用户名: 密码: 验证码:
乔木根系抗拉力学特性及其与化学成分关系
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了更好地选择固坡树种,充分发挥根系的固土作用,本研究以材料力学、土力学、弹塑性力学、植物纤维化学等多学科为理论基础,选择我国北方常见油松、白桦、落叶松、蒙古栎和榆树五种树种,模拟根系野外的静荷载和突发的山洪侵蚀、风力作用等动荷载的循环应力作用,分析根系单调抗拉力学特性和循环抗拉力学特性;首次比较系统地从根系的主要化学成分纤维素、木质素、半纤维素含量方面探讨了五种树种去皮根系和带皮根系的抗拉力学特性与主要化学成分关系,以期揭示根系固土的力学基础及其与化学成分的关系。
     主要研究成果如下:
     (1)五种树种带皮根系的平均抗拉力和抗拉强度从大到小依次为榆树>白桦>蒙古栎>油松>落叶松;去皮根系抗拉力和抗拉强度从大到小依次为榆树>白桦>蒙古栎>落叶松>油松。五种树种相同直径的去皮根系和带皮根系抗拉强度、抗拉力差异显著。
     (2)五种树种的抗拉力随直径的增大而增大,均呈幂函数正相关关系,抗拉强度随直径的增大呈现减小趋势,表现出尺寸效应特征,不同树种根系抗拉强度随直径递减函数尚不统一。
     (3)油松标据、加载速率对抗拉力影响不显著,直径和根皮对抗拉力影响显著;加载速率对抗拉强度影响不显著,直径、标据和根皮对抗拉强度影响显著。
     (4)五种乔木根系应力-应变曲线特征参数不同,但均为单峰曲线,具有弹塑性材料特征,且直径较小根系的应力应变曲线表现出对外界拉力较强的缓冲能力;三阶抛物线模型能很好地反映其基本特征,五种树种单根单调抗拉的本构模型可综合表示为:
     式中,E=EO/WP为初始切线模量Eo和峰值割线模量EP的比值,xe屈服点。
     (5)油松根系低周疲劳后的最大抗拉力和抗拉强度均比疲劳前高,差异显著。根系轴向循环应力-应变滞回曲线表现出明显的周期循环特征,开始阶段滞回环为“稀疏型”排列,滞回曲线并不闭合,随循环次数增加,滞回环间距越来越密集,逐渐闭合,变化趋于稳定。滞回曲线总变形包括弹性变形和塑性变形两部分,塑性变形随循环次数增加逐渐积累,但每一次加荷循环时产生的塑性变形将逐渐减小。
     (6)五种树种带皮根系与去皮根系的纤维素、半纤维素、综纤维素含量均随直径增大而增大,木质素含量、L/C比值随直径的增大而减小;抗拉力随纤维素、半纤维素、综纤维素含量的增大而增大,随木质素含量、L/C比值的增大而减小;抗拉强度随半纤维素、纤维素、综纤维素含量增大均减小,随木质素含量、L/C比值的增大而增大。根系的抗拉特性是各种化学成分综合作用的结果,可能与根系的显微结构存在很大的关系。
     (7)不同树种根系极限拉伸应变不同,随纤维素、半纤维素、综纤维素含量的增加呈现减少趋势;随木质素含量、L/C比值的增加呈现增大的趋势。
The goal of this study was to reveal root mechanics foundation of soil-reinforcement and its relation with chemical components to choose tree species better for slope stability. Based on material mechanics, soil mechanics, elastic-plastic mechanics, plant fiber chemical science, Roots of Pinus tabulaeformis, Betula platyphylla, Larix principis-rupprechtii, Quercus mongolieus and Ulmus pumila grown in North China were selected as research materials. Root tensile mechanical properties were tested under static loading. Root fatigue mechanical properties were analyzed simulating cyclic dynamic loading such as torrential erosion and wind action et al. Relation between root tensile mechanical properties and main chemical components of cellulose content, lignin content and hemicellulose content were discussed systematically.
     Major results were summarized as following:
     (1) The order of average tensile force and tensile strength of the roots with bark in the five species studied was:U. pumilα>B. platyphylla>Q. mongolicus>P. tabulaeformis>L. principis-rupprechtii, while the order of bark-free roots was:U. pumila>B. platyphylla>Q. mongolicus>L. principis-rupprechtii>P. tabulaeformis. The difference of tensile force and tensile strength was significant between bark root and bark-free root.
     (2)Power function relations were found between root maximum tensile force and root diameter for five trees; while tensile strength was decreased with the increase in root diameter, reflecting a size effect. The functions of five trees' roots were still not uniform.
     (3)For P. tabulaeformis, both root length and test speeds had no significant effect on root tensile force, while root diameter and root bark had significant effect on root tensile force. Test speeds had no significant effect on tensile strength; root diameter, root length and root bark had significant effect on tensile strength.
     (4)For five trees species, the root stress-strain curve parameters were different for different diameters, but all of them were the single-peak curves with elastic-plastic material characteristics, and the stress and strain curve of root with the smaller diameter showed stronger buffer ability to outside loading; The parabolic function of third order could well reflect the basic characteristics of measured stress-strain curve. Root monotonic tensile constitutive model of five trees may be expressed as:
     Where y is stress, x is strain, E=E0/EP, E0is initial tangent modulus, EP is peak secant modulus, x e is yield point.
     (5)Root tensile force and tensile strength of P. tabulaeformis were significantly.higher after low cycle fatigue than that without low cycle fatigue Root stress-strain hysteresis curve showed obvious cycle features, at the beginning, hysteretic loop type was arranged for "sparse" but not close; Hysteretic loop spacing was more and more intensive, gradually closed to stability, with the increased circulation number. Total deformation of hysteresis curve included elastic deformation and plastic deformation. Plastic deformation accumulated gradually and each time it constantly decreased with increasing cycles.
     (6)For five trees roots, cellulose content, hemicellulose content and holocellulose content increased with the increase in diameter, while lignin content and L/C decreased with increasing diameter; Tensile force increased with increased cellulose content, hemicellulose content and holocellulose content, decreased with increased lignin content and L/C; tensile strength decreased with increased cellulose content, hemicellulose content and holocellulose content, increased with the increase in lignin content and L/C. Root tensile mechanical properties were affected by all chemical components and also might be related to root internal structure.
     (7)Root limiting tension strain was different in five trees; it decreased with increased contents of cellulose, hemicellulose and holocellulose, but increased with increased lignin content and L/C.
引文
[1]阿比一时,岩本胜.树木根系在防止滑坡中的土力学作用(续)[J].中国水土保持,1989,(12):35-38,40.
    [2]陈丽华,余新晓,刘秀萍,等.林木根系本构关系[J].山地学报,2007,25(2):224-228.
    [3]陈丽华,余新晓,宋维峰,等.林木根系固土力学机制[M].北京:科学出版社,2008,10-11,44.
    [4]陈丽华,余新晓,张东升.整株林木垂向抗拉试验研究[J].资源科学,2004,26(s1):39-43.
    [5]程洪,谢涛,唐春,等.植物根系力学与固土作用机理研究综述[J].水土保持通报,2006,26(1):97-102.
    [6]程洪,颜传盛,李建庆,等.草本植物根系网的固土机制模式与力学试验研究[J].水土保持研究,2006,13(1):62-65.
    [7]程洪,张新全.草本植物根系网固土原理的力学试验探究[J].水土保持通报,2002,22(5):20-23.
    [8]代全厚,张力,刘艳军,等.嫩江大堤植物根系固土护堤功能研究[J].水土保持通报,1998,18(6):8-11.
    [9]范兴科,蒋定生.黄土高原浅层原状土抗剪强度浅析[J].水土保持学报,1997,3(4):69-75.
    [10]封金财,王建华.乔木根系固坡作用机理的研究进展[J].铁道建筑,2004,(3):29-31.
    [11]付兴涛,张丽萍,喻理飞,等.植物苗期根系抗侵蚀特性试验研究[J].水土保持学报,2008,22(3):5-9.
    [12]高志义主编.水土保持林学[M].北京:中国林业出版社,1996,63.
    [13]耿威,王林和,刘静,等.鄂尔多斯高原3种4龄-5龄灌木根系抗拉特性初步研究[J].内蒙古农业大学学报,2008,29(3):86-89.
    [14]郭维俊,黄高宝,王芬娥.作物生长力学的研究进展[J].甘肃农业大学学报,2005,40(4):555-559.
    [15]郭振海,时旭东,编著.钢筋混凝土原理和分析[M].北京:清华大学出版社,2003,133-135.
    [16]中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会发布..金属材料拉伸试验第1部分:室温试验方法(GB/T 228.1-2010)[s].北京:中国标准出版社,2010.
    [17]国家质量监督检验检疫总局.金属材料疲劳试验旋转弯曲方法(GBT4337-2008)[S].北京:中国标准出版社,2008.
    [18]国家质量监督检验检疫总局.金属材料疲劳试验数据统计方案与分析方法(GB/T24176-2009)[S].北京:中国标准出版社,2009.
    [19]郝彤琦,谢小妍,洪添胜.滩涂土壤与植物根系复合体抗剪强度的试验研究[J].华南农业大学学报,2000,21(4):78-80.
    [20]江锋,张俊云.植物根系与边坡土体间的力学特性研究[J].地质灾害与环境保护,2008.19(1):57-61.
    [21]解名曙.乔灌木根系固坡力学强度的有效范围与最佳组构方式[J].水土保持学报,1990,4(1):17-23.
    [22]解明曙.林木根系固坡力学机制研究[J].水土保持学报,1990,4(3):7-14.
    [23]李国荣,胡夏嵩,毛小青,等.寒旱环境黄土区灌木根系护坡力学效应研究[J].水文地质工程地质,2008,(01):94-98.
    [24]李会科,王忠林,贺秀贤.地埂花椒林根系分布及力学强度测定[J].水土保持研究,2000,7(1):38-41.
    [25]李绍才,孙海龙,杨志荣,等.护坡植物根系与岩体相互作用的力学特性[J].岩石力学与工程学 报,2006,25(10):2051-2057.
    [26]李绍才,孙海龙,杨志荣,等.坡面岩体-基质-根系互作的力学特性[J].岩石力学与工程学报,2005,24(12):2074-2081.
    [27]李勇,吴钦孝,朱显谟,等.黄土高原植物根系提高土壤抗冲性能的研究:Ⅰ.油松人工林根系对土壤抗冲性的增强效应[J].水土保持学报,1990,4(1):1-5,10.
    [28]李勇,徐晓琴,朱显谟.黄土高原油松人工林根系改善土壤物理性质的有效性模式[J].林业科学,1993,29(3):193-198.
    [29]刘国彬,蒋定生,朱显谟.黄土区草地根系生物力学特性研究[J].土壤侵蚀与水土保持学报,1996,2(3):21-28.
    [30]刘秀萍,陈丽华,宋维峰.林木根系与黄土复合体的三轴试验[J].林业科学,2007,43(05):54-58.
    [31]刘秀萍,陈丽华,宋维峰,等.油松根系抗拉应力与应变全曲线试验研究[J].中国水土保持科学,2006,4(2):66-69.
    [32]刘秀萍,陈丽华,宋维峰,等.油松根系形态分布的分形分析研究[J].水土保持通报,2007,27(1):47-54.
    [33]刘秀萍,陈丽华,宋伟峰,等.油松根系抗拉应力与应变全曲线试验研究[J].中国水土保持科学,2006,4(2):66-70.
    [34]卢义山,张金池,宋万平,等.海堤林带树木根系对堤防安全影响探讨[J].南京林业大学学报,1994,18(01):31-36.
    [35]吕春娟,陈丽华,周硕,等.不同乔木根系的抗拉力学特性[J].农业工程学报,2011,27(s1):329-335.
    [36]骆华松,周跃.云南松林控制坡地侵蚀的机械效应分析[J].中国人口资源与环境,2002(6):
    [37]毛妍婷,郑毅,Michael Augustin FULLEN,等,油菜根系固土拉力的原位测定研究[J].云南农业大学学报,2008,23(6):826-831.
    [38]史敏华,王棣,李任敏.石灰岩区主要水保灌木根系分布特征与根抗拉力研究初报[J].山西林业科技,1994,(1):17-19.
    [39]GB/T 20805-2006.饲料中酸性洗涤木质素的测定[S].北京:中国标准山版社,2006
    [40]NY/T 1459-2007.饲料中酸性洗涤纤维的测定[S].北京:中国标准出版社,2007
    [41]GB/T 20806-2006.饲料中中性洗涤纤维的测定[S].北京:中国标准出版社,2006
    [42]宋维峰,陈丽华,刘秀萍.根系与土体接触面相互作用特性试验[J].中国水土保持科学,2006,4(2):62-65.
    [43]孙立达,朱金兆.水土保持林体系综合效益研究与评价[M].北京:中国科学技术出版社,1995,258-259.
    [44]孙启忠.四种冰草根系抗拉性的比较[J].牧草与何料,1990(1):30-31.
    [45]谭玲玲,蔡霞,胡正海.匕柴胡根的发育解剖学研究[J].西北植物学报,2005,25(11):2198-2203.
    [46]田根林,王汉坤,余雁,等.微纤丝取向对木材细胞壁力学性能的影响研究[J].纳米科技,2010,7(2),63-66.
    [47]田佳,刘耀辉.华北地区几种常用边坡绿化植物的根系力学特性研究[J].中国水土保持,2007,10:34-36.
    [48]王可钧,李焯芬.植物固坡的力学简析[J].岩石力学与工程学报,1998,17(6):687-691.
    [49]王磊主编.材料的力学性能(第二版)[M].沈阳:东北大学出版社,2007.
    [50]王萍花,陈丽华,干学顺,等.油松单根抗拉试验数据的降噪分析[J].中国水土保持科 学,2011,9(4):66-71.
    [51]新华网.我国摸清水土流失现状全国646个县水土流失极其严重[EB/OL](2009-01-29)http://news.xinhuanet.com/newscenter/2009-01/29/content_10732603_1.h tm.
    [52]吴钦孝.森林保持水土机理及功能调控技术[M].北京:科学技术出版社,2005.
    [53]向师庆,赵相华.北京主要造林树种的根系研究[J].北京林学院学报,1981,3(2):19-32.
    [54]谢春华,关文彬,张东升,等.长江上游暗针叶林生态系统主要树种的根系结构与土体稳定性研究[J].水土保持学报,2002,16(2):76-79.
    [55]熊燕梅,夏汉平,李志安,等.植物根系固坡抗蚀的效应与机理研究进展[J].应用生态学报,2007,18(4):895-904.
    [56]胥晓刚.高速公路路域生态恢复研究[D].雅安:四川农业大学,2004.
    [57]徐有明主编.木材学[M]北京:中国林业出版社,2006,117.
    [58]杨锋伟,刘秀萍,陈丽华,等,冷杉根系抗拔法测强曲线的建立与应用.水土保持研究,2007,14(02):197-199.
    [59]杨淑惠主编.植物纤维化学[M].北京:中国轻工业出版社,2001,69.
    [60]杨维西,黄治江.黄土高原九个水土保持树种根的抗拉力[J].中国水土保持,1988(9):47-49.
    [61]杨维西,赵廷宁,李生智,等.人工刺槐林和油松林的根系固土作用初探[J].水土保持学报,1988,2(4):38-43.
    [62]杨维西,赵廷宁,李生智,等.人工刺槐林采伐后根系固土作用的衰退状况[J].水土保持学报,1990,4(1):6-10.
    [63]杨亚川,莫永京,王芝芳,等.土壤—草本植被根系复合体抗水蚀强度与抗剪切强度的试验研究[J].中国农业大学学报,1996,1(2):31-38.
    [64]杨永红.东川砾石土地区植被固土机理研究[D].成都:西南交通大学,2006.
    [65]姚喜军,刘静,王林和,等,快剪条件下柠条和沙地柏根系提高土壤抗剪特性研究[J].内蒙古农业大学学报(自然科学版),2008.29(4):82-86.
    [66]尹思慈主编.木材学[M].北京:中国林业出版社,1996,44,80.
    [67]苑淑娟,牛国权,刘静,等.瞬时拉力下两个生长期4种植物单根抗拉力与抗拉强度的研究[J].水土保持通报,2009,29,(5):21-25.
    [68]张东升.长江上游暗针叶林林木根系抗拉力学特性研究[D].北京:北京林业大学,2002,29-30.
    [69]张飞,陈静曦,陈向波.边坡生态防护中表层含根系土抗剪试验研究[J].土工基础,2005,19(03):25-27.
    [70]张金池,康立新,卢义山,等.苏北海堤林带树木根系固土功能研究[J].水土保持学报,1994,8(2):43-47.
    [71]张晓明,王玉杰,夏一平,等.重庆缙云山典型植被原状土与重塑土抗剪强度研究[J].农业工程学报,2006.22(11):6-9.
    [72]张宇清,齐实,邹青,等.梯田埂坎杨树的根系分布研究[J].西北林学院学报,2002.17(2):6-9.
    [73]张媛,许江,杨红伟,等.循环荷载作用下围压对砂岩滞回环演化规律的影响[J],岩石力学与工程学报,2011,30(2):320-326
    [74]赵成刚,白冰,王云霞,主编.土力学原理[M].北京:清华大学出版社,2004,182-183.
    [75]赵丽兵,张宝贵,苏志珠.草本植物根系增强土壤抗剪切强度的量化研究[J].中国生态农业学 报,2008.16(3):718-722.
    [76]赵丽兵,张宝贵.紫花苜蓿和马唐根的生物力学性能及相关因素的试验研究[J].农业工程学报,2007,23(9):7-12.
    [77]中国科学院中国植物志编辑委员会.中国植物志[M].北京:科学出版社,1961,251-253,185-186,236,112-115,356.
    [78]周跃,陈晓平,李玉辉,等.云南松侧根对浅层土体的水平牵引效应的初步研究[J].植物生态学报.1999,23(5):458-465.
    [79]周跃,李宏伟,徐强.云南松幼树垂直根的土壤增强作用[J].水土保持学报,2000,14(5):110-121.
    [80]周跃,徐强,骆华松,等.乔木侧根对土体的斜向牵引效应:Ⅱ野外直测[J].山地学报,1999,17(1):10-15.
    [81]周跃,张军,林锦屏,等.西南地区松属侧根的强度特征对其防护林固土护坡作用的影响[J].生态学杂志,2002,21(6):14.
    [82]周跃,徐强,络华松,等.乔木侧根对土体的斜向牵引效应Ⅰ原理和数学模型[J].山地学报,1999,17(1):4-9.
    [83]周跃,徐强,络华松,等.乔木侧根对土体的斜向牵引效应研究Ⅱ野外直测.山地学报,1999,17(1):10-15.
    [84]朱国辉,郑津洋.新型绕带式压力容器[M].北京:机械工业出版社,1995,306
    [85]朱海丽,胡夏嵩,毛小青,等.护坡植物根系力学特性与其解剖结构关系[J].农业工程学报,2009,25(5):4046.
    [86]朱海丽,,胡夏嵩,毛小青,等.青藏高原黄土区护坡灌木植物根系力学特性研究[J].岩石力学与工程学报,2008,27(增2):3445-3452.
    [87]朱清科,陈丽华,张东升,等.贡嘎山森林生态系统根系固土力学机制研究[J].北京林业大学学报,2002,24(4):64-67.
    [88]朱珊,绍军义.根系黄士抗剪强度的特性[J].青岛建筑工程学院学报.1997,18(1):5-9.
    [89]Age D H, El-Hosseiny F. The mechanical properties of single wood pulp fibers:Part Ⅵ. Fibril angle and the shape of the stres-strain curve [J] Journal of Pulp and Paper Science,1983,9(4):99-100.
    [90]Akerholm M,Hinterstoisser B, Salmen L. Characterization of the crystalline structure of cellulose using static and dynamic FT-IR spectroscopy[J].Carbohydr. Res.2004,339,569-578.
    [91]Alexia Stokes.Claire Atger,Anthony Glyn Bengough,et al. Desirable plant root traits for protecting natural and engineered slopes against landslides[J]. Plant Soil,2009,324:1-30.
    [92]Anderson C.J.,Coutts M.P.,Ritchie R.M.,et al. Root extraction force measurements for Sitka Spruce[J]. Forestry,1989,62,127-137.
    [93]Andersson S,Serimaa R,Paakkari T,et al. Crystallinity of wood and the size of cellulose crystallites in Norway spruce(Picea abies)[J].WJ.Wood Sci,2003,49,531-537.
    [94]Archer R. Growth Stresses and Strains in Trees. Berlin:Springer Verlag,1986,240.
    [95]Barker D H ed. Vegetation and Slopes Stabilization[C]. Protection and Ecology-Proceedings of the International Conference Held at the University Museum. Oxford:1994,29-30
    [96]Beke G.J., McKeague J.A.. Influence of tree windthrow on the properties and classification of selected forested soils from Nova Scotia[J].Canadian Journal of Soil Science,1984,64,195-207.
    [97]Bischetti G.B., Chiaradia E.A., Simonato T., et al.. Root Strength and Root Area Ratio of Forest Species in Lombardy (Northern Italy) [J]. Plant and soil,2005,278:11-22.
    [98]Bishop, D.M., Stevens, M.E. Landslides on logged areas in southeast Alaska:Northern Forest Experiment Station [J]. U. S. Forest Service,1964, NOR-1:18.
    [99]Burroughs, E.R.J., Thomas, B.R., Declining root strength in Douglas-fir after felling as a factor in slope stability [J]. USDA Forest Service Department of Agriculture, Research Paper, 1977,INT-190,27.
    [100]Chiatante D, Baraldi A, Di Iorio A, et al. Root response to mechanical stress in plants growing on slopes:an experimental system for morphological, biochemical and molecular analysis[C]. In: Abe J, ed.Roots, the dynamic interface between plants and the earth [A].The 6th Symposium of the International Society of Root Research, Nagoya, Japan. Kluwer Academic,2003,421-427.
    [101]Chiatante D, Scippa GS, Di Iorio A, et al. Root architecture modified by mechanical stress in seedlings of Fraxinus omus L.and Spartium junceum L.growing on slopes[C]. In:Radoglou K,ed. Proceedings of the international conference on forest research:a challenge for an integrated European approach[A]. Thessaloniki,Greece:2001,477-482.
    [102]Clarke M.F., WⅢiams M.A.J., Stokes T.. Soil creep:problems raised by a 23 year study in Australia[J]. Earth Surface processes and Landforms,1999,24:151-175.
    [103]Commandeur P R, Pyles M R. Modulus of elasticity and tensile strength of Douglas fir roots [J]. Can.J.For.Res,1991,21:48-52.
    [104]Coppin N.J., Richards I.G.. Use of vegetation in civil engineering:London[J].Construction Industry Researeh and Information Association, Butterworths,1990,292.
    [105]Coutts M P. Root architecture and tree stability [J]. Plant Soil,1983,71 (1-3):171-188.
    [106]Cruden, D M, Varnes D J. Landslide types and processes [J]. In:Turner A K and Shuster R L (eds) Landslides:Investigation and mitigation. Transp Res Board, Spec Rep,1996,247,36-75.
    [107]Diti Hengchaovanich.15 year of bioengineering in the wet tropics from A(acacia auriculiformis)to V(vetiveria zizanioides)[C].Proceedings of the first Asia pacific conference on ground and water. Bioengineerings erosion control and slope stabilization,1999,54-63
    [108]Easson DL, Pickles SJ, White EM. A study of the tensile force required to pull wheat roots from soil [J]. Annals of Applied Biology,1995,127:363-373.
    [109]Eis S.. Root systems of older immature hemlock, cedar, and Douglas-fir[J].Canadian Journal of Forestry,1987,17,1348-1354.
    [110]Endo T., Tsuruta. T.. Effects of trees roots upon the shearing strengths of soils[J]. Annual Report of the Hokkaido Branch Government Forest Experimental Station Tokyo,1968,18,167-179.
    [111]Ennos A R, Fitter A H. Comparative functional morphology of the anchorage systems of annual dicots [J]. Funct.Ecol.1992,6:71-78.
    [112]Ennos AR. The mechanics of anchorage in seedlings of sunflower, Helianthus annuus L [J]. New Phytologist,1989,113:185-192.
    [113]Falley T.J., Anhur M.A.. Further studies of root decomposition following harvest of a northern hardwoods forest [J]. Forest Science,1994,40:618-629.
    [114]Gabriella stefania scippa, Michela di michele, Antonino di iorio, et al. The Response of Spartium juuceum Roots to Slope:Anchorage and Gene Factors [J]. Annals of Botany,2006,97:857-866.
    [115]Genet M.,Stokes A.,Salin F.,et al.. The influence of cellulose content on tensile strength in tree roots[J]. Plant and Soil,2005,278:1-9.
    [116]Gindl W,Gupta H S,Schoberl T et al.Mechanical properties of spruce wood cell walls by nanoindentation[J].Applied Physics A.2004,79(8):2069-2073.
    [117]Goodman AM, Ennos AR. The effects of bulk density on the morphology and anchorage mechanics of the root systems of sunflower and maize [J]. Annals of Botany,1999,83:293-302.
    [118]Goodman AM, Ennos AR. The responses of field-grown Sunflower and maize to mechanical support [J].Annals of Botany,1997,97:703-711.
    [119]Gray D. H.,Sotir B R. Biotechnical and Soil Bioengineering Slope Stabilization:a practical guide for erosion control. John Wiley &Sons,Toronto,1996
    [120]Gray D.H. Effects of forest clear-cutting on the stability of natural slopes:results of field studies [R]. University of Michigan, Dept. of Civil Engineering Report,1973,119.
    [121]Gray D.H., Leiser A.T.. Biotechacal Slope Protection and Erosion Control:New York, Van Nostrand Reinhold Co.,1982,271.
    [122]Gray D.H., MegahanW.F..1981, Forest vegetation removal and slope stability in the Idaho Batholith:Forest Service, U.S.DePt.of Agriculture, Research Paper INT-271,23 p.
    [123]Gray, D.H., Ohashi H.. Mechanics of fiber reinforcement in sand [J].Journal of Geotechacal Engineering,1983,109,335-353.
    [124]Hathaway R.L., Penny D.. Root strength in some Populus and Salix clones [J]. New Zealand Journal of Botany,1975,13,333-344.
    [125]Jaffe MJ, Biro R. Thigmomorphogenesis, the effect of mechanical perturbation on the growth of plants, with special reference to anatomical changes, the role of ethylene and interactions with other environmental stresses[C]. In:Mussell H,Staples R,eds. Stress physiology in crop plants[A]. New York:Wiley and Sons,1979.25-69.
    [126]Jamet E, Guzzardi P, Salva'I. What do transgenic plants tell us about the regulation and function of cell-wall structural proteins like extensions [J].Russian Journal of Plant Physiology,2000, 47:360-369.
    [127]Kassiff G., Kopelovitz A. Strength properties of soil-root systems [J]. Israel Institute of Technology,1968,256:44.
    [128]Kerstens S, Decraemer W F, Verbelen J P. Cell walls at the plant surface behave mechanically like fiber reinforced composite materials[J].Plant Physiol.2001,127:381-385.
    [129]Koehl MAR, Wainwright SA. Mechanical adaptations of a giant kelp [J]. Limnology and Oceanography,1977,22:1067-1071.
    [130]Koponen S, Toratti T, Kanerva P et a 1.Modelling elastic and shrinkage properties of wood based on cell structure [J].Wood Science and Technology.1991,25(1):25-32.
    [131]Le Provost G, Paiva J, Pot D, et al. Seasonal variation in transcript accumulation in wood-forming tissue of maritime pine(Pinus pinaster Ait.)with emphasis on a cell wall glycine-rich protein [J].Planta,2003,217:820-830.
    [132]Goodman. Main chemical compositionianm Mechanical adaptations of cleavers (Galium aparine)[J]. Annals of Botany,2005.95:475-480.
    [133]Marie Genet, Alexia Stokes, Franck Salin, et al. The influence of cellulose content on tensile strength in tree roots [J]. Plant and Soil,2005,278:1-9
    [134]Mark R E.Cell Wall Mechanics of Tracheids [M].New Haven,Yale University Press.1967.
    [135]Marler TE, Discekici HM. Root development of'Red Lady"papaya plants grown on a hillside [J]. Plant and Soil,1997,195:37-42.
    [136]Mattie C, BischettiG B,Gentile F. Biotechnical characteristics of root systems of typical Mediterranean species[J]. Plant and Soil,2005,278:23-32.
    [137]Newman LJ, Campbell MM. MYB protein and xylem differentiation.In:Savidge R,Barnett J,Napier R,eds.Cell and molecular biology of wood formation[M]. Oxford:BIOS Scientific Publishers Ltd,2000,437-444.
    [138]Nilaweera N S, Nutalaya P. Role of tree roots in slope stabilization [J]. Bull. Eng.Geol,1999, 57:337-342.
    [139]O'Loughlin C L,Watson A.Root-wood strength deterioration in Radiata Pine after clearfelling[J]. NZ J. For. Sci.197939(3),284-293.
    [140]OPerstein V, Frydman S. The influence of vegetation on soil strength. Ground lmpro,2000,4:81-89.
    [141]Page D H, EI-Hosseiny F,Winkler K et al.Elastic modulus of single wood pulp fibers[J].Tappi.1977,60(4):114-117.
    [142]Parr A, Cameron A D. Effects of tree selection on strength properties and distribution of structural roots of clonal Sitka spruce [J]. Forest Ecology and Management,2004,195:97-106.
    [143]Phillips C J, Watson A J. Structural tree root research in New Zealand:A review [J]. Landcare Res.Sci.Ser,1994,7:39-47.
    [144]Pollen N., Simon A.. Estimating the mechanical effects of riparian vegetation on stream bank stability using a fiber bundle model. Water Resour.Res.2005,41:7-25.
    [145]Reiterer A, Lichtenegger H,Tschegg S.Experimental evidence for a mechanical function of the cellulose microfibril angle in wood cell walls[J].Philosophical Magazine A.1999,79(9):2173-2184.
    [146]Salmen L, Alf de Ruvo.A model for the prediction of fiber elasticity[J].Wood and Fiber Science.1985,17(3):336-350.
    [147]Schmid I, Kazda M. Vertical distribution and radial growth of coarse roots in pure and mixed stands of Fagus sylvatica and Picea abies[J]. Can. J. For. Res.2001,31:539-548.
    [148]Schmidt KM, Roering JJ, Stock JD,et al.. Root cohesion variability and shallow landslide susceptibility in the Oregon Coast [J]. Range Can Geotech J,2001,38:995-1024.
    [149]Sehwarz M.,Preti F.,Giadrossieh F.,et al. Quantifying the role of vegetationin slope stabiliry:A case study in Tuseany(Italy) [J].Eeol.Eng,2010b,36:285-291.
    [150]Shirsat AH, Bell A,Spence J,et al.. The Brassica napus extensin gene is expressed in regions of the plants subjected to tensile stress[J].Planta,1996,199:618-624.
    [151]Showalter AM,Butt AD,Kim S. Molecular details of tomato extension and glycine rich protein gene expression[J].Plant Molecular Biology,1992,19:205-215.
    [152]Sidle RC, Ochiai H. Landslides:processes, prediction, and land use. Am Geophysical Union, Water Resour Monogr No.18. AGU, Washington, DC,2006,312.
    [153]Sidle RC, Pearce AJ, O'Loughlin CL. Hillslope stability and land use. Am Geophysical Union, Water Resour Monogr 11. Washington, DC,1985,140.
    [154]Sjostrom E.Wood Chemistry Fundamentals and Applications[M]. Second Edition Academic Press Inc, San Diego,1993,293.
    [155]Stokes A.,Mattheck C. Variation of wood strength in tree roots [J] Journal of Experimental Botany,1996,47:693-699.
    [156]Sun Hailong,Li Shaocai,Xiong Wenlan,et al.. Influence of slope on root system anchorage of Pinus yunnanensis[J].Ecological Engineering,2007,1210:1-8.
    [157]Sven kerstens,Jean-pierre verbelen. Cellulose Orientation in the Outer Epidermal Wall of Angiosperm Roots:Implications for Biosystematics[J]. Annals of Botany,2002,90(5):669-676
    [158]Telewski FW. Wind-induced physiological and developmental response in trees[C]. In:Coutts M, Grace J,eds. Wind and wind related damaged to trees[A], Cambridge:Cambridge University Press,1995,237-263.
    [159]Tosi, M.. Root tensile strength relationships and their slope stability implications of three shrub species in the Northern Apennines(Italy)[J], Geomorphology,2007,87:268-283.
    [160]Turmanina V. On the strength of tree roots[J]. Bull.Moscow Soc. Naturalists, Biol.Sec.1965, 70:36-45.
    [161]Usherwood JR, Ennos AR, Ball DJ. Mechanical and anatomical adaptations in terrestrial aquatic buttercups to their respective environments [J]. Journal of Experimental Botany,1997, 48:1469-1475.
    [162]VELP.FIWE Raw Fiber Extractors Operating Manual[M].2010,21-23.
    [163]Verbelen J-P, Kerstens S. Polarization confocal microscopy and Congo Red fluorescence:a simple and rapid method to determine the mean cellulose fibril orientation in plant[J].Journal of Microscopy,2000,198:101-107.
    [164]Waldron, L.J. The shear resistance of root-permeated homogenous and stratified soil [J]. Soil Science Society of America Journal,1977,41:843-849.
    [165]Waldron, L.J., Dakessian S.Soil reinforcement by roots:calculation of increased soil Shear resistance from root properties[J].Soil Seienee,1981,132:427-435.
    [166]Waldron L.J.,Dakessian S.. Effect of grass, legume, and tree roots and soil shearing resistance[J]. Soil Science Society of America Journal,1982,46:894-899.
    [167]Waldron L.J.,Dakessian S.,Nemson J.A.. Shear resistance enlhancement of 1.22-meter diameter soil cross sections by pine and alfalfa roots [J].Soil Science of America Journal,1983,47:9-14.
    [168]Wu T.H., McKinnellW. P., Swanston D.N. Strength of tree roots and landslides on Prince ofWales Island, Alaska [J]. Canadian Journal of Geo technical Research,1979,16(1):19-33
    [169]Wu T.H., Effect of vegetation on slope stability,Soil Reinforcement and Moisture Effects on Slope Stability[R].Volume Transportation Research Record 965:Washington, D.C. Transportation Research Board,1984a,37-46.
    [170]Wu T.H.. Investigation of landslides on Prince of WalesIsland[R].Alaska:Departrnent of Civil Engineering, Ohio State University, Geotechnicai Engineering Report,1976,5:94-101.
    [171]Wu T.H.. Soil movements on permafrost slopes near Fairbanks, Alaska:Canadian Geotechoical Journal,1984b,21:699-709.
    [172]Wu T.H.,McKinnell W.P.,Swanston D.N.. Strength of tree roots and landslides on Prince of Wales Island,Alaska[J]. Canadian Geotechnical Journal,1979,16:19-33.
    [173]Wu T.H.,Mcomber R.M.,Erb R.T.,et al.. Study of soil-root interaction [J].Journal of Geotechnicai Engineering,1988b,114:1351-1375.
    [174]Wu W., Sidle R.C.. A distributed slope stability model for steep forested basins [J].Water Resources Research,1995,31:2097-2110.
    [175]Zhou Yue,Watts.D,Li Yuhui,et al.. A case study of effect of lateral roots of Pinus yunnanensis on shallow soil reinforcement:Forest Ecology and Management,1998,103:107-120.
    [176]Ziemer, R.R., Swanston, D.N. Root strength changes after logging in southeast Alaska:Forest Service[J]. U.S. Department of Agriculture, Research Note,1977, PNW-306,10.
    [177]Zipse A,Mattheck C,Grabe D,et al.. The effect of wind on the mechanical properties of wood in Scottish beech trees[J]. Arboriculture Journal,1998,22:247-257.
    [178]Zoltan Lang. A Fruit Tree Stability Model for Static and Dynamic Loading [J].Biosystem Engineering,2003,85(4):461-466.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700