[J]. Carbohydrate Research,1994,263(1):89-101.
    [45]傅博强,谢明勇,周鹏.多糖功能的研究进展[J].贵州农业科学,1998,18(2):63-65.
    [46] Han H, Chen Y, Bi H, et al. In vivo antimalarial activity of ginseng extracts[J]. Pharmaceutical Biology.2011,49(3):283-289.
    [47] Sun X, Matsumoto T, Kiyohara H, et al. Cytoprotective activity of pectic polysaccharides from theroot of panax ginseng[J]. Journal of Ethnopharmacology,1991,31:101-107.
    [48]程秀娟,刘爱晶.四种多糖抗溃疡作用的研究[J].药学学报,1985,20(8):571-573.
    [49] Hatanak K, Sing S, Maruyama A. A new synthetic hypoglycaemic polysaccharide[J]. Biochemical andBiophysical Research Communications,1992,188(1):15-16.
    [50] Lever R, Lo W T, Faraidoun M, et al. Size-fractionated heparins have differential effects on humanneutrophil function in vitro[J]. British Journal of Pharmacology,2007,151:837-843.
    [51] Fujimoto S, Furue H, Kimura T, et al. Clinical outcome of postoperative adjuvantimmunochemotherapy with sizofiran for patients with resectable gastric cancer: a randomised controlledstudy[J]. European Journal of Cancer and Clinical Oncology,1991,27(9):1114-1118.
    [52]王一凡,任岱,周凤贤等.甜菊糖食品中营养成分的研究[J].中国现代医学杂志,1997,7(3):63-64.
    [53]杜巍,李元瑞,袁静.食药用菌多糖生物活性与结构的关系[J].食用菌,2001,(2):3-5.
    [54]冯慧琴,杨庆尧,杨晓彤,等.灰树花子实体多糖和菌丝体多糖的比较分析[J].华东师范大学学报(自然科学版),2001,3:014.
    [55] Demleitner S, Kraus J, Franz G. Synthesis and antitumour activity of derivatives of curdlan andlichenan branched at C-6[J]. Carbohydrate research,1992,226(2):239-246.
    [56]王兆梅,李琳,郭祀远,等.活性多糖构效关系研究评述[J].现代化工,2002,22(8):18-23.
    [57] Yang J, Du Y, Huang R, et al. Chemical modification, characterization and structure-anticoagulantactivity relationships of Chinese lacquer polysaccharides[J]. International journal of biologicalmacromolecules,2002,31(1):55-62.
    [58] Choi H S, Kim K H, Sohn E, et al. Red Ginseng Acidic Polysaccharide (RGAP) in Combination withIFN-. GAMMA. Results in Enhanced Macrophage Function through Activation of the NF-. KAPPA. BPathway[J]. Bioscience, biotechnology, and biochemistry,2008,72(7):1817-1825.
    [59]田庚元,李寿桐,宋麦丽等.牛膝多糖硫酸的合成及其抗病毒活性[J].药学学报,1995,30(2):107-111.
    [60]史宝军,聂小华,许泓渝.灰树花多糖硫酸的制备及其抗肿瘤活性[J].中国医药工业杂志,2003,34(8):383-385.
    [61]方唯硕译.具有抗HIV活性的天然产物[M].国外医药植物药分册.1993,8(2):65-69.
    [62]周鹏,谢明勇,傅博强.多糖的结构研究[J].南昌大学学报(理科版),2001,25(2):197-204.
    [63]张健,田庚元.羟乙基化牛膝多糖的合成及其活性研究[J].化学学报,2003,22(10):1692-1696.
    [64]陈惠黎,王克夷.糖复合物的结构与功能[M].上海:上海医科大学出版社,1997.
    [65] Bland E J, Kwshavarz T, Bucke C. The influence of small oligosaccharides on the immune system[J].Carbohydrate Research,2004,339:1673-1678.
    [66]黄芳,蒙义文.活性多糖的研究进展[J].天然产物研究与开发,1999,11(5):90-98.
    [67] Christian W. Kasbauer, DietrichH. Paper, Gerhard Franz. Sulfated β-(1→4)-galacto-oligosaccharidesand their effect on angiogenesis[J]. Carbohydrate Research,2001,330:427-430.
    [68] Vogl H., Paper D.H., Franz G. Preparation of a sulfated linear (1→4)-β-D-galactan with variabledegrees of sulfation[J]. Carbohydrate Polymers,2000,41:185-190.
    [69] Yang J, Du Y, Huang R, et al. Chemical modification, characterization and structure-anticoagulantactivity relationships of Chinese lacquer polysaccharides[J]. International journal of biologicalmacromolecules,2002,31(1):55-62.
    [70] Yang J, Du Y, Wen Y, et al. Sulfation of Chinese lacquer polysaccharides in different solvents[J].Carbohydrate polymers,2003,52(4):397-403.
    [71]大野尚仁,倉知一也,宿前利郎. Physicochemical Properties and Antitumor Activities ofCarboxymethylated Dericatives of Glucan From Sclerotinia sclerotiorum[J]. Chemical&pharmaceuticalbulletin,1988,36(3):1016-1025.
    [72] Silva D A, de Paula R, Feitosa J, et al. Carboxymethylation of cashew tree exudate polysaccharide[J].Carbohydrate polymers,2004,58(2):163-171.
    [73] Wang Y, Zhang L, Li Y, et al. Correlation of structure to antitumor activities of five derivatives of aβ-glucan from Poria cocos sclerotium[J]. Carbohydrate research,2004,339(15):2567-2574.
    [74] Ramos L A, Frollini E, Heinze T. Carboxymethylation of cellulose in the new solvent dimethylsulfoxide/tetrabutylammonium fluoride[J]. Carbohydrate polymers,2005,60(2):259-267.
    [75] Ellerbroek P M, Lefeber D J, van Veghel R, et al. O-acetylation of cryptococcal capsularglucuronoxylomannan is essential for interference with neutrophil migration[J]. Journal of Immunology,2004,173(12):7513-7520.
    [76] Kao G, Tsai C M. Quantification of O-acetyl, N-acetyl and phosphate groups and determination of theextent of O-acetylation in bacterial vaccine polysaccharides by high-performance anion-exchangechromatography with conductivity detection (HPAEC-CD)[J]. Vaccine,2004,22(3-4):335-344.
    [77] Zou Y, Khor E. Preparation of C-6substituted chitin derivatives under homogeneous conditions[J].Biomacromolecules,2005,6(1):80-87.
    [78] Biswas A, Shogren R L, Willett J L. Solvent-free process to esterify polysaccharides[J]. Biomacro-molecules,2005,6(4):1843-1845.
    [79] Senchenkova S N, Perepelov A V, Cedzynski M, et al. Structure of a highly phosphorylatedO-polysaccharide of Proteus mirabilis O41[J]. Carbohydrate Research,2004,339(7):1347-1352.
    [80] Yuan H, Zhang W, Li X, et al. Preparation and in vitro antioxidant activity of κ-carrageenanoligosaccharides and their oversulfated, acetylated, and phosphorylated derivatives[J]. Carbohydrateresearch,2005,340(4):685-692.
    [81]汪敏,李明春,辛梅华,等. N-烷基化壳聚糖的相转移催化制备[J].中国医药工业杂志,2004,35(12):716-718.
    [82] Dicke R, Rahn K, Haack V, et al. Starch derivatives of high degree of functionalization.Part.Determination of the functionalization pattern of p-toluenesulfonyl starch by peracylation and NMRspectroscopy[J]. Carbohydrate Polymers,2001,45(1):43-51.
    [83]佘戟.氧化银(I)在糖羟基上选择性对-甲基苯磺酰化中的应用[J].应用化学,2005,22(2):230-232.
    [84] Salehizadeh H, Shojaosadati S A. Removal of metal ions from aqueous solution by polysaccharideproduced from Bacillus firmus[J]. Water Research,2003,37(17):4231-4235.
    [85]熊鹰,孔小云,陈如山,刘新民,金庆文.复方犀黄丸含药血清体外抗癌作用的研究[J].中国中西医结合消化杂志,2001,9(4):122-123.
    [86]张群豪,趁东晖,林志彬.用血清药理学方法研究灵芝浸膏GLE的抗肿瘤作用机制[J].北京医科大学学报.2000,32(3):210-213.
    [87]唐慎微.证类本草[M].北京:华夏出版社,1993:411.
    [88]郭晓庄,喇万英,张树年等.有毒中药大辞典[M].天津:天津科技翻译出版社.1992:468.
    [89]全国中草药汇编编写组.全国中草药汇编(上册)[M].第10版.北京:人民卫生出版社,1976:771.
    [90]山东医学院生理教研组.黄药子对实验性甲状腺肿疗效及作用机制的研究[J].山东医学院学报,1961,(l):11.
    [91]喻泽兰,刘欣荣, Michael McCulloch,等.黄药子抗肿瘤活性组分筛选及作用分析[J].中国中药杂志,2004,29(6):563-567.
    [92] Gao H, Wu L, Kuroyanagi M, et al. Antitumor-promoting constituents from Chaenomeles sinensisKOEHNE and their activities in JB6mouse epidermal cells[J]. Chemical and pharmaceutical bulletin,2003,51(11):1318-1321.
    [93]曹仁烈,孙在原,王仲德,等.中药水浸剂在试管内抗皮肤真菌的观察[J].中华皮肤科杂志,1957,(4):286-292.
    [94] Adesanya S. A., Ogundana S. K., Roberts M. F.. Dihydrostilbene phytoalexins from D. bulbifera andD. dumentorum[J]. Phytochemistry,1989,28(3):773-774.
    [95]胡振英,史彦斌,罗永江,等.黄药子的体内抑菌及毒性试验[J].动物医学进展,2005,26(10):86-88.
    [96]张秀高.治甲状腺囊肿验方[J].中国民族民间医药杂志,2005,(2):112.
    [97]徐增莱,丁志遵.黄药子的研究概况[J].中草药,1998,29(2):125-128.
    [98]李鲁炎.中药治疗子宫腺疾病初探[J].山西中医,1994,10(3):19-20.
    [99]陶淑春.中西医结合治疗慢性粒细胞性白血病存活七年以上四例[J].辽宁中医杂志,1989,13(3):21-22.
    [100]李万,阮金兰,黄玉斌.黄独抗炎作用的实验研究[J].实用医药杂志,1996,9(4):20-22.
    [101]李国进.黄药子在治疗亚急性甲状腺炎中的作用[J].天津中医药,2003,20(2):9.
    [102]吴琪.速效止痛拔癌膏治疗癌性疼痛的临床观察及实验研究[J].中医函授通报,1994,13(1):40-41.
    [103] Akaha Tooru. A patent for Dioscorea bulbifera L. to remedy diabetes [P]. Japan:08-325159,1996-09-23.
    [104]杨辉,苑景春.黄药子的临床应用和不良反应综述[J].中药与方剂,2004,23(2):102-104.
    [105]朱铭清.含碘中药黄药子致甲状腺肿的形态学观察[J].天津医学院学报,1989,13(4):22.
    [106]药理学教研组.黄药子的一般药理作用[J].山东医学院学报,1959,(13):87.
    [107] Webster, J, Beck W, Temai B. Toxicity and bitteness in Australian Dioseorea bulbifera L. andDioseorea hispida Dennst from Thailand[J]. Journal of Agricultural and Food Chemistry,1984,32(5):1087-1090.
    [108]李玉洁,刘树民,罗明媚.黄药子对小鼠肝脏毒性的表达及其机理研究[J].中国实验方剂学杂志,2005,5(11):40-42.
    [109]李石生, Iloyal A,邓京振,等.黄独中的黄酮和黄酮类化学成分的研究[J].中国中药杂志,2000,25(3):159.
    [110] Murray R D H, Jorge Z D, Khan N H, et al. Diosbulbin d and8-epidiosbulbin e acetate, norclerodanediterpenoids from dioscorea bulbifera tubers[J]. Phytochemistry,1984,23(3):623-625.
    [111] Komori T, Kawasaki T, Kamiya K, et al. Struktur und absolute konfiguration von diosbulbin A, B,und C. Die Kristallanalyse von3-Brom-2-oxo-tetrahydrodiosbulbin A[J]. Chemical and PharmaceuticalBulletin,1977,25:1701-1707.
    [112] Yonemitsu M, Fukuda N, Kimura T, et al. Studies on the constituents of Jateorhiza palmata Miers(Colombo root), I separation and strueture of a new furanoid diterpene glueosides (Palmatoside A)[J].Liebigs Annalen Der Chemie,1986,8:1327-1333.
    [113] Yonemitsu M, Fukuda N, Kimura T, et al. Studies on the constituents of Jateorhiza Palmata Miers(Colombo root). Ⅱ separation and structure of six new furanoid diterpene glucosides: Palmatoside B, C, D,E, F and G[J]. Liebigs Annalen Der Chemie,1987,3:193-197.
    [114] Yonemitsu M, Fukuda N, Kimura T, et al. Crystal structure and NMR spectrometric analysis ofpalmarin[J]. Liebigs Annalen Der Chemie,1989,37(3):485-487.
    [115] Yonemitsu M, Fukuda N, Kimura T, et al. Diosbulbin-B from the leaves and stems of Dioseoreabulbifera:1H-1H and l3C-1H COSY NMR studies[J]. Planta Medica,1993,59(3):577.
    [116] Kawasaki, T, Nishioka I, Tsukamoto T, et al. Saponins of smilacis Chinae rhizome[J]. YakugakuZasshi,1966,86(8):673.
    [117] Komori T. Glycosides from Dioscorea bulbifera[J]. Toxicon.1997,35(10):1531-1536.
    [118] Kamiya K, Wada Y, Komori T, et al. Furanoid-norditerpene aus pflanzen der familie Dioscoreaceae,III die kristallanalyse von2-Keto-3-Bromo-Tetrahydrodiosbulbin-A[J]. Tetrahedron Letters,1972,13(19):1869-1872.
    [119] Komori T, Arita M, Ida Y, et al. Furanoid-norditerpene aus Pflanzen der Familie Dioscoreaceae, Ⅳ1)Zur Struktur der Diosbulbine-A,-B, und-C[J]. Liebigs Annalen Der Chemie,1973,5-6:978-992.
    [120] Zheng S, Guo Z, Shen T, et al. Three new apianen lactones from Dioscorea bulbifera L.[J]. Indianjournal of chemistry. Sect. B: Organic chemistry, including medical chemistry,2003,42(4):946-949.
    [121]傅宏征,林文翰,高志宇,等.2D NMR研究新呋喃二萜类化合物的结构[J].波谱学杂志,2002,19(1):49-55.
    [122]徐增莱,丁志遵.黄药子的研究概况[J].中草药,1998,29(2):125-128.
    [123]李石生,邓京振,赵守训.黄独块茎的甾类成分[J].植物资源与环境,1999,8(2):61-62.
    [124] Gao H, Wu L, Kuroyanagi M. Seven Compounds from Dioscorea bulbifera L.(Natural MedicineNote)[J].生薬學雜誌,2001,55(5):277.
    [125] Gupta D, Singh J. p-Hydroxy acetophenone derivatives from Dioscorea bulbifera[J]. Phytochemistry,1989,28(3):947-949.
    [126] Wij M, Rangaswami S. Chemical constituents of Dioscorea bulbifera isolation and structure of a newdihydro phenanthrene2,4,6,7, tetrahydroxy-9,10dihydro phenanthrene and a new phenanthrene2,4,5,6tetra hydroxy phenanthrene[J]. Indian Journal of Chemistry Section B,1978,16(7):643-644.
    [127] Cline E I, Adesanya S A, Ogundana S K,et al. Induction of pal activity and dihydrostilbenephytoalexins in Dioscorea alata and their plant growth inhibitory properties[J]. Phytochemistry,1989,28(10):2621-2625.
    [128]国家中医药管理局《中华本草》编委会.中华本草(第8卷)[M].上海:上海科学技术出版社,1999:7278-7280.
    [129] Gao H, Kuroyanagi M, Wu L, et al. Antitumor-promoting constituents from Dioscorea bulbifera L. inJB6mouse epidermal cells[J]. Biological and Pharmaceutical Bulletin,2002,25(9):1241-1243.
    [130] Zhang S. D., Fang Y. Extraction and anti-tumor activity study of polysaccharide in several traditionalChinese medicine[J]. Joumal of Chinese medicinal materials.2007,30(2):179-182.
    [131] Cui H X. Antitumor Activity and Possible Mechanism of Crude Polysaccharides from Discoreabulbifera L. on the Mice Bearing U14Cervical Carcinoma[J]. Advanced Materials Research.2012,560-561:374-379.
    [132] Lu C X, Nan K J, Jiao M, Inhibition of cellular proliferation and induction of apoptosis in humanesophageal carcinoma cell lines by extracts of Dioscorea bulbifera L and Chinese Angelica[J]. Journal ofNanjing Medical University.2009,23(6):398-402.
    [1] Rombouts F M, Thibault J. Feruloylated pectic substances from sugar-beet pulp[J]. CarbohydrateResearch,1986,154:177-187.
    [2] Sun R, Hughes S. Fractional extraction and physico-chemical characterization of hemicelluloses andcellulose from sugar beet pulp[J]. Carbohydrate Polymers,1998,36:293-299.
    [3] Ring S G, Selvendran R R. An arabinogalactoxyloglucan from the cell wall of Solanum tuberosum[J].Phytochemistry,1981,20(11):2511-2519.
    [4] Dubois M, Gilles K A, Hamilton J K, et al. Colorimetric method for determination of sugars and relatedsubstances[J]. Analytical Chemistry,1956,28:350-356.
    [5] Blumenkrantz N, Asboe-Hansen G. New method for quantitative determination of uronic acids[J].Analytical Biochemistry,1973,54:484-489.
    [6]刘海林,贺丽.淀粉含量的快速比较测定法[J].技术监督纵横,2001(6):49.
    [7] Chambers R E, Clamp J R. An assessment of methanolysis and other factors used in the analysis ofcarbohydrate-containing materials[J]. Biochemical Journal,1971,125(4):1009.
    [8] Strydom D J. Chromatographic separation of1-phenyl-3-methyl-Spyrazolone-derivatized neutral, acidicand basic aldoses[J]. Journal of Chromatography A,1994,678:17-23.
    [9] Fu D, O’neill R A. Monosaccharide Composition Analysis of Oligosaccharides and Glycoproteins byHigh-Performance Liquid Chromatography[J]. Analytical Biochemistry,1995,227:377-384.
    [10]林子恒.黄药子中淀粉样多糖的分离纯化及结构分析[D]:[硕士学位论文].长春:东北师范大学生命科学学院,2013.
    [1] Wack M, Blaschek W. Determination of the structure and degree of polymerisation of fructans fromEchinacea purpurea roots[J]. Carbohydrate Research,2006,341(9):1147-1153.
    [2] Huang X, Wang D, Hu Y. Effect of sulfated astragalus polysaccharide on cellular infectivity ofinfectious bursal disease virus[J]. International Journal of Biological Macromolecules,2008,42(2):166-171.
    [3] Gomez C G, Lambrecht M V P, Lozano J E, et al. Influence of the extraction-purification conditions onfinal properties of alginates obtained from brown algae (Macrocystis pyrifera)[J]. International Journal ofBiological Macromolecules,2009,44(4):365-371.
    [4] Lei Q P, Lamb D H, Heller R, et al. Quantitation of low level unconjugated polysaccharide in tetanustoxoid-conjugate vaccine by HPAEC/PAD following rapid separation by deoxycholate/HCl[J]. Journal ofPharmaceutical and Biomedical Analysis,2000,21(6):1087-1091.
    [5] Cipriani T R, Mellinger C G, De Souza L M, et al. Polygalacturonic acid: Another anti-ulcerpolysaccharide from the medicinal plant Maytenus ilicifolia[J]. Carbohydrate Polymers,2009, In Press.
    [6] Takegawa K, Satoh K, Ramli N, et al. Production and characterization of extracellular uronicacid-containing glycoproteins from Fusarium oxysporum[J]. Journal of Fermentation and Bioengineering,1997,83(2):197-200.
    [7] Hasui M, Matsuda M, Okutani K, et al. In vitro antiviral activities of sulfated polysaccharides from amarine microalga (Cochlodinium polykrikoides) against human immunodeficiency virus and otherenveloped viruses[J]. International Journal of Biological Macromolecules,1995,17(5):293-297.
    [8] Zhang S, Xu C, Santschi P H. Chemical composition and234Th (IV) binding of extracellular polymericsubstances (EPS) produced by the marine diatom Amphora sp.[J]. Marine Chemistry,2008,112(1-2):81-92.
    [9] Cardoso S M, Silva A M S, Coimbra M A. Structural characterisation of the olive pomace pecticpolysaccharide arabinan side chains[J]. Carbohydrate Research,2002,337(10):917-924.
    [10] Yang B, Jiang Y, Zhao M, et al. Structural characterisation of polysaccharides purified from longan(Dimocarpus longan Lour.) fruit pericarp[J]. Food Chemistry,2009,115(2):609-614.
    [11] Zhang H, Li J, Li G, et al. Structural characterization and anti-fatigue activity of polysaccharides fromthe roots of Morinda officinalis[J]. International Journal of Biological Macromolecules,2009,44(3):257-261.
    [12] Yang J, Zhou D, Liang Z. A new polysaccharide from leaf of Ginkgo biloba L.[J]. Fitoterapia,2009,80(1):43-47.
    [13] Corradi da Silva M L, Fukuda E K, Vasconcelos A F D, et al. Structural characterization of the cellwall d-glucans isolated from the mycelium of Botryosphaeria rhodina MAMB-05[J]. Carbohydrateresearch,2008,343(4):793-798.
    [14] Liu F, Liu Y, Meng Y, et al. Structure of polysaccharide from Polygonatum cyrtonema Hua and theantiherpetic activity of its hydrolyzed fragments[J]. Antiviral Research,2004,63(3):183-189.
    [15] Hanniffy O M, Shashkov A S, Moran A P, et al. Chemical structure of a polysaccharide fromCampylobacter jejuni176.83(serotype O:41) containing only furanose sugars[J]. Carbohydrate Research,1999,319(1-4):124-132.
    [16] Kaneko S, Ishii T, Matsunaga T. A boron-rhamnogalacturonan-II complex from bamboo shoot cellwalls[J]. Phytochemistry,1997,44(2):243-248.
    [17] Ovodova R G, Golovchenko V V, Popov S V, et al. Chemical composition and anti-inflammatoryactivity of pectic polysaccharide isolated from celery stalks[J]. Food Chemistry,2009,114(2):610-615.
    [18] S Pérez, M.A Rodríguez-Carvajal, T Doco. A complex plant cell wall polysaccharide: rhamnogalactu-ronan II[J].A structure in quest of a function, Biochimie.2003,85:109-121.
    [19] Schols H A, Voragen A G J. Complex pectins: Structure elucidation using enzymes[M]. pectins andpectinases, Visser J, Voragen A G J, Amsterdam: Elsevier Science BV,1996,3-19.
    [20]孙盼.黄药子多糖的分离纯化、结构分析及抗肿瘤活性研究[D]:[硕士学位论文].长春:东北师范大学生命科学学院,2012.
    [1] Ciucanu I, Kerek F, A simple and rapid method for the permethylation of carbohydrates[J].Carbohydrate Research,1984,209-217.
    [2]周鹏,谢明勇,傅博强.多糖的结构研究[J].南昌大学学报,2001,25(2):197-204.
    [3] Fijan R, Basile M, ostar-Turk S, et al. A study of rheological and molecular weight properties ofrecycled polysaccharides used as thickeners in textile printing[J]. Carbohydrate Polymers,2009,76(1):8-16.
    [4] Uráková M K, Capek P, Sasinková V, et al. FT-IR study of plant cell wall model compounds: pecticpolysaccharides and hemicelluloses[J]. Carbohydrate Polymers,2000,43(2):195-203.
    [5] Boulet J C, Williams P, Doco T. A Fourier transform infrared spectroscopy study of winepolysaccharides[J]. Carbohydrate polymers,2007,69(1):79-85.
    [6] Duus J, Gotfredsen C H, Bock K. Carbohydrate structural determination by NMR spectroscopymodern methods and limitations[J]. Electronic Journal of Pathology and Histology,2002,8.
    [7] Harvey D J. Matrix-assisted laser desorption/ionization mass spectrometry of carbohydrates[J]. MassSpectrometry Reviews,1999,18:349-451.
    [8] Zaia J. Mass spectrometry of oligosaccharides[J]. Mass Spectrometry Reviews,2004,23:161-227.
    [9] Rodrigues J O A, Taylor A M, Sumpton D P, et al. Mass spectrometry of carbohydrates: neweraspects[J]. advances in carbohydrate chemistry and biochemistry,2007,61:59-141.
    [10] Synytsya A, Opíková J, Jka P M, et al. Fourier transform Raman and infrared spectroscopy ofpectins[J]. Carbohydrate Polymers,2003,54(1):97-106.
    [11]戴金凤,李磊.紫萁多糖单糖组成及摩尔比GC分析[J].江西农业大学学报,2001,23(4):492-495.
    [12] Li S Y, H ltje J V, Young K D. Comparison of high-performance liquid chromatography andfluorophore-assisted carbohydrate electrophoresis methods for analyzing peptidoglycan composition ofEscherichia coli[J]. Analytical biochemistry,2004,326(1):1-12.
    [13] Paulus A, Klockow A. Detection of carbohydrates in capillary electrophoresis[J]. Journal ofChromatography A,1996,720:353-376.
    [14] Yang C, He N, Ling X, et al. The isolation and characterization of polysaccharides from longan pulp[J].Separation and Purification Technology,2008,63(1):226-230.
    [15] Morrison M, Kuyper A C, Orten J M. A Study of the Periodate Method for Determining End-groupValues[J]. Journal of the American Chemistry Society,1952,75:1502-1504.
    [16] Bruneel D, Schacht E. Chemical modification of pullulan:1. Periodate oxidation[J]. Polymer,1992,34(12):2628-2632.
    [17] Abdel-Akher M, Hamilt T R, Mostgomery R, et al. A new procedure for the determination of the finestructure of polysaccharide[J]. Journal of the American Chemistry Society,1952,74:4970-4971.
    [18] Fijan R, Basile M, ostar-Turk S, et al. A study of rheological and molecular weight properties ofrecycled polysaccharides used as thickeners in textile printing[J]. Carbohydrate Polymers,2009,76(1):8-16.
    [19] Nicholas C C and Elaine M S. Linkage structure of carbohydrates by gas chromatography-massspectrometry (GC-MS) of partially methylated alditol acetates[M]. In Biemann C J and Meginnis G D. Theanalysis of carbohydrates by GLC and MS. CRC press. Boca Raton,1988:157-216.
    [20] http://www.ccrc.uga.edu/specdb/ms/pmaa/pframe.html.
    [21] Paulus A, Klockow A. Detection of carbohydrates in capillary electrophoresis[J]. Journal ofChromatography A,1996,720:353-376.
    [22] Wu M, Wu Y, Zhou J, et al. Structural characterisation of a water-soluble polysaccharide with highbranches from the leaves of Taxus chinensis var. mairei[J]. Food Chemistry,2009,113:1020-1024。
    [23] Agrawal P K. NMR spectroscopy in the structural elucidation of oligosaccharides and glycosides[J].Phytochemistry,1992,31(10):3307-3330.
    [24] Carbonero E R, Gracher A H P, Rosa M C C, et al. Unusual partially3-O-methylated α-galactan frommushrooms of the genus Pleurotus[J]. Phytochemistry,2008,69(1):252-257.
    [25] H. Vogl, D.H. Paper, G. Franz. Preparation of a sulfated linear (1→4)-β-D-galactan with variabledegrees of sulfation[J]. Carbohydrate Polymers,2000,41:185-190.
    [26] Li S, Wang D, Tian W, et al. Characterization and anti-tumor activity of a polysaccharide fromHedysarum polybotrys Hand.-Mazz[J]. Carbohydrate Polymers,2008,73:344-350.
    [27]林子恒.黄药子中淀粉样多糖的分离纯化及结构分析[D]:[硕士学位论文].长春:东北师范大学生命科学学院,2013
    [28] Jeanloz R W, Forchielli E. Studies on hyaluronic acid and related substances II periodate oxidation ofglucosamine and derivatives[J]. Journal of Biological Chemistry,1951,188(1):361-369.
    [29] Abdel-Akher M, Smith F. The repeating unit of glycogen[J]. Journal of the American ChemicalSociety,1951,73(3):994-996.
    [30] Hakomori S. A rapid permethylation of glycolipid, and polysaccharide catalyzed by methylsulfinylcarbanion in dimethyl sulfoxide[J]. Journal of Biochemistry,1964,55:205-208.
    [31] Purdie T, Irvine J. The alkylation of sugars[J]. Journal of the Chemical Society,1903,83:1021-1037.
    [32] Haworth W N. Haworth methylation[J]. Journal of the Chemical Society,1915,107:13.
    [33] Needs P W, Selvendran R R. Avoiding oxidative degradation during sodium hydroxide/methyliodide-mediated carbohydrate methylation in dimethyl sulfoxide[J]. Carbohydrate Research,1993,245(1):1-10.
    [34] Andrews, P, Hough, L, Jones, J K N, The galactan of Strychnosnux-vomica seeds[J]. Journal of theChemical Society.1954,806-810.
    [35] Wood P J, Siddiqui I R. Isolation and structural studies of a water-soluble galactan from potato(Solanum tuberosum) tubers[J]. Carbohydrate Research,1972,22(1):212-220.
    [36] Labavitch J M, Freeman LE, Albersheim P. Structure of plant cell walls. Purification andcharacterization of a beta-1,4-galactanase which degrades a structural component of the primary cell wallsof dicots[J]. Journal of Biological Chemistry,1976,251(19):5904-5910.
    [37] Hirst E L, Jones J K N, Walder W O.230. Pectic substances. Part VII. The constitution of the galactanfrom Lupinus albus[J]. Journal of the Chemical Society (Resumed),1947:1225-1229.
    [38] Soerme P, Kahl-Knutsson B, Wellmar U, et al. Design and synthesis of galectin inhibitors[J]. Methodsin enzymology,2003,363:157-169.
    [39] Hirabayashi J, Hashidate T, Arata Y, et al. Oligosaccharide specificity of galectins: a search by frontalaffinity chromatography[J]. Biochimica et biophysica acta,2002,1572(2-3):232.
    [40] Rabinovich G A,Cumashi A,Bianco G A,et al. Synthetic lactulose amines: Novel class of anticanceragents that induce tumor-cell apoptosis and inhibit galectin-mediated homotypic cell aggregation andendothelial cell morphogenesis[J]. Glycobiology,2006,16,210-220.
    [1] Sasisekharan R, Shriver Z, Venkataraman G, et al. Roles of heparan-sulphate glycosaminoglycans incancer[J]. Nature Reviews Cancer,2002,2(7):521-528.
    [2] Rupérez P, Ahrazem O, Leal J A. Potential antioxidant capacity of sulfated polysaccharides from theedible marine brown seaweed Fucus vesiculosus[J]. Journal of Agricultural and Food Chemistry,2002,50(4):840-845.
    [3] Yoshida T. Synthesis of polysaccharides having specific biological activities[J]. Progress in polymerscience,2001,26(3):379-441.
    [4]谈新提,王艺峰,张俐娜,等.化学修饰的茯苓多糖抗肿瘤效应的组织学观察[J].武汉大学学报(医学版),2004,25(6):652-656.
    [5]赵国华,李志孝,陈宗道.化学改性多山药多糖抗肿瘤活性的影响[J].中国食品学报,2004,4:39-41.
    [6]王伟兰,刘梅,孙艳,等.羧甲基茯苓多糖的研究进展[J].中国药物应用与监测,2008,5(3):39-41.
    [7] Petzold K, Schwikal K, Heinze T. Carboxymethyl xylan-synthesis and detailed structurecharacterization[J]. Carbohydrate polymers,2006,64(2):292-298.
    [8]徐任生.天然产物化学[M].北京:科学出版社,1993.57.
    [9] Eyler R W, Klug E D, Diephuis F. Determination of degree of substitution of sodium carboxymethyl-cellulose[J]. Analytical chemistry,1947,19(1):24-27.
    [10] Capek P, Hr′balová V, vandová E, et al. Characterization of immunomodulatory polysaccharidesfrom Salvia officinalis L[J]. International Journal of Biological Macromolecules,2003,33:113-119.
    [11] Uráková M K, Capek P, Sasinková V, et al. FT-IR study of plant cell wall model compounds: pecticpolysaccharides and hemicelluloses[J]. Carbohydrate Polymers,2000,43:195-203.
    [12] Harris, M I, Turvery, J R. Sulfat of monosaccharides and derivatives. VIQ. Infrared spectra and opticalroatations of some glycoside sulfate[J]. Carbohydr. Res.,1970,15:51-56.
    [13] Zhang P, Zhang L, Cheng S. Solution properties of an β-(1-3)-D-glucan from Lentinusedodes and itssulfated derivatives[J]. Carbohydrate Research,2002,337:155-160.
    [14] Pal S, Sen G, Mishra S, et al. Carboxymethyl tamarind: Synthesis, characterization and its applicationas novel drug-delivery agent[J]. Journal of Applied Polymer Science,2008,110(1):392-400.
    [1] Soerme P, Kahl-Knutsson B, Wellmar U, et al. Design and synthesis of galectin inhibitors[J]. Methodsin enzymology,2003,363:157-169.
    [2] Rabinovich G A, Cumashi A, Bianco G A, et al. Synthetic lactulose amines: Novel class of anticanceragents that induce tumor-cell apoptosis and inhibit galectin-mediated homotypic cell aggregation andendothelial cell morphogenesis[J]. Glycobiology,2006,16,210-220.
    [3] Sathisha U V, Jayaram S, Harish Nayaka M A, et al. Inhibition of galectin-3mediated cellularinteractions by pectic polysaccharides from dietary sources[J]. Glycoconj,2007,24,497-507.
    [4] Gan L, Hua Zhang S, Liang Yang X, et al. Immunomodulation and antitumor activity by apolysaccharide-protein complex from Lycium barbarum[J]. International Immunopharmacology,2004,4(4):563-569.
    [5] Gunning A P, Bongaerts R J M, Morris V J. Recognition of galactan components of pectin bygalectin-3[J]. The FASEB Journal,2009,23(2):415-424.
    [6] Andre S, Pieters R J, Vrasidas I, et al. Wedgelike glycodendrimers as inhibitors of binding ofmammalian galectins to glycoproteins, lactose maxiclusters, and cell surface glycoconjugates[J].ChemBioChem,2001,2(11):822-830..
    [7] Hirabayashi J, Hashidate T, Arata Y, et al. Oligosaccharide specificity of galectins: a search by frontalaffinity chromatography[J]. Biochimica et biophysica acta,2002,1572(2-3):232.
    [8] Alban S, Schauerte A, Franz G. Anticoagulant sulfated polysaccharides: Part I. Synthesis andstructure-activity relationships of new pullulan sulfates[J]. Carbohydrate Polymers,2002,47(3):267-276.
    [9] Xing R, Liu S, Yu H, et al. Preparation of high-molecular weight and high-sulfate content chitosans andtheir potential antioxidant activity in vitro[J]. Carbohydrate polymers,2005,61(2):148-154.
    [10] Seetharaman J, Kanigsberg A, Slaaby R, et al. X-ray crystal structure of the human galectin-3carbohydrate recognition domain at2.1-resolution[J]. Journal of Biological Chemistry,1998,273(21):13047-13052.
    [11] Yang R Y, Hill P N, Hsu D K, et al. Role of the carboxyl-terminal lectin domain in self-association ofgalectin-3[J]. Biochemistry,1998,37(12):4086-4092.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700