用户名: 密码: 验证码:
奶山羊产奶性状候选基因的筛选及其多基因聚合效应的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
产奶性状是奶山羊的主要经济性状,包括产奶量、乳脂率和乳蛋白率等。目前,许多学者认为这些数量性状的表现不仅受微效多基因或QTL控制,而且也与主效基因调控密切相关。因此,寻找这些性状的主效基因或与之相连锁的分子标记,研究功能基因的调控机理,是开展奶山羊分子育种工作的前提。以分子标记辅助选择为核心的多基因聚合育种技术能直接在DNA水平上对产奶性状的基因型进行选择,克服了传统育种方法准确性低的问题,可显著加快遗传进展,提高育种效率。因此,将分子标记辅助育种技术与传统育种技术有效结合,集成创新新的育种技术体系是奶山羊育种发展的必然趋势。
     本研究选择对产奶性状有关键调控作用的PRLR、ELF5、MTHFR和FOLR1基因,采用PCR-RFLP和DNA测序技术研究这4个基因在西农萨能和关中奶山羊中的SNPs及其与产奶性状的关联性;采用实时定量PCR技术检测PRLR、ELF5和FOLR1基因在奶山羊10个组织中的相对表达量;克隆奶山羊PRLR、ELF5(?)FOLR1基因完整的CDS区,并进行生物信息学分析;从PRLR、ELF5、MTHFR和FOLR1基因中筛选对产奶性状有显著影响的基因位点,利用数量遗传学分析方法研究其基因聚合效应对产奶性状的影响。主要研究结果如下:
     1、PRLR基因的克隆、表达及其SNPs与产奶性状的关联分析
     山羊PRLR基因CDS区全长1746bp,编码581个氨基酸。其与绵羊、牛、猪和人的氨基酸序列相似性分别为98%,92%,73%和68%,其二级结构包含105个α-螺旋,114个延伸链,22个β-转角和340个随机卷曲。PRLR在卵巢、子宫、输卵管和乳腺组织中均有表达,表明PRLR基因参与了奶山羊的泌乳等生殖生理活动。在PRLR基因中发现了5个SNPs,分别为位于内含子2的g.40452T>C和g.40471G>A,位于外显子9的g.61677G>A和g.61865G>A和位于3'UTR的g.62130C>T,其中,g.61677G>A和g.61865G>A分别导致PRLR氨基酸序列的第485处丝氨酸突变为天冬酰胺(Ser→Asn)和第548处的缬氨酸突变为蛋氨酸(Val→Met)。在西农萨能和关中奶山羊中,g.40452T>C和g.40471G>A位点以及g.61677G>A和g.61865G>A呈现的连锁不平衡(r2>0.33)。对于西农萨能奶山羊在g.40452T>C位点,TT基因型个体的第1泌乳期产奶量显著高于CC基因型个体(P<0.05);在g.61677G>A位点,GG基因型个体的第1、3泌乳期产奶量和平均产奶量显著高于GA基因型个体(P<0.05);在g.61865G>A位点,GG基因型个体的第2、3泌乳期产奶量和平均产奶量显著高于GA基因型个体(P<0.05);在g.62130C>T位点,CC基因型个体的第1、3泌乳期产奶量和平均产:奶量显著高于CT型个体(P<0.05)。对于关中奶山羊,在g.61677G>A位点,GG基因型个体的第1、3泌乳期产奶量和平均产奶量显著高于GA基因型个体(P<0.05);在g.61865G>A位点,GG基因型个体的第1、3泌乳期产奶量和平均产奶量显著高于GA基因型个体(P<0.05):在g.62130C>T位点,CC基因型个体第2、3泌乳期产奶量和平均产奶量显著高于CT基因型个体(P<0.05)。g.61677G>A,g.61865G>A和g.62130C>T位点组合基因型与产奶性状的关联分析结果表明,这3个位点组合基因型对产奶量有显著影响,在西农萨能和关中奶山羊中,C2(GGGGCC)为最佳基因型组合。PRLR基因可用于产奶性状选择的奶山羊分子标记育种。
     2、ELF5基因的克隆、表达及其SNPs与产奶性状的关联分析
     山羊ELF5基因CDS区全长768bp,编码255个氨基酸。其与牛,绵羊,猪和人的氨基酸序列相似性分别为99%,99%,94%和94%,其二级结构包含110个α-螺旋,29个延伸链,6个β-转角和110个随机卷曲。ELF5基因在乳腺中的表达量明显高于其它组织,表明ELF5对泌乳活动有重要的调控作用。在西农萨能和关中奶山羊中,g.3694C>G位点偏离哈代温伯格平衡状态(P<0.05)。在g.3694C>G位点,对于这2个奶山羊品种,CC基因型个体的乳蛋白显著高于CG基因型个体(P<0.05);对于西农萨能奶山羊,CC基因型个体的第3泌乳期产奶量显著高于CG基因型个体(P<0.05)。ELF5基因的g.3694C>G位点可用于产奶性状选择的奶山羊分子标记育种。
     3、MTHFR基因的SNPs与产奶性状的关联分析
     本研究在MTHFR基因中检测到6个SNPs,其中g.1372T>C、g.2578C>T、g.2609C>T和g.2742T>C位于5'UTR, g.5447G>A位于内含子4,g.14635G>A位于3'UTR。在西农萨能和关中奶山羊中,g.2609C>T, g.5447G>A和g.14635G>A位点偏离哈代温伯格平衡。对于西农萨能奶山羊,在g.2578C>T位点,CC基因型个体的乳蛋白和第3泌乳期产奶量显著高于TT基因型个体(P<0.05);在g.5447G>A位点,AA基因型个体的乳蛋白显著高于GG基因型个体(P<0.05);在g.14635G>A位点,AA基因型个体的第1泌乳期产奶量显著高于GA基因型个体(P<0.05)。对于关中奶山羊,在g.2578C>T位点,CC基因型个体的乳蛋白显著高于TT基因型个体(P<0.05),在g.5447G>A位点,AA和GA基因型个体的乳蛋白显著高于GG基因型个体(P<0.05);在g.14635G>A位点,GG基因型个体的乳蛋白显著高于GA基因型个体(P<0.05)。g.2578C>T和g.5447G>A位点组合基因型与奶山羊产奶性状的关联分析结果表明,在西农萨能奶山羊中,C1(CCAA), C2(CCGA)和C3(CCGG)型个体的乳蛋白显著高于C7(TTGA)型个体(P<0.05);在关中奶山羊品种中,C1(CCAA)型个体的乳蛋白显著高于C6(CTGG)、 C7(TTGA)和C8(TTGG)型个体(P<0.05);C2(CCGA)型个体的的乳蛋白显著高于C6(CTGG)型个体(P<0.05),由此可知,C1(CCAA)和C2(CCGA)为最佳基因型组合。MTHFR基因能用于产奶性状选择的奶山羊分子标记育种。
     4、FOLR1基因的克隆和表达
     山羊FOLR1基因CDS区全长777bp,编码258个氨基酸。其与绵羊,牛,猪和人的氨基酸序列相似性分别为99%,96%,80%和80%,其二级结构包含83个α-螺旋,26个延伸链,5个β-转角和144个随机卷曲。FOLR1基因在奶山羊输卵管、肺和脾中的表达量较高,在卵巢、子宫和乳腺中的表达量次之,在心脏、肌肉、肝和肾中的表达量最低。FOLR1基因各引物的扩增产物中不存在多态性。
     5、PRLR、MTHFR和ELF5基因聚合对产奶性状的效应分析
     在西农萨能奶山羊中,C1(GGGGCCCC)组合基因型个体第3泌乳期的产奶量显著高于C8(GAGACCCT)和C10(GGGACCCT)型个体(P<0.05);C1(GGGGCCCC)和C1(GAGACCCC)组合基因型个体的乳蛋白显著高于C6(GGGGCGTT)型个体(P<0.05);该品种的最佳基因型组合为C1(GGGGCCCC)。在关中奶山羊中,C1(GGGGCCCC)和C2(GGGGCCCT)组合基因型个体的第2、3泌乳期和平均产奶量显著高于C3(GGGGCCTT)型个体(P<0.05),乳蛋白含量显著高于C6(GGGGCGTT)型个体(P<0.05);该品种的最佳基因型组合为C1(GGGGCCCC)和C2(GGGGCCCT)。
Milk production traits are main economic traits in dairy goats, including milk yield, milk fat and milk protein rate and so on. At present, many scholars believe that the performance of these traits are not only controlled by minor-polygene or QTL, but also closely related to the regulation of major genes. Therefore, finding major genes of these traits or molecular markers linked with these traits and researching on the regulation mechanism of functional genes are the prerequisite of dairy goat molecular breeding work. Multigene pyramiding breeding technology centering on molecular marker-assisted selection could select genotypes of milk production traits in DNA level. It overcomes the disadvantage of low accuracy of conventional breeding technology, accelerates genetic progress and improves breeding efficiency. Making marker-assisted and conventional breeding technology to be combinated effictively and integrating innovation new breeding technology system are the trend of development of dairy goat breeding.
     In this study, PRLR, ELF5, MTHFR and FOLR1genes were selected as candidate genes because they played key regulatory roles in milk production traits. The study investigated the polymorphisms of PRLR, ELF5, MTHFR and FOLR1genes in Xinong Saanen (SN) and Guanzhong (GZ) dairy goat breeds by DNA sequencing and PCR-RFLP and analyzed the association of single nucleotide polymorphisms (SNPs) with milk production traits. In addition, the study detected the relative expression levels of PRLR, ELF5and FOLR1genes in10tissues of dairy goats by real time-PCR technology, and cloned the coding sequences (CDS) of these genes and analyzed the characteristics of nucleotide and amino acid sequences using bioinformatics. Finally, the research analyzed the pyramiding effect of PRLR, ELF5and MTHFR gene on milk production traits using the analysis method of quantitative genetics. The main results were as follows:
     1. Molecular cloning, tissue expression and association analysis of SNPs with milk production traits in PRLR gene
     Caprine PRLR gene coding sequence was1746bp, encoding581amino acids. Its amino acid sequence had high similarity with those of four species:Ovis aries(98%) Bos taurus (92%), Sus scrofa973%) and Homo sapiens (68%). The result of caprine PRLR amino acid sequence analysis showed that the secondary structure contains105alpha helix,114extended chains,22β-turns and340random coils. Caprine PRLR mRNA was expressed in ovary, uterus, oviduct and breast. It showed PRLR gene was involved in the reproductive physiology and lactation activities of dairy goats. Five SNPs were detected in PRLR gene. The g.40452T>C and g.40471G>A SNPs were in intron2. The g.61677G>A and g.61865G>A SNPs were in exon9, which led to p.Ser485Asn and p.Val548Met in PRLR amino acid, respectively. The g.62130C>T SNP was in3'UTR. In two dairy goat breeds, both g.40452T>C and g.40471G>A loci were closely linked (r2>0.33), in addition, the g.61677G>A and g.61865G>A loci also showed strong linkage disequilibrium (r2>0.33). In SN dairy goats, the individuals with TT genotype had higher milk yield than those with CC genotype at g.40452T>C locus for the first parity(P<0.05); at g.61677G>A locus for the first, third and average lactation, the individuals with GG genotype had higher milk yield than those with GA genotype (P<0.05); at g.61865G>A locus for the second, third and average lactation, the individuals with GG genotype had higher milk yield than those with GA genotype (P<0.05); at g.62130C>T locus for the first, third and average lactation, the individuals with CC genotype had higher milk yield than those with CT genotype (P<0.05). In GZ dairy goats, the individuals with GG genotype had higher milk yield than those with GA genotype (P<0.05) at g.61677G>A and g.61865G>A loci for the first, third and average lactation; at g.62130C>T locus for the second, third and average lactation, the individuals with CC genotype had higher milk yield than those with CT genotype (P<0.05). Association analysis of combination genotypes in g.61677G>A, g.61865G>A and g.62130C>T loci was done in two dairy goat breeds. The result showed that the three loci had significant effects on milk yield. In SN and GZ dairy goats, C2(GGGGCC) was the best combination genotype compared with other combination genotypes. PRLR gene could be used for molecular markers breeding of milk production traits in dairy goats.
     2. Molecular cloning, tissue expression and association analysis of SNPs with milk production traits in ELF5gene
     Caprine ELF5gene coding sequence was768bp, encoding255amino acids. Its amino acid sequence had high similarity with those of four species:Bos taurus (99%), Ovis aries(99%), Sus scrofa(94%) and Homo sapiens (94%). The result of caprine ELF5amino acid sequence analysis showed that the secondary structure contained110alpha helix,29extended chains,6β-turns and110random coils. The expression level of ELF5gene in breast was significantly higher than other tissues which suggested that ELF5gene plays a key role in regulating the lactation activities. In SN and GZ dairy goats, the g.3694C>G locus was in Hardy-Weinberg disequilibrium (P<0.05), and the individuals with CC genotype had higher milk protein than those with CG genotype at g.3694C>G locus (P<0.05). In SN dairy goats, the individuals with CC genotype had higher milk yield than those with CG genotype at g.3694C>G locus for the third lactation (P<0.05). The g.3694C>G locus of ELF5gene could be used for molecular markers breeding of milk production traits in dairy goats.
     3. Association analysis of SNPs with milk production traits in MTHFR gene
     Six SNPs detected in MTHFR gene. The g.1372T>C, g.2578C>T, g.2609C>T and g.2742T>C were in5'UTR. The g.5447G>A was in intron4. The g.14635G>A was3'UTR. The g.2609C>T, g.5447G>A and g.14635G>A locus was in Hardy-Weinberg disequilibrium in SN and GZ dairy goats (P<0.05). In SN dairy goats, the individuals with CC genotype had higher milk yield than those with TT genotype at g.2578C>T locus for the third lactation (P<0.05), and the individuals with CC genotype had higher milk protein than those with TT genotype at g.2578C>T locus (P<0.05); at g.5447G>A locus, the individuals with AA genotype had higher milk protein than those with GG genotype (P<0.05); at g.14635G>A locus for the first lactation, the individuals with AA genotype had higher milk yield than those with GA genotype (P<0.05). In GZ dairy goats, the individuals with CC genotype had higher milk protein than those with TT genotype at g.2578C>T locus (P<0.05); at g.5447G>A locus, the individuals with AA and GA genotypes had higher milk protein than those with GG genotype (P<0.05); at g.14635G>A locus, the individuals with GG genotype had higher milk protein than those with GA genotype (P<0.05). Association analysis of combination genotypes in g.2578C>T and g.5447G>A loci was done in two dairy goat breeds. In SN dairy goats, the result showed that the individuals with C1(CCAA), C2(CCGA) and C3(CCGG) combination genotypes had higher milk protein than those with C7(TTGA)(P<0.05). In GZ dairy goats, the individuals with C1(CCAA) combination genotype had higher milk protein than those with C6(CTGG), C7(TTGA) and C8(TTGG)(P<0.05); the individuals with C2(CCGA) combination genotype had higher milk protein than those with C6(CTGG)(P<0.05). C1(CCAA) and C2(CCGA) were the best combination genotype compared with other combination genotypes. MTHFR gene could be used for molecular markers breeding of milk production traits in dairy goats.
     4. Molecular cloning and tissue expression of FOLR1gene
     Caprine FOLR1gene coding sequence was777bp, encoding258amino acids. Its amino acid sequence had high similarity with those of four species:Ovis aries(99%), Bos taurus (96%), Sus scrofa(80%) and Homo sapiens (80%). The result of caprine FOLR1amino acid sequence analysis showed that the secondary structure contained83alpha helix,26extended chains,5β-turns and144random coils. FOLR1mRNA had higher expression in the oviduct, lung and spleen, followed by the expression of the ovary, uterus and breast, and it was the lowest in the heart, muscle, liver and kidney. There was no polymorphism in the amplification products of different primer pairs.
     5. Multigene pyramiding effect of PRLR, MTHFR and ELF5genes on milk production traits in goats
     In SN dairy goats, the individuals with C1(GGGGCCCC) combination genotype had higher milk yield than those with C8(GAGACCCT) and C10(GGGACCCT) in the third lactation (P<0.05); the individuals with C1(GGGGCCCC) and C7(GAGACCCC) combination genotypes had higher milk protein than those with C6(GGGGCGTT)(P<0.05). C1(GGGGCCCC) were the best combination genotype in SN dairy goats. In GZ dairy goats, the individuals with C1(GGGGCCCC) and C2(GGGGCCCT) combination genotypes had higher milk yield than those with C3(GGGGCCTT) in the second, third and average lactation (P<0.05), in addition, the individuals with C1(GGGGCCCC) and C2(GGGGCCCT) had higher milk protein than those with C6(GGGGCGTT)(P<0.05):C1(GGGGCCCC) and C2(GGGGCCCT) were the best combination genotypes in GZ dairy goats.
引文
巴沙拉特,丁效华,曾列先,阿克沙,张泽民,曾瑞珍,张桂权.2006.水稻抗白叶枯病基因的聚合育种.分子植物育种,4(4):493-499
    陈克飞,黄路生,李宁,张勤,张建生,孙士铨,罗明,吴常新.2000.猪FSHβ及ESR合并基因型对猪产仔数性状的影响.科学通报,45(18):1963-1966
    陈泽良,刘波,刘明元,欧阳红生,安铁洙.2002.绦虫催乳素基因cDNA克隆及序列.中国兽医学报,(2):157-159
    陈宏,蓝贤勇,李瑞彪,雷初朝,孙维斌,张润锋,郑元林,朱必才2005. CSN1S2、CSN3和B-lg基因对西农萨能奶山羊产奶性能的影响.遗传学报,32(8):804-810
    陈红旗,陈宗祥,倪深,左示敏,潘学彪,朱旭东.2008.利用分子标记技术聚合3个稻瘟病基因改良金23B的稻瘟病抗性.中国水稻科学,22(1):23-27
    杜立新,曹顶国.2003.小尾寒羊微卫星与RAPD标记的研究.遗传学报,30(11):1041-1044
    冯春刚,胡晓湘,赵要风,李宁.2008.全基因组选择及其在动物育种中的应用.中国家禽,30(22):5-8
    范翌鹏,孙东晓,张勤,张胜利,张沅,刘林.2011.全基因组选择及其在奶牛育种中应用进展.中国奶牛,(20):33-37
    冯凯,石福岳,孙露露,潘雨来,胡春辉,吴信生.2012.家兔骨形态发生蛋白4基因(BMP4)启动子甲基化与杂种优势的关系.农业生物技术学报,20(5):543-548
    葛武鹏.2008.山羊乳营养特性及对嗜酸乳杆菌增菌发酵效能的研究.[博士学位论文].中国杨凌:西北农林科技大学
    韩威,张学余,李慧芳,束婧婷,李国辉,朱云芬.2009ADSL和GARS-AIRS-GART基因多态位点及聚合基因型对白耳鸡胸肌肌苷酸(IMP)含量的效应分析.农业生物技术学报,17(4):577-581
    韩军定,魏志杰,张军,王芳杰.2010.陕西奶山羊生产现状与发展前景.畜牧兽医杂志,29(2):50-52
    黄映萍.2010.DNA分子标记研究进展.中山大学研究生学刊,31(2):28-34
    韩辉,韩琳琳,高海东,侯琳.2011.基因多态及基因甲基化与乳腺癌发病关系的研究中国现代普通外科进展,14(11):846-850
    郝晓燕.2011.中国乳业产业安全研究.[博士学位论文].呼和浩特:内蒙古农业大学
    韩越,潘永初,杜一飞,万林忠,王林.2011.非综合征型唇腭裂与MTHFR基因多态性的相关性研究.口腔生物医学,2(1):8-11
    何伯萍,邢艳苹,雷连成,韩东,李莹莹,吴云娣,杨峰.2012.IGF-Ⅰ对奶牛乳腺上皮细胞合成乳脂、乳蛋白的影响.中国兽医学报,32(8):1231-1234
    何锋,顾海勇,龚丁旭,张浩.2012.叶酸代谢通路酶基因多态性与先天性心脏病的研究进展.中国分子心脏病学杂志,12(4):249-252
    姜运良,李宁,吴常信,杜立新.2001.不同品种猪肌肉生长抑制素基因单核苷酸多态性分析.遗传学报,28(9):840-845
    焦海燕,薛雅丽,张贵寅.2002.亚甲基四氢叶酸还原酶基因(C677T)多态性研究进展[J].国外医学遗传学分册,25(4):207-210
    鞠志花,李秋玲,黄金明,王霁,李荣岭,李建斌,仲跻峰,王长法.2011.中国荷斯坦牛转铁蛋白基因SNPs的检测及其与产奶性能的关系.中国农业科学,44(14):3027-3035
    李祥龙,张亚平,陈圣偶,曾凡同,邱祥聘,刘相模.1997.山羊品种间线粒体DNA限制性片段长度多态性研究.动物学研究,18(4):421-428
    吕雪梅,杨关福,张细权,戴彩润,卢传斌.1999.蛋鸡品系RAPD变异及其与杂种优势关系的分析.遗传,2(2):64-68
    刘希良,张和平.2002.中国乳业发展史概述.中国乳品工业,30(5):162-166
    李庆伟,李爽,田春宇,王勇军,郭玉梅.2002.雀形目10种鸟类线粒体的DNA变异及分子进化.动物学报,48(5):625-632
    李吉涛,杜立新.2004.中国荷斯坦牛催乳素基因型与产奶性状的相关分析.山东农业大学学报,35(4):553-555
    蓝贤勇,陈宏,潘传英,李瑞彪,李向臣,房兴堂.2005CSN3、CSN1S2和β-lg基因多态与西农萨能奶山羊产羔数的相关性研究.中国农业科学,38(11):2333-2338
    李小平,施启顺,柳小春,唐凡,张达军.2005.催乳素受体基因对大白、长白猪产仔数的影响.养猪,(6):19-20
    刘俊.2006. ESR、RYR1基因多态对猪产活仔数影响的研究及四个基因SNP位点的检检测.[硕士学位论文].武汉:华中农业大学
    郎显宇,陆忠华,迟学斌.2007.一种基于基因表达谱的并行聚类算法.计算机学报,30(2):311-316
    李建华,杨明生,徐宁迎.2008.猪CACNA2D1基因定位及与相关遗传图谱的整合分析.西北农林科技大学学报,36(1):49-51
    李真,2009.奶山羊乳腺发育过程中激素及其受体表达规律的研究.[硕十学位论文].哈尔滨:东北农业大学
    李国辉,张学余,韩威,屠云洁,苏一军.2010.催乳素和神经肽Y基因及基因聚合对白耳鸡产蛋数的遗传效应.湖北农业科学,49(5):1029-1032
    刘轩,强巴央宗,王强,凌遥,辜雪冬,吴克亮,张浩.2010.藏猪繁殖性状多基因效应分析,32(5):480-485
    吕爱军,胡秀彩,薛军,王艺,李槿年.2011.cDNA芯片技术筛选斑马鱼皮肤免疫相关差异表达基因.中国水产科学,18(6):1226-1233
    李粉霞,胡妮娅,李红梅,杨学习,李明.2012MTHFR基因A1298C多态性与肠癌遗传易感相关性研究.现代肿瘤医学,20(1):42-45
    马燕芬.2007.影响奶牛产奶量的因素.中国奶牛,(11):20-22
    毛海霞,陈宏,陈付英,张存雷,王新庄,王居强.2008.郏县红牛DGAT2基因多态性与生长性状的相关性分析.遗传,30(3):329-332
    马妍,贾晋,张毅,孙东晓,张沅.2009.荷斯坦,牛GHR基因多态与产奶性状关联分析,畜牧兽医学报,40(8):1186-1190
    牛丽莉,李宏滨,杜立新.2008.分子标记在家畜遗传多样性研究中的应用.生物技术通讯,19(2):299-301
    倪大虎,易成新,李莉,汪秀峰,张毅,赵开军,王春连,章琦,王文相,杨剑波.2008.分子标记辅助培育水稻抗白叶枯病和稻瘟病三基因聚合系.作物学报,34(1):100-105
    秦宜德,邹思湘.2003.乳蛋白的主要组成及其研究现状.生物学导志,20(2):5-7
    强晖,谢渭芬,施斌,周国雄,倪润洲.2009.应用基因芯片技术筛选大鼠再生肝中差异表达基因.胃肠病学和肝病学杂志,18(7):623-625
    任兆钧,叶增灿,冯其辉,郭札和.1991.羊生长激素结构基因的全顺序测定.生物化学与生物物理学报,23(3):236-245
    单雪松,张沅,李宁.2002.奶牛微卫星基因座与产奶性能关系的研究.遗传学报,29(5):430-433
    石永胜,陈集燕.2005.羊奶的营养价值与奶山羊的饲养.广西畜牧兽医,21(5):213-214
    束婧婷.2008.鸡肌苷酸相关候选基因遗传效应及表达规律研究.[博士学位论文].扬州:扬州大学
    孙瑞萍,王利心,朱广琴,王建刚,宋宇轩,梁昭义,曹斌云.2008.PRLR基因外显子10多态性与西农萨能奶山羊产奶性能的相关分析.畜牧兽医学报,39(12):1654-1660
    孙瑞萍,王利心,朱广琴,王建刚,宋宇轩,梁昭义,曹斌云.2008.GHR基因exon9和exon10多态性与西农萨能奶山羊产奶性能的相关分析.中国农业大学学报,13(5):70-74
    宋永利,刘畅,秦丽红,张金玉,赵玉民,赵志辉.2010.牛催乳素受体基因遗传多态性及其与部分精液品质性状的关联分析.吉林农业大学学报,32(2):195-199
    石建中,李步高,曹果清.2012.猪催乳素受体基因第8内含子多态性及其对产仔性能的影响.中国畜牧兽医,39(7):179-182
    陶勇,李国辉,王金玉,胡玉萍,张根喜,陈宽维.2008.京海黄鸡MC4R基因多态性及其与生长性能的关联分析.中国家禽,30(5):21-23
    谭敦勇,彭湘萍.2012.催乳素受体研究.生理科学进展,43(1):17-22
    汪旭,薛京伦.2005.叶酸代谢与人类基因组稳定性的关系研究进展.国外医学遗传学分册,28(5):257-261
    王苏梅,刘学军,吴爱华.2005.亚甲基四氢叶酸还原酶基因多态性及临床意义.国外医学遗传学分册,28(1):29-31
    翁玉蓉,房静远,孙丹凤,陈朝飞,朱红音.2006.胃癌组织中叶酸水平与代谢酶亚甲基四氢叶酸还原酶基因多态性的关系研究.中华消化杂志,26(1):26-30
    王丽,林东昕,陆星华,缪小平,李辉.2006.叶酸代谢相关基因MTHFR、MS基因多态与胰腺癌风险关联.中国流行病学杂志,27(1):50-54
    王爱军.2007.我国乳品工业现状及发展趋势.农产品加工学刊,112(9):60-63
    王丽娟,李秋玲,王洪梅,李建斌,王志玉,王长法,侯明海,仲跻峰.2008.中国荷斯坦牛催乳素基因A8398G多态性与产奶性状相关性分析.山东大学学报,43(5):10-18
    王俊勋.2011.奶业发展动态与政策.中国乳业,(117):1-4
    王玺年,王继卿,胡江,刘秀,李少斌,罗玉柱.2013.山羊pit-1基因遗传多态性及与生长性能的相关性分析.华南农业大学学报,34(2):230-233
    谢俊玲,沈丹华,杜金荣.2008.叶酸受体在女性生殖系统肿瘤中的研究进展.中国妇产科临床杂志,9(4):312-314.
    徐颖,汪璇,刘小丹,魏红艳.2010.羊奶的优势与发展前景.黑龙江畜牧兽医,7(14):36-37
    徐凌洋,赵福平,任航行,陆健,张莉,魏彩虹,杜立新.2012.杂交群体动物基因聚合,34(10):1328-1338
    杨光辉,范江平.2004.山羊奶的营养与开发利用.昆明医学院学报,(25):113-114
    杨帆,周学军,刘楠乔,张煜,吴国良,程跃,黄希文,蔡亚非,王根林.β-LG基因外显子2多态 性对荷斯坦牛乳成分的影响.2011.中国应用生理学杂志,27(3):333-337
    杨永强,龚俞,焦仁刚,惠嫣婷,刘若余.2013.牛α-乳清蛋白基因5调控区多态性研究.中国畜牧兽医,40(1):136-139
    袁志发,周静芋.2000.试验设计与分析.北京:高等教育出版社
    赵春江.1998.牛乳蛋白基因多态性分子遗传学基础的研究.[博士位论文].北京:中国农业大学.
    赵有璋.2000.羊生产学.北京:中国农业出版社
    郑新民,华文君.2001.猪羊生长激素基因保守性研究.湖北农业科学,(2):62-64
    张淑君,熊远著,邓吕彦,郑嵘,蒋思文,肖森木,夏瑜,徐建祥,刘晓华,王春芳,阮征,宫时玉.2002.卵泡刺激素受体基因作为产仔数候选基因的研究.华中农业大学学报,21(6):506-507
    张和平.2006.金世琳乳品科技文选.北京:中国轻工业出版社
    张润锋,陈宏,雷初朝,胡沈荣,苏利红.2006. IGFBP-3基因PCR-RFLP多态性与中国荷斯坦牛泌乳性状的相关分析.中国畜牧杂志,42(3):9-11
    张佳兰,咎林森,中光磊.2007.牛催乳素受体(PRLR)基因HinfⅠ多态性与奶牛生产性能相关性研究.畜牧兽医学报,38(9):888-892
    咎林森,张佳兰,刘新武.2007.牛AGPAT6基因遗传特征与奶牛产奶性能相关性研究.中国农业科学,40(7):1498-1503
    张跟喜,储明星,王金玉,方丽,叶素成.2007.催乳素受体基因外显子10多态性及其与济宁青山羊高繁殖力关系的研究.遗传,29(3):329-336
    张剑.2007.中国荷斯坦牛PL和α-LA多态性、RH定位及其与产奶性状关联分析.[博士学位论文].北京:中国农业大学
    郑秋鹛,张兰威.2008.中国乳业现状及发展建议.中国乳品工业,36(10):47-50
    张丹参.2009.维生素:营养与健康基础.第3版.北京:科学出版社:418-430
    张慧,王守志,李辉.2010.畜禽全基因组选抒.东北农业大学学报,41(3):145-149
    张学余,李国辉,韩威,屠云洁,苏一军.2010.PRL和POU1F1基因及基因聚合对白耳鸡产蛋数的效应分析.安徽农业大学学报,37(2):249-252
    张学余,李国辉,韩威,屠云洁,苏一军.2010.PRL和POU1F1基因及基因聚合对白耳鸡产蛋数的效成分析.安徽农业大学学报,37(2):249-252
    张冬杰,刘娣,杨国伟,何鑫淼,富相全,王文涛.2010.猪GPX5, FUT1和PRLR基因的遗传多态性及遗传效应分析.畜牧与兽医,42(5):19-21
    赵艳红,王志英,石玲,郑竹清,王琳,李金泉.2010PRLR基因在内蒙古绒山羊下丘脑、垂体及卵巢中的表达.东北农业大学学报,43(3):48-51
    张向楠,孙伟,储明星,张有法,陈玲,吴文忠,周洪,徐厚生.2012.绵羊催乳素受体基因外显子10多态性及其与产羔数相关分析.遗传育种,48(17):1-5
    张童非,崔英俊,李庆章.2012.IGF-Ⅰ在奶牛乳腺的表达及其对乳腺上皮细胞泌乳功能的影响.中国畜牧兽医,39(5):126-129
    Albustan S A, Alnaqeeb M A, Murad N Y, Al-Alawi A F.2001. Genetic variation of inbred laboratory rats by RAPD-PCR. Kuwait Journal of Science & Engineering,28(2):393-402
    Antony A, Tang Y S, Khan R A, Biju M P, Xiao X, Li Q J, Sun X L, Jayaram H N, Stabler S P.2004. Translational upregulation of folate receptors is mediated by homocysteine via RN A-heterogeneous nuclear ribonucleoprotein E1 interactions. J Clin Invest,113(2):285-301
    Ashikari M, Sakakibara H, Lin S, Yamamoto T, Takashi T, Nishimura A, Angeles E R, Qian Q, Kitano H, Matsuoka M.2005. Cytokinin oxidase regulates rice grain production.Science,309(5735):741-745
    Antunes, K V; Medeiros M, Thea M, Lopes S, Nicola V.2010. Genetic diversity of captive spotted paca (Agouti paca) from south east Brazil assessed by the RAPD-PCR technique. Revista brasileira de zootecnia-brazilian journal of animal science,39 (2):268-272
    An X P, Song S G, Hou J X, Zhu C M, Peng J X, Liu X Q, Liu H Y, Xiao W P, Zhao H P, Bai L, Wang J G, Song Y X, Cao B Y.2011. Polymorphism identification in goat DGAT2 gene and association analysis with milk yield and fat percentage. Small Ruminant Research,100:107-112
    Alim M A, Xie Y, Fan Y P, Wu X P, Zhang Y, Sun D X, Zhang S L, Zhang Q, Liu L.2012. Effects of polymorphism in the 5'-flanking region of the IGF-I gene on milk-production traits in Chinese Holstein cattle. Animal Production Science,52(9):795-798
    An X P, Hou J X, Li G, Song Y X, Wang J G, Chen Q J, Cui Y H, Wang Y F, Cao B Y.2012. Polymorphism identification in the goat KITLG gene and association analysis with litter size. Anim Genet, 43(1):104-107
    Althammer S, Pages A, Eyras E.2012. Predictive models of gene regulation from high-throughput epigenomics data. Comp Funct Genomics,2012:284786
    Brigle K E, Westin E H, Houghton M T, Goldman I D.1991. Characterization of two cDNAs encoding folate-binding proteins from L1210 murine leukemia cells Increased expression associated with a genomic rearrangement. J Biol Chem,266(26):17243-17249
    Bale L K, Conover C A.1992. Regulation of insulin-like growth factor binding protein-3 messenger ribonucleic acid expression by insulin-like growth factor I. Endocrinology,131(2):608-614
    Bole-Feysot C, Goffin V, Edery M, Binart N, Kelly P A.1998. Prolactin (PRL) and its receptor: actions, signal transduction pathways and phenotypes observed in PRL receptor knockout mice. Endocr Rev,19(3):225-268
    Brookes A J.1999. The essence of SNPs. Gene,234(2):177-186
    Blott S, Kim J J, Moisio S, Schmidt-Kiintzel A, Cornet A, Berzi P, Cambisano N, Ford C, Grisart B, Johnson D, Karim L, Simon P, Snell R, Spelman R, Wong J, Vilkki J, Georges M, Farnir F, Coppieters W. 2003. Molecular dissection of a quantitative trait locus:a phenylalanine-to-tyrosine substitution in the transmembrane domain of the bovine growth hormone receptor is associated with a major effect on milk yield and composition. Genetics,163(1):253-266
    Birn H.2006.The kidney in vitamin B12 and folate homeostasis:characterization of receptors for tubular uptake of vitamins and carrier proteins. Am J Physiol Renal Physiol.291:F22-36
    Borjel A K, Yngve A, Sjostrom M, Nilsson T K.2006. Novel mutations in the 5'-UTR of the FOLR1 gene. Clin Chem Lab Med,44(2):161-167
    Bottiger A K, Hagnelius N O, Nilsson T K.2007. Mutations in exons 2 and 3 of the FOLR1 gene in demented and non-demented elderly subjects. Int J Mol Med,20(5):653-662
    Basal E, Eghbali-Fatourechi G Z, Kalli K R, Hartmann L C, Goodman K M, Goode E L, Kamen B A, Low P S, Knutson K L.2009. Functional folate receptor alpha is elevated in the blood of ovarian cancer patients. PLoS One,4(7):e6292
    Brown R S, Piet R, Herbison A E, Grattan D R.2012. Differential actions of prolactin on electrical activity and intracellular signal transduction in hypothalamic neurons. Endocrinology,153(5):2375-2384
    Berkowicz E W, Magee D A, Berry D P, Sikora K M, Howard D J, Mullen M P, Evans R D, Spillane C, MacHugh D E.2012. Single nucleotide polymorphisms in the imprinted bovine insulin-like growth factor 2 receptor gene (IGF2R) are associated with body size traits in Irish Holstein-Friesian cattle. Anim Genet, 43(1):81-87
    Chen H T, Pan F M, Chang W C.1988. Purification of duck growth hormone and cloning of the complementary DNA. Biochim Biophys Acta,949(2):247-251
    Catchpole I R, Engstrom W.1990. Nucleotide sequence of a porcine insulin-like growth factor Ⅱ cDNA. Nucleic Acids Res,18(21):6430
    Cassy S, Charlier M, Guillomot M, Pessemesse L, Djiane J.1999. Cellular localization and evolution of prolactin receptor mRNA in ovine endometrium during pregnancy. FEBS Lett,445(1):207-211
    Clark C M, Wentworth T R, O'Malley D M.2000. Genetic discontinuity revealed by chloroplast microsatellites in eastern North American Abies (Pinaceae). Am JBot,87(6):774-782
    Caroli A M, Jann O, Budelli E, Bolla P, Jager S, Erhardt G.2001. Genetic polymorphism of goat k-casein (CSN3) in different breeds and characterization at DNA level. Anim Genet,32:226-230
    Chauhan M, Gupta A K, Dhillon S.2004. Genetic characterization of Indian Spiti horses. J Genet, 83(3):291-295
    Chessa S, Budelli E, Chiatti F, Cito A M, Bolla P, Caroli A.2005. Short Communication: Predominance of β-Casein (CSN2) C allele in goat breeds reared in Italy. J Dairy Sci,88:1878-1881
    Caroli A M, Chiatti F, Chessa S, Rignanese D, Bolla P, Pagnacco G.2006. Focusing on the goat casein complex, J Dairy Sci,89:3178-3187
    Chilliard Y, Rouel J, Leroux C.2006. Goat's alpha-sl casein genotype influences its milk fatty acid composition and delta-9 desaturation ratios. Animal Feed Sci Technol,131:474-487.
    Chiatti F, Chessa S, Bolla P, Cigalino G, Caroli A M, Pagnacco G.2007. Effect of K-casein polymorphism on milk composition in Orobica goat. JDairy Sci,90:1962-1966
    Choudhary V, Kumar P, Bhattacharya T K, Bhushan B, Sharma A, Shukla A.2007. DNA polymorphism of insulin-like growth factor-binding protein-3 gene and its association with birth weight and body weight in cattle. J Anim Breed Genet,124(1):29-34
    Choi S K, Cho C Y, Yeon S H, Cho B W, Cho G J.2008. Genetic characterization and polymorphisms for parentage testing of the Jeju horse using 20 microsatellite loci. J Vet Med Sci,70(10):1111-1115
    Caroli A M, Chessa S, Erhardt G J.2009. Milk protein polymorphisms in cattle:Effect on animal breeding and human nutrition. J Dairy Sci,92:5335-5352
    Choi Y S, Chakrabarti R, Escamilla-Hemandez R, Sinha S.2009. Elf5 conditional knockout mice reveal its role as a master regulator in mammary alveolar development:failure of Stat5 activation and functional differentiation in the absence of Elf5. Dev Biol,329(2):227-241
    Dimsoski P.2003. Development of a 17-plex microsatellite polymerase chain reaction kit for genotyping horses. Croat Med J,44(3):332-335
    Dagnachew B S, Thaller G, Lien S, Adnoy T.2011. Casein SNP in Norwegian goats:additive and dominance effects on milk composition and quality. Genet Sel Evol,43:31
    Escamilla-Hernandez R, Chakrabarti R, Romano R A, Smalley K., Zhu Q, Lai W, Halfon M S, Buck M J, Sinha S.2010. Genome-wide search identifies Ccnd2 as a direct transcriptional target of Elf5 in mouse mammary gland. BMC Mol Biol,11:68
    Ferretti L, Leone P, Sgaramella V.1990. Long range restriction analysis of the bovine casein genes. Nucleic Acids Res,18:6829-6833
    Foster D N, Kim S U, Enyeart J J, Foster L K.1991. Nucleotide sequence of the complementary DNA for turkey growth hormone. Biochem Biophys Res Commun,175(2):729-731
    Gortari M J, Freking B A, Cuthbertson R P, Kappes S M, Keele J W, Stone R T, Leymaster K A, Dodds K G, Crawford A M, Beattie C W.1998. A second-generation linkage map of the sheep genome. Mamm Genome,9(3):204-209
    Ge W, Davis M E, Hines H C, Irvin K. M.2000. Rapid communication:Single nucleotide polymorphisms detected in exon 10 of the bovine growth hormone receptor gene. J Anim Sci,78(8): 2229-2230
    Greenwood T A, Kelsoe J R.2003. Promoter and intronic variants affect the transcriptional regulation of the human dopamine transporter gene. Genomics,82(5):511-520
    Galang C K, Muller W J, Foos G, Oshima R G, Hauser C A.2004. Changes in the expression of many Ets family transcription factors and of potential target genes in normal mammary tissue and tumors. J Biol Chem,219(12):11281-11292
    Guo J, Du L X, Ma Y H, Guan W J, Li H B, Zhao Q J, Li X, Rao S Q.2005. A novel maternal lineage revealed in sheep(Ovis aries). Anim Genet,36(4):331-336
    Gupta A K, Chauhan M, Tandon S N; Sonia.2005. Genetic diversity and bottleneck studies in the Marwari horse breed. J Genet,84(3):295-301
    Guan F, Liu S R, Shi G Q, Ai J T, Mao D G, Yang L G.2006. Polymorphism of FecB gene in nine sheep breeds or strains and its effects on litter size, lamb growth and development. Yi Chuan Xue Bao, 33(2):117-124
    Giacomoni E H, Fernandez-Stolz G P, Freitas T R.2008. Genetic diversity in the Pantaneiro horse breed assessed using microsatellite DNA markers. Genet Mol Res,7(1):261-270
    Gao S, Li H, Xiao H, Yao G, Shi Y, Wang Y, Zhou X, Yu H.2012. Association of MTHFR 677T variant allele with risk of intracerebral haemorrhage:a meta-analysis. J Neurol Sci,323(1-2):40-45
    Hoshino S, Kimura A, Fukuda Y, Dohi K, Sasazuki T.1992. Polymerase chain reaction-single-strand conformation polymorphism analysis of polymorphism in DPA1 and DPB1 genes:a simple, economical, and rapid method for histocompatibility testing. Hum Immunol,33(2):98-107
    Hayes H, Le Chalony C, Goubin G, Mercier D, Payen E, Bignon C, Kohno K.1996. Localization of ZNF164, ZNF146, GGTA1, SOX2, PRLR and EEF2 on homoeologous cattle, sheep and goat chromosomes by fluorescent in situ hybridization and comparison with the human gene map. Cytogenet Cell Genet,72(4):342-346
    Hennighausen L, Robinson G W, Wagner K U, Liu W.1997. Prolactin signaling in mammary gland development. J Biol Chem,272(12):7567-7569
    Hanrahan J P, Gregan S M, Mulsant P, Mullen M, Davis G H, Powell R, Galloway S M.2004. Mutations in the genes for oocyte-derived growth factors GDF9 and BMP 15 are associated with both increased ovulation rate and sterility in Cambridge and Belclare sheep (Ovis aries). Biol Reprod,70(4): 900-909
    Harris J, Stanford P M, Sutherland K, Oakes S R, Naylor M J, Robertson F G, Blazek K D, Kazlauskas M, Hilton H N, Wittlin S, Alexander W S, Lindeman G J, Visvader J E, Ormandy C J.2006. Socs2 and elf5 mediate prolactin-induced mammary gland development. Mol Endocrinol,20(5):1177-1187
    Hayes B, Hagesaether N, Adnoy T, Pellerud G, Berg P R, Lien S.2006. Effects on production traits of haplotypes among casein genes in Norwegian goats and evidence for a site of preferential recombination. Genetics,174:455-464
    Huang C, Snider F, Cross J C.2009. Prolactin receptor is required for normal glucose homeostasis and modulation of beta-cell mass during pregnancy. Endocrinology,150(4):1618-1626
    He J N, Zhang B Y, Chu M X, Wang P Q, Feng T, Cao G L, Di R, Fang L, Huang D W, Tang Q Q, Li N.2012. Polymorphism of insulin-like growth factor 1 gene and its association with litter size in Small Tail Han sheep. Mol Biol Rep,39(10):9801-9807
    Hou J, An X, Li G, Wang Y, Song Y, Cao B.2012. Exploring polymorphisms and their effects on reproductive traits of the INHA and INHβA genes in three goat breeds. Anim Sci J,83(4):273-278
    lacopetta B, Heyworth J, Girschik J, Grieu F, Clayforth C, Fritschi L.2009. The MTHFR C677T and DeltaDNMT3B C-149T polymorphisms confer different risks for right-and left-sided colorectal cancer. Int J Cancer,125(1):84-90
    Ismail S I, Ababneh N A, Khader Y, Abu-Khader A A, Awidi A.2009. Methylenetetrahydrofolate reductase genotype association with the risk of follicular lymphoma. Cancer Genet Cytogenet,195(2): 120-124
    Jenkins Z A, Henry H M, Sise J A, Montgomery G W.2000. Follistatin (FST), growth hormone receptor (GHR) and prolactin receptor (PRLR) genes map to the same region of sheep chromosome 16. Anim Genet,31(4):280
    Jiang H,Lucy M C.2001. Variants of the 5'-untranslated region of the bovine growth hormone receptor mRNA:Isolation,expression and effects on translational efficiency. Gene,265:45-53
    Kane M A, Elwood P C, Portillo R M, Antony A C, Najfeld V, Finley A, Waxman S, Kolhouse J F. 1988. Influence on immunoreactive folate-binding proteins of extracellular folate concentration in cultured human cells. J Clin Invest,81(5):1398-1406
    Knight, C H.2001. Overview of Prolactin's Role in Farm Animal Lactation. Livestock Production Science,70(1-2):87-93
    Kelley K M, Rowan B G, Ratnam M.2003. Modulation of the folate receptor alpha gene by the estrogen receptor:mechanism and implications in tumor targeting. Cancer Res,63(11):2820-2828
    Kamen B A, Smith A K.2004. A review of folate receptor alpha cycling and 5-methyltetrahydrofolate accumulation with an emphasis on cell models in vitro. Adv Drug Deliv Rev,56(8):1085-1097
    Leung D W, Spencer S A, Cachianes G, Hammonds R G, Collins C, Henzel W J, Barnard R, Waters M J, Wood W I.1987. Growth hormone receptor and serum binding protein Purification cloning and expression. Nature,330:537-543
    Lacroix M C, Devinoy E, Servely J L, Puissant C, Kann G.1996. Expression of the growth hormone gene in ovine placenta:detection and cellular localization of the protein. Endocrinology,137(11): 4886-4892
    Li N, Zhang Y, Naylor M J, Schatzmann F, Maurer F, Wintermantel T, Schuetz G, Mueller U, Streuli C H, Hynes N E.2005. Betal integrins regulate mammary gland proliferation and maintain the integrity of mammary alveoli. EMBO J,24(11):1942-1953
    Li X L, Zhang Z L, Gong Y F, Liu Z Z, Jia Q, Wang L Z.2006. Study on mtDNA D-loop of Chinese main indigenous sheep breeds using PCR-RFLP. Yi Chuan,28(2):165-170
    Langenheim J F, Tan D, Walker A M, Chen W Y.2006. Two wrongs can make a right:dimers of prolactin and growth hormone receptor antagonists behave as agonists. Mol Endocrinol,20(3):661-674
    Lemay D G, Neville M C, Rudolph M C, Pollard K S, German JB.2007. Gene regulatory networks in lactation:identification of global principles using bioinformatics. BMC Syst Biol,1:56
    Luis C, Cothran E G, Oom Mdo M.2007. Inbreeding and genetic structure in the endangered Sorraia horse breed:implications for its conservation and management. J Hered,98(3):232-237
    Lee H J, Ormandy C J.2012. Interplay between progesterone and prolactin in mammary development and implications for breast cancer. Mol Cell Endocrinol,357(1-2):101-107
    Lee HJ, Ormandy CJ.2012. Elf5, hormones and cell fate. Trends Endocrinol Metab,23(6):292-298
    McBride B W, Burton J L, Gibson J P, Burton J H, Eggert R G.1990. Use of recombinant bovine somatotropin for up to two consecutive lactations on dairy production traits. J Dairy Sci,73(11): 3248-3257
    Martin P, Grosclaude F.1993. Improvement of milk protein quality by gene technology. Livest Prod Sci,35:95-115
    Moioli B, Pilla F, Tripaldi F.1998. Detection of milk protein genetic polymorphisms in order to improve dairy traits in sheep and goats:a review. Small Ruminant Res,27:185-195
    Martin P, Ollivier-Bousquet M, Grosclaude F.1999. Genetic polymorphism of caseins:a tool to investigate casein micelle organization. Int Dairy J,9:163-171
    Meuwissen TH, Hayes BJ, Goddard ME.2001. Prediction of total genetic value using genome-wide dense marker maps. Genetics.157(4):1819-1829
    Malveiro E, Pereira M, Marques P X, Santos IC, Belo C, Renaville R, Cravador A.2001. Polymorphisms at the five exons of the growth hormone gene in the algarvia goat:possible association with milk traits. Small Rumin Res,41(2):163-170
    Maddox J F, Davies K P, Crawford A M, Hulme D J, Vaiman D, Cribiu E P, Freking B A, Beh K J, Cockett N E, Kang N, Riffkin C D, Drinkwater R,Moore S S, Dodds K G, Lumsden J M, van Stijn T C, Phua S H, Adelson D L, Burkin H R, Broom J E, Buitkamp J, Cambridge L, Cushwa W T.Gerard E, Galloway S M, Harrison B, Hawken R J, Hiendleder S, Henry H M, Medrano J F, Paterson K A, Schibler L, Stone R T, van Hest B.2001. An enhanced linkage map of the sheep genome comprising more than 1000 loci. Genome Res,11(7):1275-1289
    Malveiro E, Pereira M, Marques P X, Santos I C, Belo C, Renaville R, Cravador A.2001. Polymorphisms at the five exons of the growth hormone gene in the algarvia goat:possible association with milk traits. Small Rumin Res,41(2):163-170
    Martin P, Szymanowska M, Zwierzchowski L, Leroux C.2002. The impact of genetic polymorphisms on the protein composition of ruminant milks. Reprod Nutr Dev,42:433-459
    Miao X, Xing D, Tan W, Qi J, Lu W, Lin D.2002. Susceptibility to gastric cardia adenocarcinoma and genetic polymorphisms in methylenetetrahydrofolate reductase in an at-risk Chinese population. Cancer Epidemiol Biomarkers Prev,11(11):1454-1458
    Moioli B, D'Andrea M, Pilla F.2007. Candidate genes affecting sheep and goat milk quality. Small Ruminant Res,68:179-192
    Metzger D E, Xu Y, Shannon J M.2007. Elf5 is an epithelium-specific, fibroblast growth factor-sensitive transcription factor in the embryonic lung. Dev Dyn,236(5):1175-1192
    Menzies K K, Lefevre C, Macmillan K L, Nicholas K R.2009a. Insulin regulates milk protein synthesis at multiple levels in the bovine mammary gland. Funct Integr Genomics,9:197-217
    Menzies K K, Lefevre C, Sharp J A, Macmillan K L, Sheehy P A, Nicholas K R.2009b. A novel approach identified the FOLR1 gene, a putative regulator of milk protein synthesis. Mamm Genome,20(8): 498-503
    Murani E, Ponsuksili S, Seyfert H M, Shi X, Wimmers K.2009. Dual effect of a single nucleotide polymorphism in the first intron of the porcine Secreted phosphoprotein 1 gene:allele-specific binding of C/EBP beta and activation of aberrant splicing. BMC Mol Biol,10(1):96
    Menzies K K, Lee H J, Lefevre C, Ormandy C J, Macmillan K L, Nicholas K R.2010. Insulin, a key regulator of hormone responsive milk protein synthesis during lactogenesis in murine mammary explants. Funct Integr Genomics,10(1):87-95
    Mastranestasis I, Ligda C h, Theodorou K, Ekateriniadou, L V.2011. Genetic structure and diversity among three Greek sheep breeds using Random Amplified Polymorphic DNA-PCR. Journal of the hellenic veterinary medical society,62(4):301-313
    Nei M, Li W H.1979. Mathematic model for studying genetic variation in terms of rest riction endonucleaes. P Natl Acad Sci USA,76,5269-5273
    Noumi T, Mosher M E, Natori S, Futai M, Kanazawa H.1984. A phenylalanine for serine substitution in the beta subunit of Escherichia coli F1-ATPase affects dependence of its activity on divalent cations. J Biol Chem,259(16):10071-10075
    Neveu C, Molle D, Moreno J, Martin P, Leonil J.2003. Heterogeneity of caprine beta-casein elucidated by RP-HPLC/MS:Genetic variants and phosphorylations. J Protein Chem,21:557-567
    Orian J M, O'Mahoney J V, Brandon M R.1988. Cloning and sequencing of the ovine growth hormone gene.Nucleic Acids Res,16(18):9046
    Orita M, Iwahana H, Kanazawa H, Hayashi K, Sekiya T.1989. Detection of polymorphisms of human DNA by gel electrophoresis as single-strand conformation polymorphisms. Proc Natl Acad Sci U S A,86(8): 2766-2770
    Orita M, Suzuki Y, Sekiya T, Hayashi K.1989. Rapid and sensitive detection of point mutations and DNA polymorphisms using the polymerase chain reaction. Genomics,5(4):874-879
    Oettgen P, Kas K, Dube A, Gu X, Grail F, Thamrongsak U, Akbarali Y, Finger E, Boltax J, Endress G, Munger K, Kunsch C, Libermann T A.1999. Characterization of ESE-2, a novel ESE-1-related Ets transcription factor that is restricted to glandular epithelium and differentiated keratinocytes. J Biol Chem, 274(41):29439-29452
    Oakes S R, Naylor M J, Asselin-Labat M L, Blazek K D, Gardiner-Garden M, Hilton H N, Kazlauskas M, Pritchard M A, Chodosh L A, Pfeffer P L, Lindeman G J, Visvader J E, Ormandy C J.2008.The Ets transcription factor Elf5 specifies mammary alveolar cell fate. Genes Dev,22(5):581-586
    Ponsuksili S, Wimmers K, Horst P.1998. Evaluation of genetic variation within and between different chicken lines by DNA fingerprinting. J Hered,89(1):17-23
    Parmentier I, Portetelle D, Gengler N, Prandi A, Bertozzi C, Vleurick L, Gilson R, Renaville R.1999. Candidate gene markers associated with somatotropic axis and milk selection. Domest Anim Endocrinol, 17(2-3):139-148
    Piedrahita JA, Oetama B, Bennett GD, van Waes J, Kamen BA, Richardson J, Lacey SW, Anderson RG, Finnell RH.1999. Mice lacking the folic acid-binding protein Folbpl are defective in early embryonic development. Nat Genet,23(2):228-232
    Picazo R A, Garcia Ruiz J P, Santiago Moreno J, Gonzalez de Bulnes A, Munoz J, Silvan G, Lorenzo P L, Illera J C.2004. Cellular localization and changes in expression of prolactin receptor isoforms in sheep ovary throughout the estrous cycle. Reproduction,128(5):545-553
    Plante Y, Vega-Pla J L, Lucas Z, Colling D, de March B, Buchanan F.2007. Genetic diversity in a feral horse population from Sable Island, Canada. JHered,98(6):594-602
    Puig-Kroger A, Sierra-Filardi E, Dominguez-Soto A, Samaniego R, Corcuera MT, G6mez-Aguado F, Ratnam M, Sanchez-Mateos P, Corbi AL.2009. Folate receptor beta is expressed by tumor-associated macrophages and constitutes a marker for M2 anti-inflammatory/regulatory macrophages. Cancer Res, 69(24):9395-9403
    Qiu A, Jansen M, Sakaris A, Min S H, Chattopadhyay S, Tsai E, Sandoval C, Zhao R, Akabas M H, Goldman I D.2006. Identification of an intestinal folate transporter and the molecular basis for hereditary folate malabsorption. Cell,127(5):917-928
    Ramunno L, Cosenza G, Pappalardo M, Longobardi E, Gallo D, Pastore N, Di Gregorio P, Rando A. 2001. Characterization of two new alleles at the goat CSN1S2 locus. Anim Genet,32:264-268
    Rafter J A, Abell M L, Braselton J P.2002. Multiple comparison methods for means. Siam review, 44(2):259-278
    Racine J, Behn D, Simard E, Lachapelle P.2003. Spontaneous occurrence of a potentially night blinding disorder in guinea pigs. Doc Ophthalmol,107(1):59-69
    Ramunno L, Cosenza G, Rando A, Pauciullo A, Illario R, Gallo D, Di Berardino D, Masina P.2005. Comparative analysis of gene sequence of goat CSN1S1 F and N alleles and characterization of CSN1S1 transcript variants in mammary gland. Gene,345:289-299
    Rusinov V, Baev V, Minkov I N, Tabler M.2005. MicroInspector:a web tool for detection of miRNA binding sites in an RNA sequence. Nucleic Acids Res, (Web Server issue):W696-700
    Roy M, Leclerc D, Wu Q, Gupta S, Kruger W D, Rozen R.2008. Valproic acid increases expression of methylenetetrahydrofolate reductase (MTHFR) and induces lower teratogenicity in MTHFR deficiency. J Cell Biochem,105(2):467-476
    Rogers R L, Van Seuningen I, Gould J, Hertzog P J, Naylor M J, Pritchard M A.2010. Transcript profiling of Elf5+/'mammary glands during pregnancy identifies novel targets of Elf5. PLoS One,5(10): e13150
    Reuwer A Q, van Eijk M, Houttuijn-Bloemendaal FM, van der Loos C M, Claessen N, Teeling P, Kastelein J J, Hamann J, Goffin V, von der Thysen J H, Twickler M T, Aten J.2011. The prolactin receptor is expressed in macrophages within human carotid atherosclerotic plaques:a role for prolactin in atherogenesis? J Endocrinol,208(2):107-117
    Rahmatalla S A, Muller U, Strucken E M, Reissmann M, Brockmann G A.2011. The F279Y polymorphism of the GHR gene and its relation to milk production and somatic cell scorein German Holstein dairy cattle. JAppl Genet,52(4):459-465
    Shane B.1989. Folylpolyglutamate synthesis and role in the regulation of one-carbon metabolism. Vitam Horm,45:263-335
    Scott P, Kessler M A, Schuler L A.1992. Molecular cloning of the bovine prolactin receptor and distribution of prolactin and growth hormone receptor transcripts in fetal and utero-placental tissues. Mol Cell Endocrinol,89(1-2):47-58
    Schuler L A, Nagel R J, Gao J, Horseman N D, Kessler M A.1997. Prolactin receptor heterogeneity in bovine fetal and maternal tissues. Endocrinology,138(8):3187-3194
    Spiegelstein O, Eudy J D, Finnell R H.2000. Identification of two putative novel folate receptor genes in humans and mouse. Gene,258(1-2):117-125
    Syvanen A C.2001. Accessing genetic variation:genotyping single nucleotide polymorphisms. Nature Review Genetics,2:930-942
    Shastry B S.2002. SNP alleles in human disease and evolution. J Hum Genet,47(11):561-566
    Servin B, Martin O C, Mezard M, Hospital F.2004. Toward a theory of marker-assisted gene pyramiding. Genetics,168(1):513-523
    Sohn K J, Croxford R, Yates Z, Lucock M, Kim YI.2004. Effect of the methylenetetrahydrofolate reductase C677T polymorphism on chemosensitivity of colon and breast cancer cells to 5-fluorouracil and methotrexate. J Natl Cancer Inst,96(2):134-144
    Sabharanjak S, Mayor S.2004. Folate receptor endocytosis and trafficking. Adv Drug Deliv Rev,56(8): 1099-1109
    Shi Y Y, He L.2005. SHEsis, a powerful software platform for analyses of linkage disequilibrium, haplotype construction, and genetic association at polymorphism loci. Cell Res,15(2):97-98
    Sadeghi M, Niknafs S, Shahrbabak H M, Fatemi S A.2012. Two SNP in STAT5B gene and their association with breeding value of growth and egg production traits in Mazandaran Indigenous Chicken. Livestock Science,147(1-3):198-202
    Thomas R S, Ng A N, Zhou J, Tymms M J, Doppler W, Kola I.2000. The Elf group of Ets-related transcription factors. ELF3 and ELF5. Adv Exp Med Biol,480:123-128
    Tan D, Johnson D A, Wu W, Zeng L, Chen Y H, Chen W Y, Vonderhaar B K, Walker A M.2005. Unmodified prolactin (PRL) and S179D PRL-initiated bioluminescence resonance energy transfer between homo-and hctcro-pairs of long and short human PRL receptors in living human cells. Mol Endocrinol, 19(5):1291-1303
    Tan D, Chen K E, Khoo T, Walker A M.2011. Prolactin increases survival and migration of ovarian cancer cells:importance of prolactin receptor type and therapeutic potential of S179D and G129R receptor antagonists. Cancer Lett,310(1):101-108
    Terman A, Kumalska M.2012. The effect of a SNP in ESR gene on the reproductive performance traits in Polish sows. Russian Journal of Genetics,48(12):1260-1263
    Urfer S R.2009. Inbreeding and fertility in Irish Wolfhounds in Sweden:1976 to 2007. Acta Vet Scand, 51:21
    Vize P D, Wells J R.1987. Isolation and characterization of the porcine growth hormone gene.Gene,55(2-3):339-344
    Viswanadhan V N, Weinstein J N, Elwood P C.1990. Secondary structure of the human membrane-associated folate binding protein using a joint prediction approach. J Biomol Struct Dyn, (4): 985-1001
    Vaiman D, Schibler L, Bourgeois F, Oustry A, Amigues Y, Cribiu E P.1996. A genetic linkage map of the male goat genome. Genetics,144(1):279-305
    Vlahos N P, Bugg E M, Shamblott M J, Phelps J Y, Gearhart J D, Zacur H A.2001. Prolactin receptor gene expression and immunolocalization of the prolactin receptor in human luteinized granulosa cells. Mol Hum Reprod,7(11):1033-1038
    Vage D I, Fleet M R, Ponz R, Olsen R T, Monteagudo L V, Tejedor M T, Arruga M V, Gagliardi R, Postiglioni A, Nattrass G S, Klungland H.2003. Mapping and characterization of the dominant black colour locus in sheep. Pigment Cell Res,16(6):693-697
    Viitala S, Szyda J, Blott S, Schulman N, Lidauer M, Maki-Tanila A, Georges M, Vilkki J.2006. The role of the bovine growth hormone receptor and prolactin receptor genes in milk, fat and protein production in Finnish Ayrshire dairy cattle. Genetics,173(4):2151-2164
    Boshnjaku V, Shim K W, Tsurubuchi T, Ichi S, Szany E V, Xi G, Mania-Farnell B, McLone D G, Tomita T, Mayanil C S.2012. Nuclear localization of folate receptor alpha:a new role as a transcription factor. Scientific Reports,2:980
    Welsh J, Mccle M.1990. Fingerprinting genomes using PCR with arbitrary primer. Nuc Aci Res,18(2): 7213-7218
    Williams J G, Kubelik A R, Livak K J, Rafalski J A, Tingey S V.1990. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res,18(22):6531-6535
    Wang D G, Fan J B, Siao C J, Berno A, Young P, Sapolsky R, Ghandour G, Perkins N, Winchester E, Spencer J, Kruglyak L, Stein L, Hsie L, Topaloglou T, Hubbell E, Robinson E, Mittmann M, Morris M S, Shen N, Kilburn D, Rioux J, Nusbaum C, Rozen S, Hudson T J, Lipshutz R, Chee M, Lander E S.1998. Large-scale identification, mapping, and genotyping of single-nucleotide polymorphisms in the human genome. Science,280(5366):1077-1082
    Weisberg I, Tran P, Christensen B, Sibani S, Rozen R.1998. A second genetic polymorphism in methylenetetrahydrofolate reductase (MTHFR) associated with decreased enzyme activity. Mol Genet Metab,64(3):169-172
    Womack J E.2005. Advances in livestock genomics:opening the barn door. Genome Research,15: 1699-1705
    Warner D R, Webb C L, Greene R M, Pisano M M.2011 Altered signal transduction in Folrl-/-mouse embryo fibroblasts. Cell Biol Int,35(12):1253-1259
    Yao J, Aggrey S E, Zadworny D, Hayes J F, Kuhnlein U.1996. Sequence variations in the bovine growth hormone gene characterized by single-strand conformation polymorphism (SSCP) analysis and their association with milk production traits in Holsteins. Genetics,144(4):1809-1816
    Yue X P, Zhang X M, Wang W, Ma R N, Deng C J, Lan X Y, Chen H, Li F, Xu X R, Ma Y, Lei C Z. 2011. The CSN1S1 N and F alleles identified by PCR-SSCP and their associations with milk yield and composition in Chinese dairy goats. Mol Biol Rep,38(4):2821-2825
    Yan W, Zhou H, Luo Y, Hu J, Hickford JG.2012. Allelic variation in ovine fatty acid-binding protein (FABP4) gene. Mol Biol Rep,39(12):10621-10625
    Zabek T, Nogaj A, Radko A, Nogaj J, Slota E.2005. Genetic variation of Polish endangered Bigoraj horses and two common horse breeds in microsatellite loci. JAppl Genet,46(3):299-305
    Zhou J, Chehab R, Tkalcevic J, Naylor M J, Harris J, Wilson TJ, Tsao S, Tellis I, Zavarsek S, Xu D, Lapinskas E J, Visvader J, Lindeman G J, Thomas R, Ormandy C J, Hertzog P J, Kola I, Pritchard M A. 2005. Elf5 is essential for early embryogenesis and mammary gland development during pregnancy and lactation. EMBO J,24(3):635-644
    Zhang J L, Zan L S, Zhang F; Shen G L; Tian W Q.2008. Genetic variation of PRLR gene and association with milk. Can J Anim Sci,88(1):33-39
    Zhang J, Sun D X, Womack J E, Wang Y C, Yu Y, Liu R, Zhang Y.2009. Polymorphism identification, RH mapping and association of placental lactogen gene with milk production traits of dairy cows. Animal, 3(1):1-5
    Zhang A L, Zhang L, Zhang L Z, Lan X Y, Zhang C L, Zhang C F, Chen H.2011. Single nucleotide polymorphism (SNP) analysis of orexin gene 5'regulatory. Agricultural Sciences in China,10(8): 1273-1279

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700