用户名: 密码: 验证码:
茶树根际土壤氨氮转化菌的分离、鉴定及效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
茶树是一种喜欢铵态氮的植物,由于北方土壤硝化作用明显,一部分铵态氮被硝化,N素损失量较大。同时,在茶树生长季节茶农重施有机肥,而有机态氮转化成无机氮的速度慢,氮素供给量不足,不能够满足茶树对氮肥的需求。因此,如何在降低化肥使用量的同时,提高氨氮微生物转氨的能力,增强土壤有机肥转化速率,同时利用固氮微生物固定氮素,从而起到提高土壤铵态氮含量的作用,成为目前生态茶园建设中的一个重要课题。本研究拟从山东茶树根际土壤中筛选氨化菌和固氮菌等促生菌,并对其特性进行研究;同时,将筛选出的高活性氨化菌(T1)、固氮菌(T2)和两者的混合菌(T3)接种茶园土壤,以不接种(CK)为对照,研究接种对根际微生物种群及多样性、土壤化学性质、茶苗生长及N代谢的影响,探讨土壤微生物与茶树生长发育的关系,为茶园土壤管理和茶树可持续生产提供依据。其主要研究结果如下:
     1.从茶园根际土壤中分离纯化获得33株氨化细菌菌株。从中筛出三株不同种属的高活性菌株,经鉴定菌株SNT3属于芽孢杆菌属,菌株SNT6属于微小杆菌属,菌株SNT33属于不动杆菌属。三株菌株的最适宜生长温度均为35℃;在pH适宜范围和氨化能力方面,三株菌株存在明显差异,其中SNT3的菌株pH适宜范围最大,氨化能力最强。
     2.从茶园根际土壤中分离纯化得到6株固氮菌株。从中选出两株不同种属的菌株,经鉴定菌株GD5为褐球固氮菌,菌株GD15为恶臭假单胞菌。两菌株生长最适宜的pH7,最适宜生长温度为30℃;GD5具有溶磷作用和分泌生长素的能力,而GD15仅具有分泌生长素的能力。
     3.接种处理对茶园根际土壤微生物种群及土壤化学特性有显著影响。接种后微生物群落多样性指数、均匀度指数、丰富度指数上升,优势度指数下降,根际微生物多样性增加,物种之间更趋于稳定。同时接种后细菌和放线菌数量增多,真菌总量有所减少。细菌中氨化细菌和自生固氮菌的数量呈现增长趋势,硝化细菌的数量受到抑制。接种试验后根际土壤的pH都有所下降,T1和T3接种处理pH较高。在有机质方面,各处理含量变化不大,但接种处理促进了有机碳的积累。在速效养分方面,铵态氮、速效P、速效K接种处理显著高于对照处理。T1、T2、T3处理铵态氮浓度比CK分别提高40%、42%、65%;硝态氮浓度接种处理显著低于对照。在酶活性方面,接种处理酶活性高于对照。经分析细菌与铵态氮和4种土壤酶活性呈极显著正相关;真菌与铵态氮呈负相关,与硝态氮呈显著正相关,与土壤酶活性呈正相关;放线菌与脲酶和天门冬酰胺酶呈极显著正相关;特征性细菌与无机氮和土壤酶之间相关性明显且有一定的差异性。
     4.接种后茶苗生物量和新梢全N量显著高于对照。叶片中硝酸还原酶、谷氨酸合成酶、谷氨酰胺合成酶的活性相似,均以处理20d最高。接种处理酶活性高于CK,枯草芽孢杆菌处理和褐球固氮菌处理无差别,与混合菌处理有差别但不显著。根系中NR活性变化不大。
The tea tree liked ammonium nitrogen. A part of ammonium nitrogen was nitrated, dueto nitrification was obvious in the the northern soil. Therefore, the absorption of ammoniumnitrogen was effected. Meanwhile, a large number of organic fertilizer was used in the teagrowing season. It could not meet the demand of tea, beacause the speed of organic nitrogeninto inorganic nitrogen was slow. It was an important subject of the ecological teaconstruction for how to reduce the amount of fertilizer, improve the ability of the ammoniamicroorganisms aminotransferase, enhance the transformation ratio of organic, fix thenitrogen by nitrogen-fixing bacteria, to increase the content of ammonium nitrogen in the soil.The ammonifier and nitrogen-fixing bacteria were planed to screen from rhizosphere soil oftea garden in Shandong province, and the characteristics were studied in this study. Then, Thehigh activity of ammonifying bacterial (T1), azotobacter (T2), mixed bacteria of the twostrains were inoculated in the rhizosphere soil of tea garden, and the CK was no inoculationtreament. The effects of inoculation on rhizosphere microbial diversity, soil chemical property,tea plant growth and the nitrogen metabolism in this study.It was aim to explore therelationship between soil microbial and growth and development of the tea tree, and toprovide a theoretical foundation for the tea garden soil management and sustainableproduction of tea.The results were as follows:
     1. The33ammonifying bacterial strains were screened from the rhizosphere soil of teagarden in Shandong province, and the three different species of high activity strains wereselected. The strain SNT3was preliminary identified as Bacillus, SNT6as Exiguobacteriumand SNT33as Acinetobacter. The optimum temperature of three strains were35℃; Therewere significant differences for the optimum range of pH and ammonifying capacity. Amongwhich SNT3had the maximum optimum range of pH, and the most capacity of ammoniation.
     2. The6azotobacter strains were screened from the soil. The two different speciesstrains were selected. The strain GD5was preliminary identified as Azotobacter chrococcum,GD15as Pseudomonas putida. The optimum pH for GD5,GD15were7; the optimumtemperature of two strains were30℃;The GD5showed the phosphate solubilizing power andauxin production, and the GD15could produce auxin only.
     3. There were significant differences for the microbial population and soil chemicalproperty in rhizosphere soil after inoculating. The Shannon-Wiener index, Brillouin index,Margalef index rise while Simpson index fall through Bio-Dap software analysis. Themicrobial diversity was enhanced and the total biomass tend to stability.Meanwhile, thenumber of bacteria and actinomycetes increased, but the fungus decreased. Theammonifilation bacteria and abiogenous azotobacter had the growth trend among the bacteria,but the number of nitrifying bacteria was inhibited.After inoculating, although soil pHdecreased, T1and T3treatment showed the higher soil pH. The soil organic matter have noeffects among them, but T1, T2and T3treatment promote the accumulation of organic carbon.The content of ammonium nitrogen, available P, available K of inoculation treatments weresignificantly higher than CK. The content of ammonium nitrogen were increased separatelyby40%,42%and65%compared with the CK, while the nitrate nitrogen was vice versa. Theactivities of urease, catalase, protease and L-asparainase of in T1, T2and T3treatment waswas higher than CK. According to correlative analysis, bacteria was positively correlated withammonium nutrition and4types of enzyme activities; fungus was negative correlation withammonium, but had positive correlation with nitrate nitrogen and4types of enzyme activities;Actinomycetes were significantly and positively correlated with urease and L-asparainase inboth indexes. There were significant differences in the characteristic bacteria, soil nitrogenmineralization and soil enzyme.
     4The biomass and total N content of inoculation treatments were significantly higherthan CK. The activities of NR, GS, GOGAT were similitude. The enzyme activity ofinoculation treatments were significantly higher than CK. There were no differences betweenT1and T2, whie the differences between T1, T2and T3were significantly. The change of NRin root wre not significantly.
引文
BuchananRE, GibbonsNE.伯杰细菌鉴定手册(第八版)[M].北京,科学出版社:1984.
    鲍士旦.土壤农化分析(第三版)[M].北京:中国农业出版社,2007.
    蔡燕飞,廖宗文.土壤微生物生态学研究方法进展[J].土壤与环境,2002,11(2):167-171.
    陈佳荣.水化学实验指导书[M].北京:中国农业出版社,1996.
    陈淑云,李波,王树生.泥炭生物菌肥的研究及其应用[J].腐植酸,2005(1):5-11.
    陈文新.生物固氮[C]//中国土壤学会.氮素循环与农业和环境学术研讨会论文集.厦门:厦门大学出版社,2001:4-5.
    陈翔兰.生物菌肥的作用及推广应用前景[J].内蒙古农业科技,2008(4):96.
    陈杨栋,陈婷,李力炯,曹张军,张兴群.几种苎麻园土壤微生物总DNA提取方法比较[J].实验室研究与探索,2010,29(4):17-20.
    邓黛青,李光明,周仰原,胡晨燕. FISH荧光原位杂交技术在污水生物脱氮研究中的应用[J].微生物学通报,2006,33(2):132-136.
    邓欣,谭济才,尹丽蓉,任佑华,刘红艳.不同茶园土壤微生物数量状况调查初报[J].茶叶通讯,2005,32(2):7-9.
    东秀珠,蔡妙英.常见细菌系统鉴定手册[M].北京科学出版社,2001.
    董园园,董彩霞,卢颖林,缪辰,沈其荣. NH4+-N部分代替NO3--N对番茄生育中后期氮代谢相关酶活性的影响[J].土壤学报,2006,43(2):261-266.
    杜旭华,彭方仁.无机氮素形态对茶树氮素吸收动力学特性及个体生长的影响[J].作物学报,2010,36(2):327-334.
    杜旭华,周贤军,彭方仁.茶树不同器官氨同化关键酶活性测定及比较[J].经济林研究,2008,26(2):23-28.
    段星春,易筱筠,党志,陶雪琴,吴惠勤,黄晓兰.乙酸钙不动杆菌TS2H对DBP降解特性的研究[J].生态环境,2007,16(3):846-849.
    段英华,张亚丽,沈其荣.增硝营养对不同基因型水稻苗期吸铵和生长的影响[J].土壤学报,2005,42(2):260-265.
    段英华,张亚丽,王松伟,沈其荣.不同氮效率水稻全生育期内对增硝营养的响应及其生理机制[J].生态学报,2007,27(3):1086-1092.
    高美英,刘和,冀常军,王中英,祁素萍.覆盖对果园土壤氨化细菌数量年变化的影响[J].土壤通报,2000,31(6):273-274.
    高旭辉.茶树根际微生物与根际效应[J].茶叶通讯,1999,(1):35-38.
    葛芸英,陈松,胡兰,涂政.土壤细菌DNA提取及多样性分析的T-RFLP方法[J].微物学通报,2008,35(1):131-136.
    关松荫.土壤酶及其研究法[M].北京:农业出版社,1986.
    官周平,李世平.旱地作物氮素营养生理生态[M].科学出版社,2004,4:32-40.
    管闪青,张屹东,杨冬冬,黄丹枫.甜瓜谷氨酰胺合成酶基因在不同氮素条件下的表达分析[J].上海交通大学学报(农业科学版),2007,25(1):24-28.
    郭兴昌,马天骥,冯世杰.九龙复合生物菌肥在苹果树上施用效果初报[J].甘肃农业科技,2000(9):36-37.
    韩文炎,王皖蒙,郭赟,杨明臻,贾仲君.茶园土壤细菌丰度及其影响因子研究[J].茶叶科学,2013,33(2):147-154.
    韩文炎. VA菌根与不同品种茶树生长的关系[J].中国茶叶,2003(4):35.
    何良祖.生物菌肥与农家肥、化肥配合施用对土壤改良和番茄生长的影响[J].长江蔬菜,2009(12):63-64.
    何霞,吕剑,何义亮,赵彬,李春杰.异养硝化机理的研究进展[M].微生物学报,2006,46(5):844-847.
    洪祯瑞,王益福,方月珍,董金甫,李能树.茶树根际微生物区系的研究[J].茶叶科学,1985,5(2):11-l8.
    胡江,代先祝,李顺鹏.阿特拉津降解菌BTAH1的分离与鉴定[J].中国环境科学,2004,24(6):738-742.
    黄益宗,冯宗炜,张福珠.农田氮损失及其阻控对策研究[J].中国科学院研究生学报,2000,17:49-58.
    黄祖法,温琼英.茶树根表微生物的初步调查[J].中国茶叶,1982,6:9-11.
    吉艳芝,冯万忠,陈立新,段文标,张笑归.落叶松混交林根际与非根际土壤养分、微生物和酶活性特征[J].生态环境,2008,17(1):339-343.
    焦振泉,刘秀梅.细菌分类与鉴定的新热点:16S-23SrDNA间区[J].微生物学报,2001,28(1):85-89.
    靳莉君,王景华,黄国俊.生物菌肥对红富士苹果生长、产量和品质的效应研究[J].山西农业科学,2004,32(1):46-48.
    李常健,林清华,张楚富.高等植物谷氨酰胺合成酶研究进展[J].生态学杂志,2001,18(4):1-3.
    李凤汀,郝正然,杨则瑗,张春莉.硅酸盐细菌HM8841菌株解钾作用的研究[J].微生物学报,1997,37(1):79-81.
    李阜棣,喻子牛,何绍江.农业微生物学实验技术[M].北京:中国农业出版社,1996,5(1):137-137.
    李阜棣.土壤微生物学[M].北京:中国农业出版社,1996:80-191.
    李辉,徐新阳,李培军,尹炜, V. A. Verkhozina.人工湿地中氨化细菌去除有机氮的效果[J].环境工程学报,2008,2(8):1044-1047.
    李辉信,胡锋,刘满强,蔡贵信,范晓晖.红壤氮素的矿化和硝化作用特征[J].土壤,2000,32(4):194-197.
    李建辉,路盼盼,张亚平.新疆泥火山土壤宏基因组DNA的提取方法研究[J].安徽农业科学,2010,38(23):12416-12417.
    李钧敏,金则新,张崇邦.不同土层土壤细菌的遗传多样性及其与环境因子的相关性[J].浙江大学学报(理学版),2006,33(6):695-701.
    李庆康,丁瑞兴,黄瑞采.黄棕壤植茶后微生物数量和分布的变化[J].茶叶,1990,16(4):4-6,26.
    李庆康,张永春,杨其飞.生物有机肥肥效机理及应用前景展望[J].中国生态农业报,2003,11(2):78-80.
    李生秀.中国旱地土壤植物氮素[M].北京:科学出版社,2008:3-70.
    李霞,阎秀峰,刘剑锋.氮素形态对黄檗幼苗生长及氮代谢相关酶类的影响[J].植物学通报,2006,23(3):255-261.
    李亚利,贾迎春,蒲崇建.杨成德,陈秀蓉.采用16SrDNA鉴定甜瓜细菌性叶斑病菌[J].植物保护,2007,33(3):65-68.
    李永梅,杜彩琼,林春苗,王小红.铵态氮肥施入土壤中的转化[J].云南农业大学学报,2003,18(1):26-29.
    梁慧玲,董尚胜.茶园土壤微生物研究现状[J].茶叶,200l,27(4):3-5.
    廖万有.茶树的氮素营养与高产优质[J].广西热作科技,1999,72(3):12-16.
    林启美,赵小蓉,孙焱鑫,姚军.四种不同生态系统的土壤解磷细菌数量及种群分布[J].土壤与环境,2000,9(1):34-37.
    林松,王香甩,宋维希.光合菌肥在茶树上的应用[J].福建茶叶,2002,(2):22.
    刘柏玉,雷泽周. VA菌根对茶苗生长及养分吸收的影响[J].中国茶叶,1995(5):6-7.
    鲁如坤.土壤-植物营养学原理和施肥[M].北京:化学工业出版社,1998:79-146.
    陆锦时,魏芳华,李春华.茶树新梢中主要游离氨基酸含量及组成对茶树品种品质的影响[J].西南农业学报,1994,7(1):13-16.
    吕爱英,王永歧,沈阿林.6种微生物肥料在不同作物上的应用效果[J].河南农业科学,2004(4):49-51.
    吕国红,周广胜,赵先丽,周莉.土壤碳氮与土壤酶相关性研究进展[J].辽宁气象,2005(2):6-8.
    罗青,宋亚娜,郑伟文.福建土壤固氮微生物的多态性研究方法进展[J].福建农业学报,2005,20:149-153.
    罗青.福建省稻田土壤固氮微生物多态性研究[D].福州:福建农林大学,2006.
    孟颂东,关桂兰,王卫平.根际微生物产生植物激素对小麦生长的作用[J].植物生理学通讯,1998,34(6):59-65.
    彭方仁,郭红彦,杨玉珍,郭彦青.木本植物氨同化作用研究进展[J].南京林业大学学报:自然科学版,2006,30(6):117-122.
    钱咏梅,王洪泉.“丰禾”复合生物菌肥在意大利生菜上的试验研究[J].中国园艺文摘,2012(4):22-24.
    阮建云,马立锋,石元值.茶树根际土壤性质及氮肥的影响[J].茶叶科学,2003,23(2):167-170.
    沈萍.微生物学[M].北京:高等教育出版社.2000:314-320.
    沈中泉,郭元桃,袁加富.有机肥料对改善农产品品质的作用及机理[J].植物营养与肥料学报,1995,1(2):53-57.
    施国涵.松树和杨树林下土壤微生物对灭幼脲3号降解代谢的研究[J].林业科学,1991,27(4):452-458.
    史亚萍,张宏,郭道森,李荣贵.一种促进蓝藻生长的海洋细菌的分离与鉴定[J].青岛大学学报(工程技术版),2010,25(2):41-46.
    宋歌,孙波,教剑英.测定土壤硝态氮的紫外分光光度法与其他方法的比较[J].土壤学报,2007,44(2):288-293.
    苏金为,王湘平.茶叶片硝酸还原酶活性体内测定法探讨[J].贵州茶叶,1991,(2):29-30.
    苏有健.茶园氮素损失及影响因素的初探[J].茶业通报,2008,30(4):173-174.
    孙海新,刘训理.茶树根际微生物研究[J].生态学报,2004,24(7):1353-1357.
    孙建光,张燕春,徐晶,胡海燕.玉米根际高效固氮菌Sphingomonas sp. GD542的分离鉴定及接种效果初步研究[J].中国生态农业学报,2010,18(1):8993.
    孙晓棠,王燕,崔汝强,崔汝强,姚青,朱红惠.番茄根际微生物种群动态变化及多样性[J].微生物学通报,2008,35(11):1744-1749.
    谭志远,陈文新.根瘤菌新类群的全细胞蛋白电泳及16S rDNA全序列分析[J].应用与环境生物学报,1998,4(1):65-69.
    田宏,张德罡,姚拓,席琳乔.禾本科草坪草固氮菌株筛选及部特性初步研究[J].中国草地,2005,2(5):4752.
    田永辉,魏杰,令狐昌弟.卢天国.不同基因型茶树根系活力及根际土壤酶活性研究[J].贵州大学学报,2002,21(3):219-223.
    田永辉,魏杰.不同无性系茶树品种的根际细菌及酶活性动态研究[J].西南农业学报.2001,14(4):63-66.
    田永辉.不同基因型茶树根际微生物动态及根际效应[J].贵州茶叶,2000,101(1):35-37.
    田永辉.不同树龄茶对根际固氮菌组成及多样性研究[J].福建茶叶,2000,(3):19-21.
    王华荣,彭桂香,张国霞,侯伟,谭志远.糖蜜草内生固氮菌分离鉴定[J].生态学报,2006,26(8):2566-2571.
    王娟,戴习林,宋增福.一株氨化细菌的分离、鉴定及氨氮降解能力的初步分析[J].水生生物学报,2010,34(6):1198-1201.
    王莉.农田氮素流失的特点及对环境的影响[J].辽宁农业科学,1998(3):48-50.
    王琳,李季,郭廷忠,徐智.乙酸钙不动杆菌对富营养化景观水体的净化作用[J].生态环境,2008,17(5):1784-1786.
    王湘平,苏金为.茶树硝酸还原酶活性的研究[J].中国茶叶,1990,(l):18-19.
    王湘平,苏金为.茶树硝酸还原酶活性与产量性状及氮素营养的关系[J].茶叶科学,1990,10(2):64.
    王小纯,熊淑萍,马新明.不同形态氮素对专用型小麦花后氮代谢关键酶活性及籽粒蛋白质含量的影响[J].生态学报,2005,25(4):802-807.
    王新超,杨亚军,陈亮,阮建云.茶树氮素利用效率相关生理生化指标初探[J].作物学报,2005,31(7):926-931.
    王新超,杨亚军,陈亮.茶树谷氨酸合酶的提取与活性测定[J].中国茶叶,2004,(5):10-11.
    王旭辉,丁亚欣,谈俊.生物菌肥促生机制研究[J].现代农业科技,2010(4):308-309.
    王振宇,赵更峰,陈威,张昱.采油废水模拟处理系统中酵母菌群落结构动态初步解析[J].微生物学通报,2009,36(2):165-169.
    吴凡,张楠,张莎莎,姜维,刘训理.桑树根际固氮细菌的分离鉴定及固氮酶活力测定[J].蚕业科学,2008(03):387-391.
    吴建峰,林先贵.土壤微生物在促进植物生长方面的作用[J].土壤,2003,35(1):18-21.
    吴询,茹国敏.茶树对氮肥的吸收和利用[J].茶叶科学,1986,6(2):15-24.
    伍炳华.韩文炎,姚国坤.茶树氮磷钾营养的品种间差异[J].茶叶科学,1991, l1(l):11-18.
    席琳乔,李德锋,王静芳,马金萍,张利莉.棉花根际促生菌固氮和分泌生长激素能力的测定[J].干旱区研究,2008,25(5):690-694.
    肖凯,张树华,邹定辉,张荣铣.不同形态氮素营养对小麦光合特性的影响[J].作物学报,2000,26(1):53-58.
    新楠,樊明寿,王海凤.羊草和冰草根际高效固氮菌的分离及鉴定[J].天津农学院学报,2008,15(2):40-42.
    徐华勤.稻草覆盖与三叶草间作茶园土壤微生物类群多样性及其活性研究[D].长沙:湖南农业大学,2007,57(4):23-25.
    许光辉,郑洪元.土壤微生物分析方法手册[M].北京:农业出版社,1986.
    许允文,韩文炎,石元值,朱跃进,金卫东.茶园施用多效有机菌肥的试验效果[J].中国茶叶,2001,23(4):12-14.
    薛冬,姚槐应,黄昌勇.茶园土壤微生物群落基因多样性[J].应用生态学报,2007,18(4):843-847.
    薛冬.茶园土壤微生物群落多样性及硝化作用研究[D].杭州:浙江大学,2007.
    闫爱民,陈文新.干旱地区几种豆科植物根瘤菌的数值分类和SDS-PAGE全细胞蛋白电泳分析[J].应用与环境生物学报,1998,4(4):354-359.
    杨扬,刘炳君,房江育,胡长玉,程东华,王世强.不同植茶年龄茶树根际与非根际土壤微生物及酶活性特征研究[J].中国农学通报,2011,27(27):118-121.
    杨耀松.茶树氮素营养研究[J].茶叶通讯,1996,1:16-18.
    姚槐应,黄昌勇.土壤微生物生态学及其实验技术[M].北京:科学出版社,2006,8:140-142.
    姚拓,龙瑞军,王刚,胡自治.兰州地区盐碱地小麦根际联合固氮菌分离及部分特性研究[J].2004,41(3):444-448.
    姚拓.高寒地区燕麦根际联合固氮菌研究[J].草业学报,2004,13(3):85-90.
    叶水娟.茶园施用酵素菌肥料初步试验[J].中国茶叶,2004,26(1):40-41.
    尹瑞龄.我国旱地土壤的溶磷微生物[J].土壤,1988,20(5):243-246.
    俞慎,何振立,陈国潮,黄昌勇.不同树龄茶树根层土壤化学特性及其对微生物区系和数量的影响[J].土壤学报,2003,40(3):433-439.
    张夫道.氮素营养研究中的几个热点问题[J].植物营养肥料学报,1998,4(4):331-338.
    张峦,沈国清,曹林奎.镉和菲复合污染对土壤微生物DNA序列多样性的影响[J].科技通报,2005,21(6):763-769.
    张瑞福,曹慧,崔中利,李顺鹏,樊奔.土壤微生物总DNA的提取和纯化[J].微生物学报,2003,42(3):276-282.
    张瑞福,崔中利,李顺鹏.土壤微生物群落结构研究方法进展[J].土壤(Soils),2004,36(5):476-480.
    张巍,冯玉杰,陈桥.耐盐碱固氮菌的分离筛选及固氮特性研究[J].环境科学与技术,2008,31(5):22-25.
    张文锦,鲜叶氮磷钾含量与乌龙茶品质关系的研究[J].福建茶叶,1992,(3)16-19.
    张晓勇,刘义平.玉米联合固氮菌的溶磷作用[J].新疆农业科学,1992,14(6):264-265.
    张新要,刘卫群,易建华.红壤、水稻土上不同氮素形态配比对烤烟碳氮代谢关键酶活性的影响[J].云南农业大学学报,2005,20(2):225-230.
    张亚莲.微生物肥料的功效及在茶树上的利用[J].茶叶通讯,2003,(1)19-22.
    张于光,李迪强,王慧敏.用于分子生态学研究的土壤微生物DNA提取方法[J].应用生态学报,2005,16(5):956-960.
    张于光.三江源国家自然保护区土壤微生物的分子多样性研究[D].长沙:湖南农业大学.
    张瑜斌,林鹏,邓爱英,庄铁诚.九龙江口红树林鹧鸪菜藻体自生固氮细菌[J].生态学杂志,2007,26(9):1384-1388.
    赵斌,何绍江.微生物学实验[M].北京:科学出版社,2008.
    赵光,王宏燕.土壤微生物多样性的分子生态学研究方法[J].中国林副特产,2006,1:54-56.
    赵菁,黄奋飞,林生,林文雄.纤维素降解细菌的分离、鉴定及其系统发育分析[J].安徽农学通报,2011,17(17):47-47.
    赵勇.应用分子生物学技术解析不同处理状况下土壤微生物群落结构的变化[D].南京:南京农业大学,2005.
    郑超,谭中文,刘可星,廖宗文,刘月廉,廖愉朗.不同覆盖条件下甘蔗土壤微生物区系研究[J].华南农业大学学报,2004,25(2):5-9.
    郑朝峰.氮素形态对小麦叶片谷氨酸合成酶的影响[J].植物生理学报,1986,4:46-48.
    郑刚,陈己任,胡博文,陈彦斌,赵国华.基于DGGE分析的大鼠粪便及肠道细菌DNA提取方法研究[J].食品科学,2011,32(17):215-218.
    郑红丽,李少红,樊明寿,乌兰巴特尔,王曙光.四种牧草根际固氮细菌的分离及固氮活性的研究[J].干旱区资源与环境,2007,21(4):164-168.
    郑亚琴.有机茶生产土壤铺草技术及其应用效果分析[J].安徽农业科学,2005,33(5):33-34.
    钟玲玲.关于土壤中氮素转化规律的研究[J].北方环境,2002,(3):50-53.
    周琳,张晓君,李国勋,张杰. DGGE/TGGE技术在土壤微生物分子生态学研究中的应用[J].生物技术通报,2006,(5):60-71.
    周鑫斌,洪坚平,谢英荷.溶磷细菌肥对石灰性土壤磷素转化的影响[J].水土保持学报,2005,19(6):70-73.
    Acinas S G, Rodreguez, Vlera F. Spatial and tempora1variation in marine bacterioplanktondiverd ty a shown by RFLP fingerprinting of PCR anaplified16S rDNA[J].FEMSMicrobiologyEcology,1997,24(1):27-40.
    Amann R I, Ludwig W, Schleifer K H. Phylogenetic identification and in situ detection ofindividual microbial cells wlthout cultivation [J]. Microbiological Reviews,1995,59(1):143-169.
    Asghar H N. Screening rhizobacteria for improving the growth yield and soil content ofcanola(Brassica napus L.)[J]. Aust J Agric Res,2004,55:187-194.
    Bae H S, Rash A, Fred A, et al. Description of Azospira restricta sp. nov., a nitrogen-fixingbacterium isolated from groundwater[J]. Int J Syst Evol Microbiol,2007,57:15211526.
    Baey M.V., Kiriukhin M.Y., Tsygankov Y.D.. Regulation of ammonia assimilation in anobligate methylotroph Methylobacillus flagellatum under steady-state and transientgrowth conditions[J]. Antonie van Leeuwenhoek,1997,71:353-361.
    Baligar V C, Wright R J, Smedley M D. Enzyme activities in hill land soils of theAppalachian region [J]. Comm. Soil Sci. Plant Analy.,1988,19:367-3841
    Belimov A A. Cadmium-tolerant plant growth-promoting bacteria associated with the roots ofIndian mustard(Brassica juncea L. Czern.)[J]. Soil Biol Biochem,2005,37:241-250.
    Collins M. D, Lund B M, Farrow J A E, et al. Chemotaxonomic study of an alkalophilicbacterium, Exiguobacterium aurantiacum gen. nov, sp. nov[J]. J Gen Microbiol,1983,129:2037-2042.
    D. Thakuria, N. C. Talukdar, C. Goswami, et al. Characterization and screening of bacteriafrom rhizosphere of rice grown in acidic soils of Assam. Current Science, Vol.86, No.7,10April2004:978-985
    Eickhorst T, Tippkotter R. Improved detection of soil microorganisms using fluorescence insitu hybridization (FISH) and catalyzed reporter deposition (CARD-FISH)[J]. SoilBiology and Biochemistry,2008,40:1883-1891.
    Eric Glickmann,Yves Dessaux. A critical examination of the specificity of the salkowskireagent for indolic compounds produced by phytopathogenic bacteria[J]. Applied andEnvironmental Microbiology,1995(2):793-796.
    Govindan Selvakumar, Piyush Joshi, Sehar Nazim, et al. Exiguobacterium acetylicum strain1P (MTCC8707) a novel bacterial antagonist from the North Western IndianHimalayas[J]. World J Microbiol Biotechnol,2009,25:131–137.
    Hafeez F Y, Malik K A. Manual on biofertilizer technology[M]. Pakistan: NIBGE,2000.
    Henckel T, Firedrich M, Conrad R. Molecular analyses of the methane-oxidizing microbialcommunity in rice field sol1by targeting the genes of the16S rRNA, particulate methanemonooxygerume, and mitlmnol dehydrogenase[a]. Applied and EnvirormaentalMicrobiology,1999,65(5):1980-1990.
    Ishiyama K., Hayakawa T., Yamaya T.. Expression of NADH-dependent glutamate synthaseprotein in the epidermis and exodermis of rice roots in response to the supply ofammonium ions[J]. Planta,1998,204:288-294.
    Kim K Y. Effect of phosphate-solubilizing bacteria and vesicular-arbuscu-lar mycorrhizae ontomato growth and soil microbial activity[J]. Biol Fertil Soils.1998,26:79-87.
    Kloepper J W, Schroth M N. Plant growth promoting rhizobacteria on radishes [M] Station depathologic vegetable et phytobacterioloty. Proceedings of the4th International Conferenceon Plant Pathogenic Bacteria (Vol.2). Tours France:Gilbert-Clarey,1978:879-892.
    Kloepper J W. Free-living bacterial inocula for enhancing crop productivity[J]. TrendsBiotechnol,1989,7:39-44.
    Knudston KE, Haas EJ, Iwen PC, et al. Characterization of a Gram-positive non sporeforming Exiguobacterium like organism isolated from a western Colorado (USA) hotspring[J]. Abstr: Annu Meet Am Soc Microbiol,2001,1(92):30.
    Kucey R M. Phosphate-solubilizing bacteria and fungi in various cultivated and virginAlberta soils[J]. Canadian Journal of Soil Science,1983,63:671-678.
    Kuklinsky-Sorbral J, Araujo W L, Mendes R, et al. Isolation and characterization ofsoybean-associated bacteria and their potential for plant growth promotion[J]. EnvironMicrobiol,2004,6:1244-1251.
    Laemmli U K. Cleavage of structural proteins during the assembly of the head ofbacteriophage T4[J]. Nature,1970,227,680-685.
    Lamontagne M G, Michel F C, Holden P A, et al. Evaluation of extraction and purificationmethods for obtaining PCR-amplifiable DNA from compost for microbial communityanalysis[J]. Journal of Microbiology Methods,2002,49(3):255-264.
    Lee D H, Zo Y G, Kim S J. Nonradioactive method to study genetic profiles of naturalbacterial commmtity by PCR-single strand conformation polymorphism [J]. Applied andEnvironmental Microbiology,1996,62:3112-3120.
    Llobet-brossa E, Amann R. Microbial community composition of Wadden Sea sediments asrevealed bv fluorescence in situ hybridization[J]. Applied and EnvironmentalMicmbiology,1998,64(7):2691-2696.
    Long S. Genes and signals in the rhizobium-legume symbiosis [J]. Plant Physiology,2001,125:69-72.
    Maeck, G. and R. Tischner (1990). Glutamine synthetase oligomers and isoforms in sugarbeet (Beta vulgaris L.)[J]. Planta181(1):10-17.
    Maenuaghton S J, Stephen J R, Venosa A D, Davis G A, Chang Y J, White D C. Microbialpopulation changes during bioremed-iation of an experimental oil spill [J]. Applied andEnvironmental Microbiology,1999,65:3566-3574.
    MalikKA, RasulG, Hassan U, et a.l Role ofN2-fixing and growth hormones producingbacteria in improving growth of wheat and rice[C]//Hegazi NA. Proceedings of6th IntSymposium on Nitrogen Fixation with Non-legumes. Egypt:Ismailia,1994:409-422.
    Mehnaz S, Weselowski B, Lazarovits G. Azospirillum canadense sp. nov., a nitrogen-fixingbacterium isolated from corn rhizosphere[J]. Int J Syst Evol Microbiol,2007,57:620624.
    Mishra P K. Enhanced soybean (Glycine max L.) plant growth and nodulation byBradyrhizobium japonicum-SB1in presence of Bacillus thuringiensis-KR1[J]. Acta AgricScand, B Soil Plant Sci,2009,59:189-196.
    Miteva VI, Sheridan PP, Brenchly JE. Phylogenetic and physiological diversity ofmicroorganisms isolated from a deep Greenland glacier ice core[J]. Appl EnvironMicrobiol,2004,70:202-213.
    Mmin B J, Lea P J. Ammonia assimilation [A]. Biochemistry of Plants[M]. New York:Academic Press1980.169-202.
    Moeseneder M M, Winter C, Arrieta J M, et a1. Term inal-restriction fragment1engthpolymorphism(T-RFLP)screening of all learchaeal clone1ibraryto determinethe differentphylotypes[a]. Journal ofMicrobiologicalMethods,2001,44(2):159-172.
    Morgenstern E, Okon Y. Promotion of Plant Growth and NO3-and Rb+uptake inSorghumBicolor@Sorghum Sudanense Inoculated withAzospirillum BrasilenseCd [J]. Arid SoilRes. Rehabil,1987,1:211-217.
    Muckian L, Grant R, Doyle E, Clipson N. Bacterial community structure in soilscontaminated by polycyclic aromatic hydrocarbons [J]. Chemosphere,2007,(68):1535-1541.
    Muyzer G, Brinkhoff T, Ulrich N, Santegoeds C, Schafer H, Wawer C. Denaturing gradientgelelectrophoresis (DGGE) in microbial ecology [J]. Ecology Manual,1998,34(4):1-27.
    Muyzer G, Wall E, Uitterlinden A. Profiling of complex microbial populations by DGGE ofPCR-amplified genes coding for16SrRNA [J]. Applied and Environmental Microbiology,1993,59:695-700.
    Myers R M, Fisher S G, Lerman L S. Nearly all single base substitutions in DNA fragmentsjoined to a GC-clamp can be detected by denaturing gradient gel electroresis [J]. NucleicAcid Research,1985,13(9):3131-3145.
    Nogales B, Moore E R, Lobet-Brossa E, Rossello-Mora R, Amann R, Timmis K N.Combined use of16S ribosomal DNA and16SrRNA to study the bacterial community ofpolychlorinatedbiphenyl-polluted soil [J]. Environmental Microbiology,2001,67:1874-1884.
    Peters S, Koschinsky S, Sehwieger F, Tebbe C C. Succession of microbial communitiesduring hot composting as detected byPCR-single-strand-conformation-polymorphism-based genetic profiles of small-subunitrRNA genes [J]. Applied and Environmental Microbiology,2000,66:930-936.
    Reiter B, Pfeifer U, Schwab H, et al. Response of endophytic bacterial communities in potatoplant to infection with Erwinia carotovora subsp. Atroseptica[J]. Appl Environ Microbiol,2002,68:2261-2268.
    Rodrigue Z H, Fraga R. Phosphate solubilizing bacteria and their role in plant growthpromotion[J]. Biotechnol Adv,1999,17:319-339.
    Rodriguez DF, Goris J, Vishnivetskaya et al. Characterization of Exiguobacterium isolatesfrom the Siberian permafrost. Description of Exiguobacterium sibiricum sp. nov[J].Extremophiles,2006,10:285-294.
    Rolleke S, Gurtner C, Drewello U, et a1. Analysis of bacterial communities on historical glassby denaturing gradient gel electmphoresis of PCR-amplified gene fragments coding for16S rRNA[J]. Journa1of Microbiological Methods,1999,36(1-2):107-114.
    Rosch C, Mergel A, Bothe H. Biodiversity of denitrifying and dinitrogen_fixing bacteria in anacid forest soil.Appl Environ Microbiol,2002,68:3818-3829·
    Rossell, Amann R. The species concept for pmkaryotes[J]. FEMS Microbiology Reviews,2001,25(1):39-67.
    Ruan T.Y., Zhang F.S., Mink H.W.. Effect of nitrogen form and phosphorus source on thegrowth,nutrient uptake and rhizosphere soil properth of Camellia sinenisis L[J]. Plant andSoil,2000,223:63-71.
    Ryu CM, Faragma,Hu C-H, et al. Bacterial Volatiles Promote GrowthinArabidopsis [J]. Proc.Natl. Acad. Sci,2003,100:4927-4932.
    Saubidet MI, Fattan, Barneix AJ. The Effect of Inoculation withAzospirillum BrasilenseonGrowth and Nitrogen Utilization by Wheat Plants[J]. Plant Soil,2002,245:215-222.
    Schmalenberger A, Schwieger F, Tebbe C C. Effect of primers hybridizing to differentevolutionarily conserved regions of the small-subunit rRNA gene in PCR-based microbialcommunity analyses and genetic profiling [J]. Applied and Environmental Microbiology,2001,67(8):3557-3563.
    Schwieger F, Tebbe C. A new approach to utilize PCR-SSCP of16SrRNA genebasedmicrobial community analysis [J]. Applied and Environmental Microbiology,1998,64:4870-4876.
    Sheng X F, Xia J J. Improvement of rape(Brassica napus)plant growth and cadmium uptakeby cadmium-resistant bacteria[J]. Chemosphere,2006,64:1036-1042.
    Stach J E M, Bathe S, Clapp J P, Burns R G. PCR-SSCP comparison of16SrDNA sequencediversity soil DNA obtained using different isolation and purification methods [J]. FEMSMicrobiology Ecology,2001,36:139-151.
    Su Z C, Zhang H W, Li X Y, Zhang Q, Zhang C G. Toxic effects of acetochlor,methamidophos and their combination on nifH gene in soil [J]. Journal of EnvironmentalSciences,2007,19:864-873
    Taghavi S D, Barac T, Greenberg B, et al. Horizontal gene transfer to endogenous endophyticbacteria from poplar improves phytoremediation of toluene[J]. Applied andEnvironmental Microbiology,2009,71:8500-8505.
    Tan Z Y, Kan F L, Peng G X, et al. Rhizobium yanglingense sp. nov., isolated from arid andsemi-arid regions in China[J]. Int J Syst Evol Microbiol,2001,51:909-914.
    Verma S C. Evaluation of plant growth promotion and colonization ability of endophyticdiazotrophs from deep water rice[J]. Biotechnol,2001,91:127-141.
    Vesssy J K. Plant growth promoting rhizobacteria as biofertilizers[J]. Plant Soil,2003,255:571-586.
    Wagner M, Loy A. Bacterial community composition and function in sewage treatmentsystems[J]. Biotechnology,2002,13:218-227.
    Wat I J E M, Wu Q, Schreier S B, et a1. Comparative analysis of polychlorinatedbiphenyldeehlorinating communities in enrichment cultures usingthree differentmolceularscreeningtechniques[J]. Environm entalMicrobiology,2001,3(11):710-719.
    Weisburgw G, Bams M, Elletier D A.16sRibosomal DNA Amplification for PhylogeneticStudy[J]. J Bacterial,1991,173(2):697-703.
    Xue D, Yao H Y, Huang C Y. Microbial biomass, N mineralization and nitrification, enzymeactivities, and microbial community diversity in tea orchard soils [J]. Plant Soil,2006,288:319-331.
    Yao H, He Z, Wilson M J, et al. Mierobial biomass and eomrnunity structure in a sequence ofsoils with increasing fertility and ehangin glanduse[J]. Mierobial Eeology,2000,40:223-237.
    Yu Liu-qing, Zhu Yong-lin, Wu Lin-fu, et al. Effeet of Herbicides and Their Mixture withUrea on Ammonifying Bacteria in Paddy field[J]. Chinese J Rice Sci,1997,11(l):44-46.
    Zhang W, Qian P Y. Microbial diversity in polluted harbor sediments I: Bacterial communityassessment based on four clone libraries of16SrDNA [J]. Estuarine, Coastal and ShelfScience,2008a,76:668-681.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700