用户名: 密码: 验证码:
陆地棉中NAC家族与叶片衰老和胁迫应答相关功能的遗传学分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
NAC (NAM, ATAF,以及CUC)是植物特有的一类转录因子,NAC转录因子不仅参与植物生长发育的调控,而且在植物抗逆反应中具有重要的调控作用。NAC家族蛋白在各种植物发育过程中也起到一定作用,如叶片衰老,花的形态,逆境诱导开花,茎端分生组织的发育,茎分枝,侧根发育,激素信号等。NAC蛋白结构域与植物响应生物和非生物胁迫息息相关,包括盐分,低温,干旱,机械损伤以及病毒感染等。同时,NAC也参与纤维发育以及木质部的形成。尽管在模式植物中(拟南芥和水稻)鉴定了一些NAC转录因子的功能,但是在棉花中,特别是叶片衰老方面,NAC的功能尚未见报导。在本实验中,我们鉴定了陆地棉中NAC基因家族,并探索了其在棉花叶片衰老以及各种抗逆反应中的功能拟南芥中过表达GhNAC8和GhNAC9在叶片衰老时表现出重要作用。利用荧光定量PCR实验分析表明:这些基因在叶片衰老过程中以及抗逆应答中高水平表达。通过结合荧光定量PCR实验,免疫印迹分析以及拟南芥和烟草的过表达实验,NAC家族中的成员之一GhNAC7在叶片衰老中有重要作用。GhNAC的启动子有许多响应生理和环境因素诱导的顺式作用元件。
     本文的主要研究结果总结如下:
     1. GhNAC8-GhNAC17在叶片衰老以及应对胁迫反应过程中的作用
     我们从陆地棉中分离得到了GhNAC8-GhNAC17基因,并考察了其在叶片衰老过程以及胁迫应答中的功能。这些GhNAC基因预测得到的氨基酸序列与其他物种NAC家族序列具有很高的相似性,基于这些特征,将GhNAC基因家族分成三个亚类。这些GhNAC基因中除了GhNAC10以及GhNAC13,都在衰老叶片中有很高的表达水平,而GhNAC10以及GhNAC13在棉花开花后(DPA)25天的植物纤维中具有很高的表达水平。与野生型相比,在拟南芥中异位表达GhNAC8和GhNAC9导致叶片提前衰老,这结果表明其在拟南芥的叶片衰老过程中具有生物学功能。这十个GhNAC基因在自然和诱导的叶片衰老过程中表现出不同的表达模式和表达水平。通过定量PCR和启动子分析表明,脱落酸,乙烯,干旱,盐分,低温,高温以及其他激素处理都能诱导这些基因的表达。
     2.棉花NAC基因家族(GhNAC18-77)在多种非生物胁迫过程中的表达模式分析从陆地棉中一共分离得到了60个全长的GhNAC基因,通过系统发育分析,他们可以被分为七个不同的亚类。我们还构建了GhNAC基因的系统发育树,不同的亚类中,他们的结构域之间具有相似性。这些基因位于D亚类基因组的第十三条染色体上。通过荧光定量PCR分析这些基因的组织特异性,结果显示:大部分NAC基因的表达模式具有特定的时空特异性。另外,本实验还通过荧光定量PCR分析了这些GhNAC基因在叶片衰老和乙烯,脱落酸,赤霉素,干旱以及盐分处理后的表达变化。
     3.一个新的GhNAC家族转录因子,GhNAC7基因在叶片衰老过程中的功能。
     我们分析了编码NAC家族转录因子的GhNAC7基因的功能。通过荧光定量PCR和免疫印迹分析基因的组织特异性,结果显示:该基因与棉花叶片衰老过程具有密切关系。同时该基因也受乙烯、脱落酸、干旱、盐分、低温以及高温的诱导表达。在模式植物拟南芥以及烟草中过表达该基因,转基因植株比野生型植株表现出明显的衰老症状。利用免疫印迹实验,在大肠杆菌BL21中诱导表达GhNAC7蛋白,表明蛋白分子量大概为29kDa。以上结果表明GhNAC7在棉花叶片衰老中发挥了重要作用。
NAC (NAM, ATAF, and CUC) is a plant-specific transcription factor family with diverse roles in plant development and stress regulation. NAC family proteins also contribute to a variety of developmental processes in plants, such as leaf senescence, floral morphogenesis, stress induced flowering, development of shoot apical meristem, shoot branching determination, lateral root development, and hormone signaling. The NAC domain proteins has been associated with plant responses to biotic and abiotic stresses including salinity, cold shock, drought, mechanical wounding, and viral infections. Some other areas where their involvement has been reported are fiber development, xylogenesis and wood formation. Despite a few NAC TFs in Arabidopsis and Oryza model plants have been characterized for their functions, no reports are available for their functional characterization in cotton specifically for leaf senescence.
     In this study, we identified the GhNAC gene family, characterized for leaf senescence and diverse stresses in cotton(Gossypium hirsutum L.). The qRT-PCR analysis revealed that these genes have high expression during leaf senescence and response to stresses. GhNAC8and GhNAC7overexpression lines in Arabidopsis depict essential role during leaf senescence. GhNAC7being a member of cotton NAC family has important functions in leaf senescence as elucidated by qRT-PCR, immunoblot analysis, overexpression in Arabidopsis and tobacco. GhNAC genes promoter regions possess several cis-elements inducible by physiological and environmental factors.
     The main results are summarized as follows:
     1. Characterization of GhNAC8-GhNACl7genes for leaf senescence and responses to stresses
     Stress-responsive NAC genes (GhNAC8-GhNAC17) isolated from cotton (Gossypium hirsutum L.) were characterised in the context of leaf senescence and stress tolerance. Based on the sequence characterisation, these GhNACs could be classified into three groups belonging to three known NAC sub-families. Their predicted amino acid sequences exhibited similarities to NAC genes from other plant species. All GhNAC genes were highly expressed in senescent leaves, except GhNAC10and GhNAC13, which had higher expression levels in fibres collected from25days post anthesis (DPA) plants. Ectopic expression of GhNAC8and GhNAC9show early leaf senescence compared to wild-types plant, revealed biological function for leaf senescence in Arabidopsis. The ten GhNAC genes displayed differential expression patterns and levels during natural and induced leaf senescence. Quantitative RT-PCR and promoter analyses suggest that these genes are induced by ABA, ethylene, drought, salinity, cold, heat and other hormonal treatments.
     2. Expression analysis of NAC family gene (GhNAC18-77) for multiple abiotic stresses in cotton
     A total of60full-length GhNAC genes were isolated from upland cotton, and they were phylogeneticly clustered into seven distinct subfamilies. We also constructed the phylogenetic tree for GhNAC genes and their motif, which show similarities among the subfamilies. The60GhNAC genes were located in the chromosome of D sub-genome and were found to be distributed on13chromosomes. Majority of the NACs showed specific temporal and spatial expression patterns for tissue-specific studies based on qRT-PCR analyses. Furthermore, the roles of GhNAC genes were monitored by qRT-PCR for leaf senescence, ethylene, ABA, GA3, drought and salinity.
     3. GhNAC7, a novel GhNAC family transcription factor gene functions in leaf senescence
     GhNAC7, a gene encoding a NAC family transcription factor was studied for functional analysis. Expression of this gene is closely associated with the leaf senescence process of cotton as revealed by tissue-specific and natural leaf senescence studies through qRT-PCR and immunoblot assays. The GhNAC7expression also induced by ethylene, ABA, drought, salinity, cold and high temperature treatments in cotton. In two model plant species, Arabidopsis and tobacco overexpression of GhNAC7showed visible symptoms for leaf senescence. Protein expression in BL21E. Coli and immunoblot assay in senescent leaf confirmed that molecular weight of GhNAC7protein was approximately29kDa. Our data strongly suggest that GhNAC7play an important role in cotton leaf senescence.
引文
1. Abeles F B, Morgan P W, Saltveit M E Jr. Ethylene in Plant Biology. San Diego CA Academic1992, 414 pp.2nd ed.
    2. Adie B A, Perez-Perez J, Perez-Perez M M, Godoy M, Sanchez-Serrano J J, Schmelz E A, Solano R. ABA is an essential signal for plant resistance to pathogens affecting JA biosynthesis and the activation of defenses in Arabidopsis. Plant Cell 2007,19:1665-1681.
    3. Aida M, Ishida T, Fukaki H, Fujisawa H, Tasaka M. Genes involved in organ separation in Arabidopsis:an analysis of the cup-shaped cotyledon mutant. Plant Cell 1997,9:841-857.
    4. An F, et al. Ethylene-induced stabilization of ETHYLENE INSENSITIVE3 and EIN3-LIKE1 is mediated by proteasomal degradation of EIN3 binding F-box 1 and 2 that requires EIN2 in Arabidopsis. Plant Cell 2010,22:2384-2401.
    5. Andersson A, Keskitalo J, Sjodin A, Bhalerao R, Sterky F, et al. A transcriptional timetable of autumn senescence. Genome Biology 2004,5:R24.
    6. Bailey T L, Williams N, Misleh C, Li W W. MEME:discovering and analyzing DNA and protein sequence motifs. Nucleic Acids Research 2006,34 Web Server:W369-373.
    7. Balazadeh S, et al. A gene regulatory network controlled by the NAC transcription factor ANAC092/AtNAC2/ORE1 during salt-promoted senescence. Plant Journal 2010,62:250-264.
    8. Balazadeh S, Riano-Pacho'n, D M, Mueller-Roeber B. Transcription factors regulating leaf senescence in Arabidopsis thaliana. Plant Biology 2008b,10:63-75.
    9. Bleecker A B, Patterson S E. Last exit:senescence, abscission, and meristem arrest in Arabidopsis. Plant Cell 1997,9:1169-79.
    10. Bowyer P. DNA-mediated transformation of fungi. In:Talbot N (ed) Molecular and Cellular Biology of Filamentous Fungi. Oxford University Press, Oxford 2001,33-46.
    11. Breeze E, et al. High-resolution temporal profiling of transcripts during Arabidopsis leaf senescence reveals a distinct chronology of processes and regulation. Plant Cell 2011,23:873-894.
    12. Buchanan-Wollaston V, Earl S, Harrison E, Mathas E, Navabpour S, et al. The molecular analysis of leaf senescence:a genomics approach. Plant Biotechnology Journal 2003,1:3-22.
    13. Buchanan-Wollaston V, Page T, Harrison E, Breeze E, Lim P O, et al. Comparative transcriptome analysis reveals significant differences in gene expression and signaling pathways between developmental and dark/starvation-induced senescence in Arabidopsis. Plant Journal 2005, 42:567-85.
    14. Cao J, Jiang F, Sodmergen, Cui K. Time-course of programmed cell death during leaf senescence in Eucommia ulmoides. Journal of Plant Research 2003,162:7-12.
    15. Chaves M M, Oliveira M M. Mechanisms underlying plant resilience to water deficits:prospects for water-saving agriculture. Journal of Experimental Botany 200,55:2365-2384.
    16. Chen J G, Du X M, Zhou X, Zhao H Y. Levels of cytokinins in the ovules of cotton mutants with altered fiber development. Journal of Plant Growth Regulation 1997,16:181-185.
    17. Chen W, et al. Expression profile matrix of Arabidopsis transcription factor genes suggests their putative functions in response to environmental stresses. Plant Cell 2002,14:559-74.
    18. Clough S J, Bent A F. Floral dip:a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant Journal 1998,16:735-743.
    19. Collinge M, Boller T. Differential induction of two potato genes, Stprx2 and StNAC, in response to infection by Phytophthora infestans and to wounding. Plant Molecular Biology 2001,46:521-529.
    20. Cutler S R, Rodriguez P L, Finkelstein R R, Abrams S R. Abscisic acid:emergence of a core signaling network. Annual Review in Plant Biology 2010,61:651-679.
    21. Dai N, Schaffer A, Petreikov M, Shahak Y, Giller Y, Ratner K, Levine A, Granot D. Overexpression of Arabidopsis hexokinase in tomato plants inhibits growth, reduces photosynthesis, and induces rapid senescence. Plant Cell 1999,11:1253-1266.
    22. Divi U K, Rahman T. Krishna P. Brassinosteroid-mediated stress tolerance in Arabidopsis shows interactions with abscisic acid, ethylene and salicylic acid pathways. BMC Plant Biology 2010,10: 151.
    23. Duaval M, Hsieh T F, Kim S Y, Thomas T L. Molecular characterization of AtNAM:a member of the Arabidopsis NAC domain superfamily. Plant Molecular Biology 2002,50(2):237-248.
    24. Ernst H A, Olsen A N, Larsen S, Lo Leggio L. Structure of the conserved domain of ANAC, a member of the NAC family of transcription factors. EMBO Reports 2004,5(3):297-303.
    25. Ewbank J J, Barnes T M, Lakowski B, Lussier M, Bussey H, Hekimi S. Structural and functional conservation of the Caenorhabditis elegans timing gene elk-1. Science 1997,275:980-83.
    26. Falquet L, Pagni M, Bucher P, Hulo N, Sigrist C J, Hofmann K, Bairoch A. The PROSITE data base. Nucleic Acid Research 2002,30:235-238.
    27. Fang J, Gao X, Yang Y W, Deng W, Li ZG. Molecular cloning and characterization of a NAC-like gene in "Navel" orange fruit response to post harvest stresses. Plant Molecular Biology Reports 2007,25:145-153.
    28. Fang Y, You J, Xie K, Xie W, Xiong L. Systematic sequence analysis and identification of tissue-specific or stress-responsive genes of NAC transcription factor family in rice. Molecular Genetics and Genomics 2008,280:547-563.
    29. Finkelstein R R, Gampala S S L, Rock C D. Abscisic acid signaling in seeds and seedlings. Plant Cell 2002,14 (Suppl.), S 15-S45.
    30. Foyer C H, Noctor G. Redox homeostasis and antioxidant signaling:a metabolic interface between stress perception and physiological responses. Plant Cell 2005,17:1866-1875.
    31. Fujita M, et al. A dehydration-induced NAC protein, RD26, is involved in a novel ABA-dependent stress-signalling pathway. Plant Journal 2004,39:863-876.
    32. Gan S. Senescence processes in plants. Blackwell 2007, London.
    33. Gan S, Amasino R M. Making sense of senescence (Molecular Genetic Regulation and Manipulation of Leaf Senescence). Plant Physiology 1997,113:313-319
    34. Gendrel A V, Lippman Z, Martienssen, R, Colof V. Profiling histone modification patterns in plants using genomic tiling microarrays. Nature Methods,2005,2 (3):213-218.
    35. Gepstein S, Sabehi G, Carp MJ, Hajouj T, Nesher M F, et al. Large-scale identification of leaf senescence-associated genes. Plant Journal 2003,36:629-42.
    36. Ghanem M E, Alfonso A, Cristina M A, Manuel, A, Remedios R A, Ian CD, Stanley L, Francisco P A. Hormonal changes during salinity-induced leaf senescence in tomato (Solanum lycopersicum L.). Journal of Experimental Botany 2008,59:3039-3050.
    37. Ghanem M E, Ghars M A, Frettinger P, Perez-Alfocea F, Lutts S, Wathelet J P, du Jardin P, Fauconnier M L. Organdependent oxylipin signature in leaves and roots of salinized tomato plants (Solanum lycopersicum). Journal of Plant Physiology 2012,169:1090-1101.
    38. Grbic V, Bleecker A B. Ethylene regulates the timing of leaf senescence in Arabidopsis. Plant Journal 1995,8:595-602.
    39. Guo A Y, Zhu Q H, Chen X, Luo J C. GSDS:a gene structure display server. Yi Chuan 2007,29: 1023-1026.
    40. Guo Y, Cai Z, Gan S. Transcriptome of Arabidopsis leaf senescence. Plant Cell Environment 2004, 27:521-49.
    41. Guo Y, Gan S. AtNAP, a NAC family transcription factor, has an important role in leaf senescence. Plant Journal 2006,46:601-612.
    42. Guo Y, Gan S S. Convergence and divergence in gene expression profiles induced by leaf senescence and 27 senescence-promoting hormonal, pathological and environmental stress treatments. Plant Cell Environment 2012,35:644-655
    43. Han X, Guo H, Shutang Z, Changhua G, Mengzhu L. Expression analysis of two NAC transcription factors PtNAC068 and PINAC154 from Poplar. Plant Molecular Biology Reports 2012,30: 370-378.
    44. Hattori T, Totsuka M, Hobo T, Kagaya Y A, Yamamoto-Toyoda. Experimentally determined sequence requirement of ACGT-containing abscisic acid response element. Plant Cell Physiology 2002,43:136-140.
    45. Hauser F, Waadt R, Schroeder J I. Evolution of abscisic acid synthesis and signaling mechanisms. Current Biology 2011,21:R346-R355.
    46. He X J, Mu R L, Cao W H, Zhang Z G, Zhang J S, Chen S Y. AtNAC2, a transcription factor downstream of ethylene and auxin signalling pathways, is involved in salt stress response and lateral root development. Plant Journal 2005,44:903-916.
    47. He Y, Tang W, Swain J D, Green A L, Jack T P, Gan S. Networking senescence-regulating pathways by using Arabidopsis enhancer trap lines. Plant Physiology 2001,126:707-16.
    48. Hegedus D, Yu M, Baldwin D, Gruber M, Sharpe A, Parkin I, Whitwill S, Lydiate D. Molecular characterization of Brassica napus NAC domain transcriptional activators induced in response to biotic and abiotic stress. Plant Molecular Biology 2003,53(3):383-397.
    49. Hensel L, Grbic V, Baumgarten DA, Bleecker AB. Developmental and age-related processes that influence the longevity and senescence of photosynthetic tissues in Arabidopsis. Plant Cell 1993, 5:553-64.
    50. Hobo T, Asada M, Kowyama Y, Hattori T. ACGT-containing abscisic acid response element (ABRE) and coupling element 3 (CE3) are functionally equivalent. Plant Journal 1999,19:679-689.
    51. Horsch R B, Fry J E, Hoffman N L, Eichholtz D, Rogers S G, Fraley R T. A simple and general method for transferring genes into plants. Science 1985,277:1229-1231.
    52. Hortensteiner S. Chlorophyll degradation during senescence. Annual Review in Plant Biology 2006, 57:55-77.
    53. Hortensteiner S, Krautler B. Chlorophyll breakdown in higher plants. Biochim Biophys Acta 2011, 1807:977-988.
    54. Horton P, et al.2007.WoLF PSORT:Protein Localization Predictor. Nucleic Acid Research, doi:10.1093/nar/gkm259.
    55. Hirayama T, Shinozaki K.. Perception and transduction of abscisic acid signals:keys to the function of the versatile plant hormone ABA. Trends Plant Science 2007,12:343-351.
    56. Hu H, Dai MQ, Yao J L, Xiao B Z, Li X H, Zhang Q F, Xiong L Z. Over expressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice. Proceedings of National Academy Sciences United States of America 2006,103:12987-12992.
    57. Hu R, Qi G, Kong Y, Kong D, Gao Q, Zhou G. Comprehensive analysis of NAC domain transcription factor gene family in Populus trichocarpa, BMC Plant Biology 2010,10:145-167.
    58. Iba K. Acclimative response to temperature stress in higher plants; approaches of gene engineering for temperature tolerance. Annual Review of Plant Biology 2002,53:225-245.
    59. Jacobsen S E, Olszewski N E. Characterization of the arrest in anther development associated with gibberellin deficiency of the gib-1 mutant of tomato. Plant Physiology 1991,97:409-414.
    60. Jefferson R A, Kavanagh T A, Bevan M W. GUS fusion:β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO Journal 1987,6:3901-3907.
    61. Jensen M K, Kjaersgaard T, Nielsen M M, Galberg P, Petersen K, O'Shea C, Skriver K. The Arabidopsis thaliana NAC transcription factor family:structure-function relationships and determinants of ANAC019 stress signaling. Biochemistry Journal 2010,426(2):183-96. doi: 10.1042/BJ20091234.
    62. Jin LG, Jin-Yuan L. Molecular cloning, expression profile and promoter analysis of a novel ethylene responsive transcription factor gene GhERF4 from cotton (Gossypium hirsutum L.). Plant Physiology and Biochemistry 2008,46:46-53.
    63. Jing H C, Sturre M J, Hille J, Dijkwel P P. Arabidopsis onset of leaf death mutants identify a regulatory pathway controlling leaf senescence. Plant Journal 2002,32:51-63.
    64. Kaneko M, et al. Where do gibberellin biosynthesis and gibberellin signaling occur in rice plants. Plant Journal 2003,35:104-115.
    65. Kanga HG, et al. Overexpression of FTL1/DDF1, an AP2 transcription factor, enhances tolerance to cold, drought, and heat stresses in Arabidopsis thaliana. Plant Science 2011,180:634-641.
    66. Khanna-Chopra R. Leaf senescence and abiotic stresses share reactive oxygen species-mediated chloroplast degradation. Protoplasma 2012,249:469-481.
    67. Kim J H, et al. Trifurcate feed-forward regulation of age-dependent cell death involving miR164 in Arabidopsis. Science 2009,323:1053-1057.
    68. Kim H J, Barbara A T. Cotton fiber growth in planta and in vitro. Models for plant cell elongation and cell wall biogenesis. Plant Physiology 2001,127:1361-1366.
    69. Kizis D, Pages M, Maize. DRE-binding proteins DBF1 and DBF2 are involved in rab17 regulation through the drought-responsive element in an ABA-dependent pathway. Plant Journal 2002,30: 679-689.
    70. Ko J H, Yang S H, Park A H, Lerouxel O, Han K H. ANAC012, a member of the plant-specific NAC transcription factor family, negatively regulates xylary fiber development in Arabidopsis thaliana. Plant Journal 2007,50(6):1035-1048.
    71. Kou X, Christopher B W, Su-Sheng G. Arabidopsis AtNAP regulates fruit senescence. Journal of Experimental Botany 2012,63(17) 6139-6147.
    72. Law R D, Steven J, Crafts-Brandner, Michael E S. Heat stress induces the synthesis of a new form of ribulose-1,5-bisphosphate carboxylase/oxygenase aetivase in cotton leaves. Planta 2001,214: 117-125.
    73. Lee S, Seo P J, Lee H J, Park C M. A NAC transcription factor NTL4 promotes reactive oxygen species production during drought-induced leaf senescence in Arabidopsis. Plant Journal 2012, 70:831-844.
    74. Lee S, Seo P J, Lee H-J, Park C-M. A NAC transcription factor NTL4 promotes reactive oxygenspecies production during drought-induced leaf senescence in Arabidopsis. Plant Journal 2012,70:831-844.
    75. Lescot M, et al., PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acid Research 2002,30:325-327.
    76. Li Z, Peng J, Wen X, Guo H.Gene network analysis and functional studies of senescence-associated genes reveal novel regulators of Arabidopsis leaf senescence. Journal of Integer Plant Biology 2012, 54:526-539
    77. Lichtenthaler H. Chlorophylls and carotenoids:pigments of photosynthetic biomembranes. Methods in Enzymology 1987.148,350-382.
    78. Lim P O, Kim H J,Nam H G. Leaf senescence. Annual Review of Plant Biology 2007,58:115-136.
    79. Lim P O, Woo H R, Nam H G. Molecular genetics of leaf senescence in Arabidopsis. Trends in Plant Science 2003,8:272-78.
    80. Lim PO, Nam HG. The molecular and genetic control of leaf senescence and longevity in Arabidopsis. Current Topics in Developmental Biology 2005,67:49-83.
    81. Liu J, Jingyu L, Huinan W, Zhaodi F, Juan L, Yixun Y. Identification and expression analysis of ERF transcription factor genes in petunia during flower senescence and in response to hormone treatments. Journal Experimental Botany 2010,1-16.
    82. Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C (T)) method. Methods 2001,25:402-408.
    83. Lombardi L, Lorenzo M, Piero P, Nello C, Roberto L. Ethylene produced by the endosperm is involved in the regulation of nucellus programmed cell death in Sechium edule Sw. Plant Science. 2012,187:31-38.
    84. Meng C, Caiping C, Tianzhen Z, Wangzhen G. Characterization of six novel NAC genes and their responses to abiotic stresses in Gossypium hirsutum L. Plant Science 2009,176:352-359.
    85. Meng Y, Liu F, Pang C, Fan S, Song M, Wang D, Li W, Yu S. Label free quantitative proteomics analysis of cotton leaf response to nitric oxide. Journal ofProteome Research 2011,9:16-46.
    86. Miao Y, Laun T, Zimmemiann P, Zentgraf U. Targets of the WRKY53 transcription factor and its role during leaf senescence in Arabidopsis. Plant Molecular Biology 2004,55:853-867.
    87. Mitsuda N, Iwase A, Yamamoto H, Yoshida M, Seki M, Shinozaki K, Takagi MO. NAC transcription factors, NST1 and NST3, are key regulators of the formation of secondary walls in woody tissues of Arabidopsis. Plant Cell 2007,19:270-280.
    88. Mittler R, Vanderauwera S, Suzuki N, Miller G, Tognetti V B, Vandepoele K, Gollery M, Shulaev V, Van Breusegem F. ROS signaling:the new wave? Trends in Plant Science 2011,16:300-309.
    89. Moore B, Zhou L, Rolland F, Hall Q, Cheng WH, et al. Role of the Arabidopsis glucose sensor HXK1 in nutrient, light, and hormonal signaling. Science 2003,300:332-36.
    90. Munne -Bosch S. Do perennials really senesce? Trends Plant Science 2008,13:216-220.
    91. Nakashima K, Ito Y, Yamaguchi-Shinozaki K. Transcriptional regulatory net works in response to abiotic stresses in Arabidopsis and grasses. Plant Physiology 2009,149,88-95.
    92. Nood'en L D.1988. The phenomena of senescence and aging. In Senescence and Aging in Plants, ed. LD Nood'en, AC Leopold, pp.1-50. San Diego:Academic.
    93. Oh S A, Park J H, Lee G I, Paek K H, Park S K, Nam H G. Identification of three genetic loci controlling leaf senescence in Arabidopsis thaliana. Plant Journal 1997,12:527-535
    94. Ohnishi T, et al. OsNAC6, a member of the NAC gene family, is induced by various stresses in rice. Genes Genetic System 2O05,80:135-139.
    95. Okushima Y, Mitina I, Quach H L, Theologis A. AUXIN RESPONSE FACTOR 2 (ARF2):a pleiotropic developmental regulator. Plant Journal 2005,43:29-46.
    96. Olsen A N, Ernst H A, Leggio L L, Skriver K. NAC transcription factors:structurally distinct, functionally diverse. Trends in Plant Science 2005,10(2):79-87.
    97. Ooka H, et al. Comprehensive analysis of NAC family genes in Oryza sativa and Arabidopsis thaliana. DNA Research 2003,10:239-247.
    98. Panavas T, LeVangie R, Mistler J, Reid P D. Rubinstein B. Activities of nucleases in senescing daylily petals. Plant Physiology and Biochemistry 2000,38:837-843.
    99. Pang C Y, et al. Comparative proteomics indicates that biosynthesis of pectic precursors is important for cotton fiber and Arabidopsis root hair elongation. Molecular & Cellular Proteomics 2010, 2019-2033.
    100. Park J H, Oh S A, Kim Y H, Woo H R, Nam H G. Differential expression of senescence-associated mRNAs during leaf senescence induced by different senescence-inducing factors in Arabidopsis. Plant Molecular Biology 1998,37:445-54.
    101.Pinheiro G L, et al. Complete inventory of soybean NAC transcription factors:sequence conservation and expression analysis uncover their distinct roles in stress response. Gene 2009,444: 10-23.
    102. Pastori G M, Foyer C H. Common components, networks and pathways of cross-tolerance to stress. The central role of 'redox' and abscisic-acid-mediated controls. Plant Physiology 2002,129: 460-468.
    103. Porebski S, Bailey L G, Baum B R. Modification of a CTAB DNA extraction protocol for plants containing high polysaccharide and polyphenol components. Plant Molecular Biology Reports 1997, 15:8-15.
    104. Quirino B F, Noh Y S, Himelblau E, Amasino R M. Molecular aspects of leaf senescence. Trends in Plant Science 2000,5:278-282.
    105. Rajendra B, Jones J D. Role of plant hormones in plant defense responses. Plant Molecular Biology 2009,69:473-488.
    106. Riechmann J L, Ratcliffe O J. A genomic perspective on plant transcription factors. Current Opinion in Plant Biology 2000,3:423-434.
    107. Riefler M, Novak O, Strnad M, Schmulling T. Arabidopsis cytokinin receptor mutants reveal functions in shoot growth, leaf senescence, seed size, germination, root development, and cytokinin metabolism. Plant Celt 2006,18:40-54
    108. Rushton P J, et al. Tobacco transcription factors:novel insights into transcriptional regulation in the Solanaceae. Plant Physiology 2008,147:280-295.
    109. Saibo N J M, Lourenco T, Oliveira M M. Transcription factors and regulation of photosynthetic and related metabolism under environmental stresses. Annual Botany 2009,103:609-623.
    110. Seagull R W, Giavalis, S. Pre- and post-anthesis application of exogenous honnones alters fiber production in Gossypium hirsutum L. cultivar Maxxa GTO. Journal of Cotton Science 2004,8: 105-111.
    111. Sedigheh H G, Mortazavian M, Norouzian D, Atyabi M, Akbarzadeh A, Hasanpoor K, Ghorbani M. Oxidative stress and leaf senescence. BMC Research Notes 2011,4:477.
    112. Seki M, et al. Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold and high-salinity stresses using a full-length cDNA microarray. Plant Journal 2002,31:279-292.
    113. Sharp R E, LeNoble M E. ABA, ethylene and the control of shoot and root growth under water stress. Journal of Experimental Botany 2002,53:33-37.
    114. Shen H, Yin Y, Chen F, Xu Y, Dixon R. A bioinfonnatic analysis of NAC genes for plant cell wall development in relation to lignocellulosic bioenergy production. Bioenergy Research 2009,2: 217-232.
    115. Shinozaki K, Yamaguchi-Shinozaki K. Gene expression and signal transduction in water-stress response. Plant Physiology 1997,115:327-334.
    116. Singh K B, Foley R C, Onate-Sanchez L. Transcription factors in plant defense and stress responses. Current Opinion in Plant Biology 2002,5:430-436.
    117. Sigrist C, et al. PROSITE, a protein domain database for functional characterization and annotation. Nucleic Acids Research 2010,38:161-166.
    118. Souer E, Houwelingen A, Kloos D, Mol, Koes R. The no apical meristem gene of Petunia is required for pattern formation in embryos and flowers and is expressed at meristem and primordia boundaries. Cell 1996,85:159-170.
    119. Sua M, et al. Cloning two P5CS genes from bioenergy sorghum and their expression profiles under abiotic stresses and MeJA treatment. Plant Science 2001,18:652-659.
    120. Swidzinski J A, S weetlove L J, Leaver C J. A custom microarray analysis of gene expression during programmed cell death in Arabidopsis thaliana. Plant Journal 2002,30:431-446.
    121. Tahise et al., Analysis of the NAC transcription factor gene family in citrus reveals a novel member involved in multiple abiotic stress responses. Tree Genetics & Genomes,2011. DOI 10.1007/s11295-011-0400-8.
    122. Tamura K, Dudley J, Nei M, Kumar S. MEGA4:Molecular evolutionary genetics analysis (MEGA) software version 4.0. Molecular Biology Evolution 2007,24:1596-1599.
    123.Tran L S P, et al. Isolation and functional analysis of Arabidopsis stress-inducible NAC transcription factors that bind to a drought-responsive cis-element in the early responsive to dehydration stresslpromoter. Plant Cell 2004,16:2481-2498.
    124. Trobacher C P. Ethylene and programmed cell death in plants. Botany 2009,87:757-769.
    125.Uauy C, Distelfeld A, Fahima T, Blechl A, Dubcovsky J. A NAC gene regulating senescence improves grain protein, zinc and iron content in wheat. Science 2006,314:1298-1301.
    126. van der Graaff E, Schwacke R, Schneider A, Desimone M, Flugge UI, Kunze R. Transcription analysis of Arabidopsis membrane transporters and hormone pathways during developmental and induced leaf senescence. Plant Physiology 2006,141:776-92.
    127. van Doom W G, Woltering E J. Physiology and molecular biology of petal senescence. Journal of Experimental Botany 2008,59(3):453-480.
    128. van Doom W G, Woltering E J. Senescence and programmed cell death:substance or semantics? Journal of Experimental Botany 2004,55:2147-53
    129. van Doom W G. Plant programmed cell death and the point of no return. Trends in Plant Science 2005,10:478-83.
    130. Vicente M R S, Javier P. Salicylic acid beyond defence:its role in plant growth and development. Journal of Experimental Botany 2011,62:3321-3338.
    131. Wang H, Qiao Z, Fang C, Mingyi W, Richard A D. NAC domain function and transcriptional control of a secondary cell wall master switch. Plant Journal 2011,68:1104-1114.
    132. Weaver L M, Gan S. Quirino B, Amasino R M. A comparison of the expression patterns of several senescence-associated genes in response to stress and hormone treatment. Plant Molecular Biology 1998,37:455-469.
    133. Woo H R, et al. ORE9, an F-box protein that regulates leaf senescence in Arabidopsis. Plant Cell 2001,13:1779-90.
    134. Wu A M, Liu J Y. An improved method of genomic walking for promoter sequences cloning. China Journal of Biochemistry and Molecular Biology 2006,22:243-246.
    135. Xie Q, Frugis G, Colgan D, Chua N H. Arabidopsis NAC1 transduces auxin signal downstream of TIR1 to promote lateral root development. Genes and Development 2000,14(23):3024-3036.
    136. Yamaguchi M, Kubo M, Fukuda H, Demura T:Vascular-related NAC-DOMAIN7 is involved in the differentiation of all types of xylem vessels in Arabidopsis roots and shoots. Plant Journal 2008, 55(4):652-664.
    137. Yamaguchi-Shinozaki K., Shinozaki K. Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annual Review in Plant Biology 2006,57:781-803.
    138. Yang J C, Zhang J H, Wang Z Q, Zhu Q S, Liu L J. Involvement of abscisic acid and cytokinins in the senescence and remobilization of carbon reserves in wheat subjected to water stress during grain filling. Plant Cell Environment 2003,26:1621-1631.
    139. Yoo S D, Cho Y H, Tena G, Xiong Y, Sheen J. Dual control of nuclear EIN3 by bifurcate MAPK cascades in C2H4 signalling. Nature 2008,451:789-795.
    140. Yoshida S, Ito M, Callis J, Nishida I, Watanabe A. A delayed leaf senescence mutant is defective in arginyl-tRNA:protein arginyltransferase, a component of the N-end rule pathway in Arabidopsis. Plant Journal 2002,32:129-37.
    141. Zeevaart J A D, Creelman R A. Metabolism and physiology of abscisic acid. Annual Review Plant Physiology Plant Molecular Biology 1988,39:439-473.
    142. Zhang H, Chunjiang Z. Signal transduction in leaf senescence. Plant Molecular Biology 2012, DOI 10.1007/s11103-012-9980-4.
    143. Zhang M, et al. Spatiotemporal manipulation of auxin biosynthesis in cotton ovule epidermal cells enhances fiber yield and quality. Nature Biotechnology 2011,29:453-459.
    144. Zhang, C J. Cotton petiole efficient establishment of regeneration system and genetic analysis (Ph.D thesis). Beijing; Chinese Academy of Agriculture Sciences 2008,64-66.
    145. Zhong R, Lee C, Ye Z H. Functional Characterization of Poplar Wood-Associated NAC Domain Transcription Factors. Plant Physiology 2010,152(2):1044-1055.
    146. Zhong R, Lee C, Zhou J, McCarthy RL, Ye Z H:A battery of transcription factors involved in the regulation of secondary cell wall biosynthesis in Arabidopsis. Plant Cell 2008,20(10):2763-2782.
    147. Zhou C, Gan S. Senescence. In:Pua E, Davey M (eds) Plant developmental biology: biotechnological perspectives. Berlin Springer 2009, pp 151-169.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700