用户名: 密码: 验证码:
樟树不同化学型精油主成分时空变异规律及优良单株选择
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
樟树是一种集材用、药用、香精香料、油用、风景园林等于一体的多用途林木资源,被誉为江南宝树,具有巨大的开发利用价值。但鉴于目前樟树原料林多以未经遗传改良的实生苗营造而成,其枝叶的樟油得油率低且有效成分含量也不一致,导致产量、质量与经济效益等受到较大影响。为此,本研究以樟树为研究对象,采用气-质联用仪(GC/MS)测定樟树三种不同化学型(油樟、脑樟和异樟)精油化学组成及含量,探讨樟树三种不同化学型(油樟、脑樟和异樟)精油主成分的时空变异规律。在此基础上,筛选出其得油率高及品质优良的单株,旨在为樟树的遗传改良和定向培育技术的系统研究提供参考,为香料等产业发掘和香料新品种的发展和壮大提供专用优良原料树种将具有重要的理论意义和实践价值。主要研究结果如下:
     1、樟树叶精油最佳提取条件的优化:经单因素试验和响应面法确定了樟树叶精油最佳提取条件:提取时间65min,水料比12.5:1,提取功率1200W。在此条件下,5月份采集的叶样,其叶精油提取率为2.14%。
     2、叶精油化学成分:油樟叶精油中共鉴定出39种成分,其中含量大于1%的有8种;脑樟叶精油中鉴定出47种成分,其中含量大于1%的有9种;异樟叶精油中鉴定出40种成分,其中含量大于1%的有9种;三种化学型间的共有成分有16种,而特有成分,油樟有9种,脑樟和异樟各有12种。
     3、叶精油平均得率的年变化规律:油樟、脑樟2种化学型的叶精油平均得率年变化趋势基本一致,大致可分成3个阶段:3-5月为急剧上升阶段,5-7月是缓慢上升和保持阶段;7月后至下一个生长期到来之前为逐渐下降阶段。油樟7月份精油平均得率最高,为最佳采集时间。脑樟7月和5月精油平均得率最高,脑樟的最佳采集时间为7月和5月。异樟精油平均得率年变化可分为两个阶段:一是3-9月呈逐渐增加的趋势,9月份精油平均得率最高,为最佳采集时期;二是9月后至下一个生长期到来之前的1月,呈逐渐下降的趋势。樟树三种不同化学型叶精油平均得率的年变化不一样,但具有相似的规律,即生长季节得油率较高,非生长季节则较低。
     4、叶精油主成分种类的年变化规律:油樟在不同生长期样品中共检测到20种主成分,其中有8种成分在不同生长期中均能检测到的主成分,另12种成分在某一生长期含量较高,为主成分,而在其它生长期含量较低或不存在;脑樟在不同生长期样品中共检测到13种主成分,其中有9种成分在不同生长期中均能检测到的主成分,另有4种成分在某一生长期含量较高,为主成分,而在其它生长期含量较低或不存在;异樟在不同生长期样品中共检测到21种主成分,其中有9种成分在不同生长期中均检测到的主成分,另有12种成分在某一生长期含量较高,为主成分,而在其它生长期含量较低或不存在。
     5、叶精油中主成分含量的年变化规律:樟树油樟、脑樟和异樟三种化学型在不同生长期中叶精油主成分含量变化不同,各主成分的含量变化均具有自身的变化规律。若以各主成分为目标成分进行采收,其采收期不尽相同。
     6、各化学型不同部位生物量及其比重以及相关性分析:油樟、脑樟和异樟三种化学型不同部位生长量和鲜重差异不显著;三种化学型不同样株、部位精油得率差异显著;通过相关性分析,樟树油樟、脑樟和异樟单株不同部位(叶、当年生枝、老枝、干、主根和侧根)生物量均与树高、冠幅的相关性不大,与地径相关性较大,且相关性均达到了显著水平;油樟、脑樟和异樟三种化学型各部位鲜重与精油得率之间的相关性多数达到了显著或极显著;油樟、脑樟和异樟三种化学型生长性状与精油得率之间的相关性多数达到了显著或极显著。
     7、各化学型不同部位精油平均得率的变化规律:同一化学型不同部位:主根和侧根的精油平均得率最高,叶和干次之,当年生枝和老枝最低;不同化学型同一部位:当年生枝、老枝、主根和侧根均是脑樟平均得油率高,而叶和干均是油樟平均得油率高,脑樟次之,异樟最低;同一化学型6个部位平均得油率总和,脑樟>油樟>异樟。由于根和叶的得油率相差不大,结合实际炼油,可通过矮林作业持续开发樟树叶精油。
     8、各化学型不同部位精油成分及含量:油樟6个不同部位(叶、当年生枝、老枝、干、主根和侧根)的精油中分别鉴定出41、37、37、27、31和31种成分,这些成分的含量分别占各精油总含量的91.21%、88.88%、90.04%、87.83%、95.14%和93.60%;脑樟6个不同部位精油中分别鉴定出46、43、44、29、25和25种成分。这些成分的含量分别占各精油总含量的90.48%、89.44%、89.70%、95.27%、89.91%和88.21%;异樟不同部位精油中分别鉴定出41、51、51、41、39和39种成分。这些成分的含量分别占各精油总含量的94.05%、90.05%、91.24%、94.50%、92.64%和91.86%。且精油中典型性成分空间变化规律存在差异。
     9、各化学型不同部位精油主成分种类的变化规律:同一化学型不同部位精油中主成分种类数,油樟6个不同部位(叶、当年生枝、老枝、干、主根和侧根)精油中主成分种类数分别为:10、12、12、12、5和6种;脑樟分别为:11、12、12、11、6和6种;异樟分别为:10、13、13、8、6和6种。不同化学型同一部位精油中主成分种类数,叶:油樟、脑樟和异樟分别为:10、11和10种;当年生枝:油樟、脑樟和异樟分别为:12、12和13种;老枝:油樟、脑樟和异樟分别为:12、12和13种;干:油樟、脑樟和异樟分别为:12、11和8种;主根:油樟、脑樟和异樟分别为:5、6和6种;侧根:油樟、脑樟和异樟分别为:6、6和6种。
     10、各化学型不同部位精油中主成分及含量变化规律:油樟不同部位精油中主成分共有12种,其中含量大于10%的有3种,其含量变化为,桉叶油醇:叶>当年生枝>老枝>干>主根>侧根;α-松油醇:叶>当年生枝>老枝>干>主根>侧根;黄樟油素:主根>侧根>干>老枝>当年生枝>叶。脑樟不同部位精油中主成分共有12种,其中含量大于10%的有2种,其含量变化为,樟脑:叶>当年生枝>老枝>干>侧根>主根;黄樟油素:主根>侧根>干>老枝>叶>当年生枝。异樟不同部位精油中主成分共有13种,其中含量大于10%的有4种。其含量变化为,异-橙花叔醇:叶>老枝>当年生枝>干>主根>侧根;桉叶油醇:老枝>当年生枝>叶>干>主根>侧根;三甲基-2-丁烯酸环丁酯:叶>当年生枝>老枝>干>主根>侧根;黄樟油素:主根>侧根>干>当年生枝>老枝>叶。
     11、优良单株选择:结合得油率和主成分含量两个因素,制定了樟树三种化学型等级划分标准,选择出每种樟树化学型的优良单株,其中油樟1株、脑樟2株、异樟1株。
Cinnamomum camphora is a valuable tree that can be used for timber, medicine, fragrantingredients, oils, gardening and landscape. However, since Cinnamomum camphora nowadaysplanted are mostly not genetically improved, the oil contents in their leaves and branches are lowand the contents of the effective ingredients are uneven. Therefore, the quantity and the quality ofcamphor oil output are severely affected, and so is the economic income of Cinnamomumcamphora. Regarding that situation, using GC/MS instrument, this study examines thecomposition of the chemicals in Cinnamomum camphora and the variations of contents of thesechemicals over time and across different parts of three chemical types of Cinnamomumcamphora (Cineol type, Camphor type and Iso-nerolidol type respectively). Based on the resultsof the examination, the oil-rich and high quality individual plants are selected in order to providethe basis for genetical improvements and oriented cultivation. The present study is ofsignificance for providing better varieties of Cinnamomum camphora for various industriesincluding perfume industry. The major results of the study are as follows:
     1. The optimization of the conditions for extracting Cinnamomum camphora leaves oil: theoptimum conditions were ditermined through one-factor test and then the three-factor andthree-level's response surface analysis (RSA): the time span for extracting was65min; thewater:material ratio was12.5:1; the extraction power was set at1200W. Under these conditions,oil extracting rate of the sample of leaves which were collected in May was2.14%.
     2. The composition of the chemical components in Cinnamomum camphora oil extracted inleaves: In Cineol type,39different components were identified. Among these, there are8components whose contents were all above1%; In Camphor type,47different components wereidentified. Among these, there are9components whose contents were all above1%; InIso-nerolidol type,40different components were identified. Among these, there are9components whose contents were all above1%. Found out16components owned by all amongthree chemical types, but the special components, Cineol type was9components, Camphor typeand Iso-nerolidol type were separately12components.
     3. The yearround time variation of the average oil yield in leaves: The rate of oil yield ofCineol type leaves and that rate of Camphor type leaves vary over a year both in a roughly sametrend which consists of three phases: drastically ascending phase, March to May; slowlyascending and plateau phase, June to July; descending phase, August to the next growth period.The oil yield of Cineol type reaches highest level in July, the optimum time interval forharvesting oil. For Camphor type, the highest oil yield is in May and July, and these two monthsare optimum time for harvesting. The variation trend of oil yield from Iso-nerolidol type consists of two phases: One. gradually ascending phase, March to September, in which Septemberwitnesses highest oil yield and therefore is the best time for harvesting; Two. gradually decliningphase, October to the next growth period. The trends of variations of leaves oil yield from threechemical types of Camphor type are different. However, they still share some similarities: allthree types get higher oil yields in growth periods and lower yields in non-growth periods.
     4. The yearround time variation of main components in leaves oil: In Cineol type,20maincomponents were identified in different growth periods. Among these, there are8maincomponents were identified in different growth periods, Others were identified in few growthperiods or were not identified; In Camphor type,13main components were identified in differentgrowth periods. Among these, there are9main components were identified in different growthperiods, Others were identified in few growth periods or were not identified; In Iso-nerolidol type,21main components were identified in different growth periods. Among these, there were9maincomponents were identified in different growth periods, Others were identified in few growthperiods or were not identified.
     5. The yearround time variation of main compontents contents in leaves oil: Changes ofmain components contents from three chemical types leaves oils were different, Changes of eachmain components contents have their change laws. Aiming at each main components for harvest,The picking period of it was not the same.
     6. Correlation analyses and Biomass and their proportion of different parts from threechemical types: No significant difference of growth and fresh weight of different parts from threechemical types; Significant difference of different plants and different parts oil yield from threechemical types; After the analyses, we found no big correlation between tree height, crownamplitude and fresh weigh of different parts (leaf, current year shoot, old branch, stem, tap rootand lateral root) across three chemical types in C. camphora. But there was very big correlationwith ground diameter, and correlation reached the significant level. Fresh weight of differentplants and different parts oil yield from three chemical types, which almost reached Significantlyor extremely significantly. Growth traits and oil yield from three chemical types, which almostreached Significantly or extremely significantly.
     7. The variations of average oil yield in different parts from three chemical types: Differentparts from the same chemical types, The average oil content of tap root and lateral root reachedthe highest, The average oil content of leaf and stem reached the higher, but the average oilcontent of current year shoot and old branch were the lowest;The same parts from differentchemical types: The highest parts of the average oil content of current year shoot, old branch, taproot and lateral root separately were Camphor type. However, The highest of the average oilcontent of leaf and stem were Cineol type, The higher of the average oil yield of leaf and stemwere C amphor type, and then the lowest was Isonerolidol type; The total average oil yield of sixparts from the same chemical types, Camphor type> Cineol type> Isonerolidol type. Due to theoil content of root and leaf was similar, In the course of refining, it used to utilize leaves,Extracting essential oil by coppice homework was scientific and reasonable. So it could achieve the purpose of development and utilization, and could realize the sustainable utilization ofCinnamomum camphora.
     8. The compositions and contents of compontents in different parts oil from three chemicaltypes: Six different parts oil of Cineol type(leaf, current year shoot, old branch, stem, tap rootand lateral root)were separately identified and analyzed:41,37,37,27,31and31compontents,and their contents separately reached on91.21%,88.88%,90.04%,87.83%,95.14%and93.60%;Six different parts oil of Camphor type(leaf, current year shoot, old branch, stem, tap root andlateral root)were separately identified and analyzed:46,43,44,29,25and25compontents, andtheir contents separately reached on90.48%,89.44%,89.70%,95.27%,89.91%and88.21%; Sixdifferent parts oil of Iso-nerolidol type(leaf, current year shoot, old branch, stem, tap root andlateral root)were separately identified and analyzed:41,51,51,41,39and39components, andtheir contents separately reached on94.05%,90.05%,91.24%,94.50%,92.64%and91.86%. andtypical components space change rule existed differences.
     9. The variations of main components in defferent parts oil from three chemical types:Number of main component of different parts oil from the same chemical type. Number of maincomponents of six different parts of Cineol type(leaf, current year shoot, old branch, stem, taproot and lateral root)were separately:10,12,12,12,5and6; Camphor type were separately:11,12,12,11,6and6; Isonerolidol type were separately:10,13,13,8,6and6. Number of the same partoil from the diferent chemical types. leaf: Cineol type oil has10compontents, Camphor type oilhas11compontents, Isonerolidol type oil has10compontents. Current year shoot: Cineol type oilhas12compontents, Camphor type oil has12compontents, Isonerolidol type oil has13compontents Old branch: Cineol type oil has12compontents, Camphor type oil has12compontents, Isonerolidol type oil has13compontents. Stem: Cineol type oil has12compontents,Camphor type oil has11compontents, Isonerolidol type oil has8compontents. Tap root: Cineoltype oil has5compontents, Camphor type oil has6compontents, Isonerolidol type oil has6compontents. Lateral root: Cineol type oil has6compontents, Camphor type oil has6compontents, Isonerolidol type oil has6compontents.
     10. Main compontents and variations of their contents in different parts oil from threechemical types: Number of main components of different parts oil from Cineol type have12components, which the contents above10%have three components. Cineol: leaf>current yearshoot>old branch>stem>tap root>lateral root; α-terpineol: leaf> current year shoot>old branch>stem>tap root>lateral root;Safrene: tap root>lateral root> stem>old branch>current year shoot>leaf. Main components of different parts oil from Camphor type have12compontents, which thecontents above10%have two compontents. Camphor: leaf> current year shoot>old branch>stem>lateral root>tap root; Safrene:tap root>lateral root>stem>old branch>leaf>current yearshoot. Main components of different parts oil from Isonerolidol type have13compontents,whichthe contents above10%have four compontents. Isonerolidol: leaf>old branch>current yearshoot>stem>tap root>lateral root; Cineole: old branch>current year shoot>leaf>stem>tap root>lateral root;3-Methyl-2-butenoic acid,cyclobutyl ester: leaf>current year shoot>old branch> stem>tap root>lateral root; Safrene: Tap root>lateral root>stem>current year shoot>old branch>leaf.
     11. Selection of optimum individual plant: Based on oil content and main compontentscontents, the grading stardards for three chemical types were established to select superior plantsfor each of three chemical types, One plant was selected from Cineol type, two plants wereselected from Camphor type, One plant was selected from Isonerolidol type.
引文
[1]刘洪波,史冬辉,张瑜.植物精油抗菌活性研究进展[J].畜牧与饲料科学,2009,30(1):12-14.
    [2]王宏年.几种植物精油抑菌作用研究[D].西北农林科技大学,2007.
    [3]姚新生.天然药物化学[M].北京:人民卫生出版社,1996.
    [4]焦启源.芳香植物及其利用(上册)[M].上海:上海科学技术出版社,1963.
    [5]扶巧梅.五种柏科植物精油对蚊虫的生物活性[D].中南林业科技大学,2012.
    [6]郭秀艳.臭柏、油松精油的提取与抑菌活性[D].内蒙古农业大学,2009.
    [7]马娇,林洋,陶海腾,等.小麦胚芽油提取工艺研究[J].中国食物与营养,2012,18(9):52-54.
    [8]张学愈,盛勇,邹俊,等.压榨法提取温莪术挥发油收率及药效学研究[J].四川中医,2007,25(9):44-45.
    [9]李宝林,李安祥.一种连续水蒸气蒸馏装置[J].化学通报,1992(2):12-14.
    [10]邱琴,张国英,孙小敏,等.超临界CO2流体萃取法与水蒸气蒸馏法提取肉豆蔻挥发性化学成分的研究[J].中药材,2004,27(11):823-826.
    [11] Masango P. Cleaner production of essential oils by steam distillation [J]. Journal of Cleaner Production,2005(13):833-839.
    [12]董丽萍,许松林.天然香料的提取分离技术[J].天津化工,2006,20(5):1-4.
    [13]阎克里,朱秀卿,赵丽.白术挥发油提取方法研究[J].中国药物与临床,2011,11(7):763-767.
    [14]汪涵,郭桂悦,周玉莹,等.挥发性有机废气治理技术的现状与进展[J].化工进展,2009,28(10):1831-1840.
    [15]乔海莉,陆鹏飞,徐荣,等.肉苁蓉花序挥发物的GC-MS成分分析[J].中药材,2012,35(4):573-577.
    [16]宁蕾.5种植物精油的生物活性及其应用研究[D].广西师范大学,2011.
    [17]李晓,刘艳芳.酶法提取生姜精油的研究[J].中国调味品,2009,34(12):67-69.
    [18]张正竹,陈钉钉.茶叶香精油的同时蒸馏(SDE)提取效率分析[J].中国茶叶加工,2003(1):31-33.
    [19]杨婧,张博,辛广,等.果胶酶处理软枣猕猴桃挥发性成分的研究[J].研究开发,2012,33(11):6-9.
    [20] Figueiredo A C, Barroso J G, Pedro L G, et al. Composition of the essential oil of Lavandula pinnata L.fil. var. pinnata grown on Madeira[J]. Flavour and fragrance journal,1995,10(22):93-96.
    [21]黄蓓,毛长智.正交实验设计优选荆芥穗挥发油超声波提取工艺[J].中国医药导报,2011,8(20):107-110.
    [22]赵华,张全生,李丽华,等.微波辅助萃取洋葱精油的研究[J].香精香料化妆品,2005(3):1-4.
    [23]吴林冬,杨晓艳,苟体忠,等.水蒸气蒸馏法与微波辅助萃取法提取天胡荽挥发油的比较研究[J].遵义医学院学报,2012,35(3):196-199.
    [24]刘辉琳.中草药化学成分提取新技术[J].牙膏工业,2003(3):39-41.
    [25]仲利涛,刘元.超临界流体CO2萃取杉木心材精油工艺的研究[J].中南林业科技大学学报,2012,32(1):198-200.
    [26]庄世宏.花椒精油提取及其生物活性测定研究[D].西北农林科技大学,2002.
    [27]张庆华,王志萍.中药挥发油提取技术研究进展[J].食品与药品,2009,11(2):62-64.
    [28]王娣,任茂生,许晖.利用微胶囊双水相体系萃取百里香精油的研究[J].中国调味品,2012,37(4):31-33.
    [29]王娣,钱时权,曹珂珂,等.微胶囊双水相体系萃取地椒精油[J].食品与发酵工业,2012,38(2):219-213.
    [30]李川山,陈晔.植物精油提取工艺研究进展[J].大众科技,2010(9):86-87.
    [31] Diels G J.食品分析的气相色谱法[M].北京:轻工业出版社,1987.
    [32]陈孝泉.植物化学分类学[M].北京:科学出版社,1990.
    [33]肖崇厚.中药化学[Ml.上海:上海科学技术出版社,1993.
    [34]杨纯瑜.芳香精油的资源植物、主要成份及药理作用研究进展[J].北京日化,2009(4):25-32.
    [35]许鹏翔,贾卫民,毕良武,等.芳香植物精油气相色谱分析进展[J].分析科学学报,2004,20(3):312-316.
    [36]傅若农.国内气相色谱近年的进展[J].分析试验室.2003(2):99-112.
    [37]樊二齐,王云华,郭叶,等.6种木兰科植物叶片精油的气质联用(GC-MS)分析[J].浙江农林大学学报,2012,29(2):307-312.
    [38]谭红胜,禹荣祥,叶敏,等.维药香青兰中挥发油成分的GC-MS分析[J].上海中医药大学学报,2008,22(2):55-58.
    [39]郑华,张弘,甘瑾,等.菠萝蜜果实挥发物的热脱附-气相色谱-质谱(TCT-GC/MS)联用分析[J].食品科学,2010,31(6):141-144.
    [40]朱亮锋.我国樟属精油资源研究近况[J].植物资源与环境,1994,3(2):51-55.
    [41]俞新妥,陈承德.我国的樟树和樟脑[J].生物学通报,1958(1):23-28.
    [42]曾令海,连辉明,张谦,等.樟树资源及其开发利用[J].广东林业科技,2012,28(3):62-66.
    [43]祁承径.湖南植被[M].长沙:湖南科学技术出版社,1990.
    [44]江明艳,陈其兵,潘远志.我国樟科植物的园林应用前景[J].西南园艺,2004,32(3):16-18,23.
    [45]徐斌,陈超燕,束庆龙.樟树黄化病与木材构造特征关系的研究[J].安徽农业大学学报,2008,35(3):359-36.
    [46]李宣德,冯丰隆.森林碳吸存资源调查推估模式系统——以台湾樟树为例[J].台湾林业科学,2008(23):15-26.
    [47]张国防.樟树精油主成分变异与选择的研究[D].福建农林大学,2006.
    [48]茹正忠,高伯慰.山地风景林不同树种的造林效果分析[J].林业科技通讯,2001(10):7-9.
    [49]关传友.论樟树的栽培史与樟树文化[J].农业考古,2010(1):286-292.
    [50]程必强,喻学俭,丁靖垲,等.中国樟属植物资源及其芳香成分[M].昆明:云南科技出版社,1997.
    [51] Fenn R S. Aroma Chemical Usage Trends in Modern Perfumery[J]. Perfumer&Flavorist,1989,(14):1-10.
    [52]邢建宏.樟树几种化学类型及近缘种遗传多样性研究[D].福建农林大学,2006.
    [53]四川植物志编委会.四川植物志(第一卷)[M].四川:四川人民出版社,1979.
    [54]黄远征,温鸣章,赵蕙,等.关于油樟叶芳香油化学成分的研究[J].武汉植物学研,1988,4(1):59-63.
    [55]丁振森.林产化学Ⅱ业手册[M].北京:中国林业出版社,1981.
    [56]中华本草编委会.中华本草(第3册)[M].上海:上海科学技术出版社,1999.
    [57]刘江云,杨世林,徐丽珍.樟属植物的化学和药理研究概况[J].国外医学中医中药分册,2001,23(1):7.
    [58]戴宝合.野生植物资源学[R].北京:农业出版社,1993.
    [59] Kennedy J P. Structured Lipid: Fats of the Future Food Technology[J]. Food Technology,1991(11):78-83.
    [60] Mascioli E A, Babayan V K, Bistrian B, et al. Novel Triglycerides for Special Medical Purposes[J].Parenteral Enteral Nutr,1988(6):12.
    [61]赵守训.冰片(龙脑)-世界最早应用的天然有机成分药物[J].亚太传统医药,2006(2):24-25.
    [62]吴桂生.冰片中毒的救治[J].中华腹部疾病杂志,2006,6(7):517-518.
    [63]陈建南,曾惠芳,李耿,等.龙脑樟挥发油及天然冰片成分分析[J].中药材,2005,28(9):782-783.
    [64]魏雪芳,陈杰.冰片提高生物利用度的研究进展[J].中草药,2005,36(7):1106-1108.
    [65]程平,蓝裕民,黄宝祥,等.樟树籽核油的开发利用[J].江西林业科技,1998(1):26-27.
    [66]曾清华.樟树籽提油研究初报[J].武汉轻工科技,1990(1):26-28.
    [67]潘晓华.樟树居群遗传多样性及遗传结构的RAPD分析[D].福建师范大学,2004.
    [68] Zhao M L, Tang L, Zhu X M, et al. Enzymatic Production of Zero-Trans Plastic Fat Rich in α-LinolenicAcid and Medium-Chain Fatty Acids from Highly Hydrogenated Soybean Oil, Cinnamomumcamphora Seed Oil, and Perilla Oil by Lipozyme TL IM[J]. J. Agric. Food Chem,2013,61(6):1189-1195.
    [69]罗登林.中碳链甘油三脂及其应用[J].武汉工业学院学报,2002(2):4-7.
    [70]姚小华,任华东,王开良,等.樟树苗期萌芽特性遗传变异初步研究[J].江西农业大学学报,2001,23(4):537-543.
    [71]张鑫.樟树黄化病致病机理、危害性及复绿技术研究[D].安徽农业大学,2007.
    [72]曾哲灵,郑菲,王林林,等.樟树籽仁油及长碳链食用油脂对大鼠血脂及动脉硬化的影响[EB/OL].(2013-01-23)[2013-04-9]. http://www. cnki. net/kcms/detail/11.1759. TS.20130123.1027.023. html.
    [73]赵曼丽,杨辉,杨芳,等.樟树籽仁油和壳油的油脂组成分析[J].南昌大学学报(理版),2012,36(5):445-448.
    [74]陶光复.浑身是宝的樟科植物[J].大自然,1980(4):46-48.
    [75]姚小华.樟树遗传变异与选择研究[D].中南林学院,2002.
    [76]陈红梅,孙凌峰.江西吉安龙脑樟资源开发与利用前景[J].林业科学,2006,42(3):94-98.
    [77]周曙光,欧阳静.辛癸酸甘油酯及其在日化中的应用[J].四川日化,1996(4):12-13.
    [78]胡文杰,高捍东,江香梅.响应面法优化樟树叶精油水蒸气蒸馏提取工艺[J].江西农业大学学报,2013,35(1):0144-0151
    [79]吴学文,熊艳,游奎一.樟树叶挥发性成分研究[J].广西植物,2011,31(1):139-142.
    [80]张炯炯,李功华,李跃军.樟树自然脱落叶挥发油提取工艺的研究[J].中华中医药刊,2009,27(8):1651-1653.
    [81]刘欣,陈永泉,林日高,等.利用气体吸附法研究樟树挥发香气成分[J].华南农业大学学报,1994,15(3):93-96.
    [82]衣晓明,谷茂,陈飞鹏,等.固相微萃取-气相色谱-质谱(SPME-GC/MS)法分析樟树叶的挥发性物质[J].深圳职业技术学院学报,2010(5):56-59.
    [83]余先纯,李湘苏,龚铮午.超声强化超临界CO2萃取樟树叶精油的研究[J].化学研究与用,2011,23(10):1313-1318.
    [84]李祖光,朱国华,曹慧,等.微波辅助水蒸气蒸馏樟树叶挥发油的研究[J].浙江工业大学学报,2008,36(6):597-601.
    [85]刘亚,李茂昌,张承聪,等.香樟树叶挥发油的化学成分研究[J].分析实验室,2008(1):88-92.
    [86]史娟.香樟叶中精油的提取[J].开发与研究,2011,28(2):16-19.
    [87]李毓敬.广东山区的樟属植物资源[J].广东林业科技,1994,3(2):51-55.
    [88]李锡文.云南樟树及其相近种的精油化学与植物分类[J].植物分类学报,1975,13(4):35-50.
    [89]陶光复,丁靖垲,孙汉董.湖北油樟叶精油的化学成分[J].武汉植物学研究,2002,20(1):75-77.
    [90]石皖阳,何伟,文光裕,等.樟精油成分和类型划分[J].植物学报,1989,31(3):209-214.
    [91]魏绣技.毛细管气相色谱在精油化学成分研究中的应用[J].广西林业科学,1994,23(1):46-50.
    [92]蔡宪元,丁靖凯,聂瑞麟.云南樟科植物精油的研究-云南樟和猴樟的精油化学成分[J].药学学报,1964,11(12):801-809.
    [93]龙光远,郭德选,刘银苟.樟树精油含量的研究[J].江西林业科技,1989(6):7-14.
    [94]王玮琴,殷红,王莉霞,等.樟树挥发油含量及成分在不同时间和生长环境中的变化[J].中华中医药学刊,2012,30(5):1140-1142.
    [95]胡文杰,高捍东,江香梅,等.樟树油樟、脑樟和异樟化学型的叶精油成分及含量分析[J].中南林业科技大学学报,2012,32(11):186-194.
    [96]周翔,莫建光,谢一兴,等.广西芳樟醇型樟树精油成分的GC-MS研究[J].食品科技,2011,36(1):282-284.
    [97]李林松,罗永明.井冈山地区樟树果挥发性成分的分析[J].江西中医学院学报,2005,17(3):36-37.
    [98] Pino J A, Fuentes V. Leaf oil of Cinnamomum camphora (L.)J. Presl. from Cuba[J]. Journal of Essentialoil Research,1998,10:(5):531-532.
    [99] Jantan I, Rasadah M A, Goh S H. Toxic and antifungal properties of the essential oils of Cinnamomumspecies from Peninsular Malaysia[J]. Journal of Tropical Forest Science,1994,6(3):286-292.
    [100] Pelissier Y, Marion C, Prunac S. Volatile components of leaves, stems and bark of Cinnamomumcamphora (L.) Nee set Ebermaier [J]. Journal of Essential oil Research,1995,7(3):313-315.
    [101] Nath S C, Rabha L C, Bordoloi D N. Resource evaluation of certain aromatic plants Growing in thehills of north eastern India for commercial possibilities[J]. Indian Journal of Hill Farming,1994,7(l):86-89.
    [102] Jagjit B, Shiva M P, Mehra S N, et al. Prospects of camphor and camphoroll Production from the leavesof Pollarded bushes of Cinnamomum camphora [J]. Recent advances in medical, aromatic and speciecrops. at New Delhi, India.1992(2):441-447.
    [103] Bhaodari J. Comparative chromatographic studies of Cinnamomum camphora L(jnn.) Nees&fberm.young pollarded bushes and trees of essential oil[J]. Journal of Economic and Taxonomic Botany,1995,19(2):287-292.
    [104] Baruah A K S, Bhagat S D, Hazarika JN, et al. Examination of volatile oil of Cinnamomum camphoragrown at Jorhat Assam [J]. Indian Journal of Pharmaey,1975,37(2):39-41
    [105] Ansari M A, Razdan R K. Relative efficacy of various oils in repelling mosquitoes[J]. Indian Journal ofMalariology,1995,32(3):104-111.
    [106] Fujita Y, Fujita S, Tanaka Y. Biogenesis of the essential oil in camphor trees. Part XXXV. On thecomponents of the essential oil from the young trunk of Cinnamomum camphora[J]. NipponNogeiKaga ku Kaishi,1974,48(12):697-700.
    [107] Dung N X, Khien P V, Chien H T, et al. The essential oil of Cinnamomum camphora (L.) Sieb. var.linaloolifera from Viettnam[J]. Journal of Essential oil Research,1993,5(4):451-453.
    [108] Ibrahim J, Goh, S H. The essential oils of Cinnamomum mollisimum as natural sources of safrole andbenzyl benzoate[J]. J Trop. For. Sci.,1990,2(3):252-259
    [109] Giang P M, Ko¨nig W A, Son P T. Chemical constituents of the essential oil from the bark ofCinnamomum illicioides A. Chev. from Vietnam[J]. J Nat Med,2006(60):248–250.
    [110] Sattar A, Gilani A M, Saeed M A. Gas chromatographic examination of the Essential oil ofCinnamomum camphora L [J]. Pakistan Journal of Scientific and Industrial Research,1991,34(4):135-136.
    [111] Chen H, Dai G, Zhao J, et a1. Removal of copper(II)ions by a biosorbent Cinnamomum camphoraleaves powder[J]. J Hazard Mate,2010(177):228-236.
    [112] Imai S, Ogawa K. Quantitative analysis of carbon balance in the reproductive organs and leaves ofCinnamomum camphora (L) Presl[J]. J Plant Res,2009,122(4):429-437.
    [113] Kharwar R N, Maurya A L, Verma V C, et al. Diversity and Antimicrobial Activity of EndophyticFungal Community Isolated from Medicinal Plant Cinnamomum camphora [J]. Proceedings of theNational Academy of Sciences, India Section B: Biological Sciences,2012,82(4):557-565.
    [114] Singh P, Srivastava B, Kumar A, et al. Fungal Contamination of Raw Materials of Some HerbalDrugs and Recommendation of Cinnamomum camphora oil as Herbal Fungi toxicant[J]. MicrobialEcology,2008,56(3):555-560.
    [115] Srivastava B, Singh P, Shukla R, et al. A novel combination of the essential oils of Cinnamomumcamphora and Alpinia galanga in checking aflatoxin B1production by a toxigenic strain ofAspergillus flavus[J]. World Journal of Microbiology and Biotechnology,2008,24(5):693-697.
    [116] Hu J N, Zhang B, Zhu X M, et al. Characterization of Medium-Chain Triacylglycerol(MCT)-Enriched Seed oil from Cinnamomum camphora (Lauraceae) and Its Oxidative Stability[J]. J.Agric. Food Chem,2011,59(9):4771–4778.
    [117]周新菊.樟树良种繁育及栽培利用研究进展[J].广东林业科技,2009,25(1):68-72.
    [118]王仁政.樟树育苗造林技术[J].广西林业,2002(4):30-31.
    [119]刘德良,王楚正.几种樟树育苗及幼苗生长特性观察[J].经济林研究,2003,21(1):25-28.
    [120]周佑勋,段小平,肖东玉.樟树、檫树、闽楠种子的休眠和萌发特性[J].中南林学院学报,2006,26(5):79-84.
    [121]杨华.樟树播种育苗技术[J].农村实用技术,2007(1):47.
    [122] Chien C T, Lin T P. Mechanism of hydrogen peroxide in improving germination of CinnamomumCamphora seed [J]. Seed Science and Technology,1994,22(2):231-236.
    [123]傅强,杨期和,叶万辉.种子休眠的解除方法[J].广西农业生物科学,2003,22(3):230-234.
    [124]任华东,姚小华,孙银祥,等.樟树种子性状产地表型变异研究[J].江西农业大学学报,2000(3):12-15.
    [125]杨恢轩,邓集杰.樟树等三个阔叶树种芽苗移植选优试验[J].湖南林业科技,2004,31(1):35-37.
    [126]孔祥能.樟树芽苗移植育苗技术[J].安徽林业,2005(2):33.
    [127] Sajina A, Minoo D, Geetha S P, et al. Production of synthetic seeds in few spice crops, Biotechnologyof spices, medicinal&aromatic plants. Proceedings of the national seminar on biotechnology ofspice sand aromatic plants, Calieut, India,1997(1):65-69.
    [128] Bahuguna V K, Rawat M M S, Thapa V S. Preliminary in vestigation on dormaney and geroinationbehaviour of Cinnamomum Camphora Nees. seed[J]. Van Vigyan,1987,25(1/2):35-37.
    [129]张旻桓,张汉卿,刘二东,等.耐寒樟树的短根扦插快速繁殖技术研究[J].湖北农业科学,2012,51(24):5704-5707.
    [130]曲芬霞,陈存及,韩彦良.樟树扦插繁殖技术[J].林业科技开发,2007,21(6):86-89.
    [131]黄金使,韦颖文,陈晓明,等.芳樟醇型樟树组培苗幼态枝扦插试验[J].广西热带农业,2008(5):1-3.
    [132]王海波,冯志全,李海山.香樟树可持续经营技术[J].中国林副特产,2011(4):69-70.
    [133]张建忠,姚小华,任华东,等.香樟扦插繁殖试验研究[J].林业科学研究,2006,19(5):665-668.
    [134]吴幼媚,王以红,陈晓明,等.芳樟醇型樟树组培快繁优化技术[J].林业科技开发,2010,24(6):78-81.
    [135]欧景华.香樟组织培养快繁技术研究[J].内蒙古林业调查设计,2012(5):44-45.
    [136]刘秀芳,林文革,苏明华.龙脑樟(Cinnamomum camphora)组培快繁与苗木工厂化生产技术研究[J].2011,31(5):569-574.
    [137]郑红建.香樟组培快繁技术研究[J].林业科技开发,2012,26(1):103-106.
    [138]杜丽,叶要妹,包满珠.香樟未成熟合子胚体细胞胚发生及植株再生研究[J].林业科学,2006,42(6):35-39.
    [139] Huang L C, Huang B L, Murashige T A. micropropagation protocol for Cinnamomum camphora[J]. Invitro Cellular&Developemental Biology-Plant,1998,34(2):141-146.
    [140]龚峥,周丽华,张卫华,等.樟树组织培养快繁育苗技术研究[J].广东林业科技,2007,23(5):35-39.
    [141]曹艳云.芳樟醇型樟树嫁接育苗试验[J].广西林业科学,2004,33(2):98-99.
    [142]黄文养.樟树速生林的营造技术[J].广东林业科技,2009,25(3):84-89.
    [143]宋祥兰,卓儒菊,徐鑫.赣州樟树矮林作业试验初报[J].中国林副特产,2010(6):24-25.
    [144]吴刚,章景阳,王星.酸沉降对重庆南岸马尾松针叶林年生物生产量的影响及其经济损失的估算[J].环境科学学报,1994,14(4):461-465.
    [145]王以红,覃子海,吴幼媚,等.芳樟醇型樟树选优与其无性系的含樟油性状评价[J].西部林业科学,2010,39(2):18-21.
    [146]莫建光,杨益林,黄志标,等.广西芳樟醇型樟树枝叶含油率及其主要成分含量的变异研究[J].林产化学与工业,2010,30(2):72-76.
    [147]段博莉.樟树叶片精油及其主要成分的遗传变异规律研究[D].中国林业科学研究院,2006.
    [148]任华东,姚小华,孙银祥,等.樟树种源苗期生物量变异及其综合评价[J].林业科学研究,2000,13(1):80-85.
    [149]彭东辉.樟树优良单株选择与组培研究[D].福建农林大学,2004.
    [150]刘雁,李春林,李玉蕾.芳香樟优良单株的选择方法[J].林业科技开发.2003,16(l):26-29.
    [151]姚小华,任华东,孙银样,等.樟树种源/家系早期性状变异及选择研究[J].江西农业大学学报,2002,24(3):330-335.
    [152]邢建宏,刘希华,陈存及,等.樟树几种生化类型及近缘种的RAPD分析[J].三明学院学报,2007,24(4):433-437.
    [153]张国防,陈存及.不同化学型樟树的RAPD分析[J].植物资源与环境学报,2007,16(2):17-21.
    [154]中国林业科学研究院亚热带林业研究所.成果技术报告《樟树幼龄期生长和适应性的地理变异规律和绿化用优良种源选择》.2001.
    [155] Lin T P, Cheng Y P, Huang S G. Allozyme variation in four geographic areas of Cinnamomumkanehirae[J]. Journal of Heredity,1997,88(5):433-438.
    [156]简文树,李春来,李正和.高含油量品系樟树之选育与推广[J].国立台湾大学农学院实验林研究报告,1988,2(3):31-45.
    [157]郭德选,龙光远,刘银苟.樟树类型子代苗期表型测定初报[J].吉安林业科技,1988(2):1-6.
    [158]峡江县林木良种站.樟树人工母树林类型生长调查初报[J].吉安林业科技与经济,1992(1):12-15.
    [159]谭华,唐雨德.樟杉混交林调查研究[J].江西林业科技,1992(2):6-8.
    [160]陈炜,黄永生.叶用芳樟的选种与栽培[J].香料香精化妆品,1991(4):1-2,58.
    [161]傅星星.杉木精油提取及其深加工研究[D].福建农林大学,2007.
    [162]赵刚.福建樟树精油生化类型与优良单株选择的研究[D].福建农林大学,2005.
    [163]石皖阳,何伟,文光裕,等.樟精油成分和类型划分[J].植物学报,1989,31(3):209-214.
    [164]徐中儒.回归分析与实验设计[M].北京:中国农业出版社,1997.
    [165]陈慧斌,王梅英,陈绍军,等.响应面法优化牡蛎复合酶水解工艺研究[J].西南大学学报(自然科学版),2011,33(11):146-151.
    [166]刘长江,李钇潼,刘辉,等.同时蒸馏萃取芹菜籽油的工艺[J].食品研究与开发,2009,30(12):103-105.
    [167]沈懋文,邵亮亮,侯付景,等.响应面法优化杭白菊花精油的提取工艺及其化学成分研究[J].食品科学,2010,31(10):101-105.
    [168]秦俊哲,郭云霞,高存秀,等.响应面法优化银杏总黄酮的提取工艺[J].陕西科技大学学报,2011,29(6):7-9,12.
    [169]丛浦珠.质谱在天然有机化学中的应用[M].北京:科学出版社,1987.
    [170]杨前字,谢锦忠,张玮,等.椽竹各器官生物量模型[J].浙江农林大学学报,2011,28(3):519-526.
    [171]李亚,陈芳,马全林,等.沙地一年生植物五星蒿的构件特征研究[J].草业科学,2009,26(7):66-71.
    [172]刘左军,杜国祯,陈家宽.不同生境下黄帚橐吾(Ligularia virgaurea)个体大小依赖的繁殖分配[J].植物生态学报,2002,26(1):44-50.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700