用户名: 密码: 验证码:
黄瓜霜霉病抗病基因鉴定及其表达分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
黄瓜霜霉病是由卵菌纲的古巴假霜霉病菌(Pseudoperonospora cubensis)引起的。在黄瓜生产中,霜霉病是具有毁灭性的叶部病害。近年来随着病原菌的变异,有加速流行的趋势。利用药剂防治已经可以在一定程度上控制该病的发生。但是,药剂的使用存在食品安全问题和环境问题,也存在霜霉病菌的抗药性问题。培育并使用抗病品种是减轻该病危害的最有效措施。因此,黄瓜抗霜霉病基因的发掘和黄瓜抗霜霉病机制的深入研究对于黄瓜抗霜霉病育种和黄瓜生产实践具有重要意义。
     本论文主要进行了以下几方面的研究:(1)对不同类型黄瓜材料进行苗期接种鉴定和田间评价鉴定,评价霜霉病抗性;(3)测序并分析“M801-3-1”和“M302-3”侵染霜霉病菌后的转录组。(3)采用SSH技术对黄瓜抗霜霉病品种“M801-3-1”侵染霜霉病菌前后的差异表达基因进行分析;(4)从植物抗性基因数据库网站(http://prgdb.crg.eu/old.php)下载拟南芥和甜瓜抗霜霉病家族的蛋白质氨基酸序列,用其分别检索“瓜类基因组数据库”(http://www.icugi.org/)中的“黄瓜基因组数据库”,通过BLAST比对查找出在“黄瓜基因组数据库”中的黄瓜抗霜霉病候选基因,并利用DNAMAN6.0软件对这些基因进行聚类分析,通过RT-PCR试验和实时定量RT-PCR在抗霜霉病品种“M801-3-1”和感病材料“M302-3”分析候选基因的表达情况;(5)根据Csa002921扩增406bp片段产物构建干扰载体pRNA002921,通过农杆菌介导法转化“M801-3-1”和“M302-3”。
     本研究主要结果如下:
     (1)对不同类型黄瓜材料通过苗期接种鉴定和田间评价鉴定,鉴定出抗霜霉病材料5份,中抗材料3份,感病材料3份。确定抗霜霉病品种“M801-3-1”和感病材料“M302-3”。
     (2)通过测序感病黄瓜品种和抗病黄瓜品种受霜霉病菌侵染后的转录组,证实在抗感品种间霜霉病菌侵染后的转录组存在较大差别。抗霜霉病品种M8O1-3-1中3599个蛋白表达量较高,生长素相关蛋白,钙结合蛋白,热激蛋白,谷胱甘肽氧化酶,谷胱甘肽还原酶,谷胱甘肽硫转移酶,肽脯氨酰顺反异构酶,叶绿体结合蛋白,泛素连接酶,蛋白酶体组成蛋白等在抗病品种中表达量较高,其中47个蛋白仅在M801-3-1中表达,包括DNA损伤诱导蛋白和抗坏血酸过氧化物酶等。证实抗病品种中存在1个表达量较高的CC-NBS-LRR类R基因,可能为抗病R基因。感病品种M302-3蛋白表达量较高的有1727个,乙烯氧化酶,乙烯相应转录因子,水杨酸羧基甲基转移酶,WRKY转录因子蛋白等在感病品种中表达量较高,其中有168个蛋白仅在感病品种M302-3中表达,包括TIR-NBS-LRR疾病抗性蛋白,核糖体组成蛋白,乙烯合成酶,泛素蛋白和效应因子蛋白。证实在感病品种中存在2个特异性表达的TIR-NBS-LRR类R基因和1个高表达的TIR-NBS-LRR,可能为感病R基因。
     (3)利用SSH技术构建抗病黄瓜材料霜霉病菌接种和未接种差异表达的消减cDNA文库。经反向Northern blot杂交检测,共得到48个阳性克隆。利用分子生物学软件对测序后的序列进行质量检测和聚类、拼接,共得到14个UniESTs,其中包括8个singletons和6个contigs。将上述EST序列在“瓜类基因组数据库”中的“黄瓜基因组数据库”进行BLAST比对,有10个EST片段找到了与之匹配的同源序列,有4个EST片段未找到同源序列,推测可能是新基因。
     (4)在“黄瓜基因组数据库”进行BLAST比对,确定黄瓜基因组中存在185个和拟南芥抗霜霉病基因同源的基因,2个和甜瓜抗霜霉病基因同源的基因。RT-PCR试验和实时定量RT-PCR表明Csa001907和Csa002921在抗病品种中特异下调表达有可能是黄瓜抗霜霉病的R基因。RT-PCR试验和实时定量RT-PCR证明了大部分R基因是组成型表达的,本研究中未发现R基因存在上调表达的现象。RT-PCR试验和实时定量RT-PCR都证实了Csa001907和Csa002921基因在抗病品种中存在下调表达现象,实时定量RT-PCR试验表明Csa001907和Csa002921在感病品种中不存在下调表达现象。
     (5)本试验还构建了Csa002921的RNAi干扰表达载体,通过转基因实验能够进一步确定Csa002921在黄瓜抗霜霉病中的作用。
Cucumber downy mildew caused by Pseudoperonospora cubensis. Pseudoperonospora cubensis is a destructive leaf disease in recent years. The spread of disease is accelerated with the variability of the pathogen. The application of the pesticides can be controlled to some degree cucumber downy mildew. Food safety and environmental issues become serious with the pesticide application. Also Pseudoperonospora cubensis produce pesticide resistance. Cultivate and use of resistant varieties is the most effective measures to reduce disease. Therefore, study of the mechanisms of resistance to downy mildew and resistant gene exploration in cucumber to downy mildew is important.
     This research can be divided into the following aspects:(1) Different types of cucumber material was identified by inoculation of seedling and field evaluation identified.(2) Cucumber Downy Mildew Resistant variety "M801-3-1" differentially expressed before and after the infection downy mildew been studied using SSH technology.(3) Arabidopsis genes resistant to downy mildew and melon genes resistance to downy mildew homologous genes protein sequence was downloaded from Plant Resistance Gene database (http://prgdb.crg.eu/old.php). Respectively retrieve Cucurbit Genomics Database (http://www.icugi.org/). BLAST was used to find out cucumber downy mildew resistance candidate genes in Cucurbit Genomics Database. And cluster analysis of these genes use DNAMAN6.0software.Downy mildew resistant varieties "M801-3-1" and susceptible varieties "M302-3" by RT-PCR and real-time quantitative RT-PCR analysis of the expression of candidate genes.(4) Candidate R gene RNAi interference vector pRNA002921was constructed.(5) Sequencing and analysis transcriptome of "M801-3-1" and "M302-3" infected by downy mildew.
     The main results of this study are as follows.(1) Different types of cucumber were identified using the seedling stage vaccination and field evaluation. Five disease-resistant varieties, three resistant varieties, three susceptible varieties identified. Downy Mildew Resistant varieties "M801-3-1" and susceptible "M302-3" were Select the research material.(2) By sequencing the susceptible cucumber varieties and resistant cucumber varieties transcriptome infected by downy mildew, that was obvious difference in between resistant and susceptible varieties transcriptome of downy mildew infection. The expression of the3599proteins were higher in downy mildew resistance variety M801-3-1, of which47protein only expressed in M801-3-1. The expression of the1727proteins were higher in the susceptible cultivar M302-3, of which168proteins expressed only in the susceptible cultivar M302-3. It was Confirmed the presence of specific expression of susceptible R gene in susceptible cultivars.(3) Disease-resistant cucumber varieties downy mildew vaccinated and unvaccinated suppression subtractive hybridization (SSH) cDNA library was constructed using SSH technology.48positive clones were obtained by reverse Northern blot hybridization detection.14UniESTs sequencing were obtained the, including eight singletons and six contigs via molecular biology software. The EST were BLAST in9930cucumber genome database,10EST fragments were found in homologous sequences matching, four EST fragments did not find the same source sequence, presumably new genes.(4) They have oxidoreductase activity.185Arabidopsis resistance to downy mildew gene homologous genes, the two melon resistant to downy mildew gene homologous gene, were identified by BLAST in Cucurbit Genomics Database. RT-PCR test and real-time quantitative RT-PCR showed that Csa001907, and Csa002921their specific down-regulated expression in the disease-resistant varieties may cucumber R gene resistant to downy mildew. RT-PCR test and real-time quantitative RT-PCR proved that most of the R gene is constitutively expressed. R genes upregulated were not found in SSH test. RT-PCR testing and real-time quantitative RT-PCR confirmed Csa001907, and Csa002921genes down-regulated expression in resistant varieties. Real-time quantitative RT-PCR test showed that there is no down-regulated expression the Csa001907and Csa002921in susceptible varieties.(5) Csa002921RNAi expression vector,used in transgenic experiments, was constructed in this study, to further clarify the role Csa002921resistant to downy mildew in cucumber.
引文
[1]WANG H, ZHOU M, WANG J, et al. Biological Mode of Action of Dimethomorph on Pseudoperonospora cubensis and Its Systemic Activity in Cucumber[J]. Agricultural Sciences in China,2009(2):172-181.
    [2]刘艳玲,张艳菊,蔡宁,李晓雨.黄瓜霜霉病病原与抗病性研究进展[J].东北农业大学学报,2009(4):127-131.
    [3]WANG W, ZHANG X, HAN X, et al. (Plant Protection Institute, Hebei Academy of Agricultural & Forestry Sciences, Baoding,071000, Hebei, P. R. China. Detection of Resistance to four fungicides in Pseudoperonospora cubensis on Cucumber and Plasmopara viticola on Grapevines and Management of Resistance to Metalaxy or Azoxystrbin in P. cubensis [A].中国植物病理学会、中国植物病理学会病毒专业委员会.中国植物病理学会2005年学术年会暨植物病理学报创刊50周年纪念会论文集[C].中国植物病理学会、中国植物病理学会病毒专业委员会,2005:4.
    [4]李建武.黄瓜霜霉病抗性相关基因筛选及过敏性抗病机制[D].华中农业大学,2010.
    [5]HELENA O, JOANNA M, KATARZYNA N, et al. The genetic basis of resistance to downy mildew in Cucumis spp[J]. latest developments and prospects Appl Genet,201152 (3):249-255.
    [6]石延霞.黄瓜霜霉病菌侵染模拟、致病机理和高温诱导抗病性的研究[D].东北农业大学,2002.
    [7]张晓.黄瓜霜霉病菌和番茄早疫病菌对嘧菌酯的抗药性研究[D].南京农业大学,2008.
    [8]乔桂双.五种Strobilurin类杀菌剂对黄瓜霜霉病菌生物活性及其抗性风险[D].河北农业大学,2009.
    [9]朱书生.黄瓜霜霉病菌对氟吗啉的抗药性风险评估及氟吗啉作用机制初探[D].中国农业大学,2005.
    [10]闫磊,王文桥,孟润杰,赵建江,韩秀英,马志强,张小风,张金林.氟吡菌胺与吡唑醚菌酯混合物对黄瓜霜霉病菌的毒力增效及其抗药性的影响[J].农药,2013(1):53-56.
    [11]刘晓宇.黄瓜霜霉病菌和番茄早疫病菌对嘧菌酯的敏感性基线及抗药性风险评估[D].南京农业大学,2004.
    [12]牛德.霜霉病菌诱导的黄瓜叶片cDNA文库构建及其表达序列标签(ESTs)分析[D].东北农业大学,2010.
    [13]丁国华.黄瓜抗病基因同源序列的克隆及其对霜霉病抗病基因标记的研究[D].东北农业大学,2004.
    [14]曹清河.黄瓜抗霜霉病异源易位系选育、相关基础研究及育种应用[D].南京农业大学,2006.
    [15]BRAN CA F, BAH CEVAND ZIEV K, PERTICONE V, et al. Sources of resistance to downy mildew (Peronospora parasitica (Pers. ex Fr.) Fr.) in Sicilian germplasm of cauliflower and broccoli. Biodiversity and Conservation [J].2005,14:841-848.
    [16]许春梅,秦智伟,丁国华,周秀艳.黄瓜抗病基因同源序列的表达分析[J].东北农业大学学报,2010(4):24-28.
    [17]蔡鹏飞.黄瓜霜霉病的发病规律及其防治[J].中国农业信息,2010(9):45.
    [18]王丽娟,孙彩玉,牛德,秦智伟.黄瓜抗霜霉病的分子生物学研究进展[J].中国蔬菜,2010(24):10-13.
    [19]华来庆,熊林平,孟虹,申广荣,胡亚萍,赵胜荣.指数平滑法在霜霉病发病趋势预测中的应用[J].数理医药学杂志,2006(2):119-121.
    [20]黄鑫,戴思兰,孟丽,郑国生.抑制性差减杂交(SSH)技术在分离植物差异表达基因中的应用[J].分子植物育种,2006(5):735-746.
    [21]丁国华,秦智伟,周秀艳,范金霞.黄瓜霜霉病抗病基因的RAPD及SCAR标记[J].西北植物学报,2007(9):1747-1751.
    [22]王丽娟,孙彩玉,毕永贤,秦智伟.黄瓜抗霜霉病相关EST-SSR的信息分析[J].东北农业大学学报,2011(10):52-57.
    [23]曹清河,陈劲枫,钱春桃.黄瓜抗霜霉病异源易位系CT-01的筛选与鉴定[J].园艺学报,2005(6):1098-1101.
    [24]李金鑫.抗霜霉病相关基因的鉴定[D].东北农业大学,2007.
    [25]周亚君,刘富中,陈钰辉,连勇.抑制性差减杂交(SSH)技术在植物基因表达研究中的应用[A].中国园艺学会、武汉市人民政府、湖北省农业厅.中国茄子大会暨学术研讨会论文集[C].中国园艺学会、武汉市人民政府、湖北省农业厅,2008,6.
    [26]阎爱华,王冬梅.抑制性差减杂交技术(SSH)在植物学研究中的应用[J].华北农学报,2008(2):78-83.
    [27]陈儒钢,巩振辉,逯明辉,李大伟,黄炜.抑制性差减杂交结合基因芯片技术在植物基因差异表达研究中的应用[J].长江蔬菜,2009(20):1-4.
    [28]方荣,陈学军,缪南生,涂伟凤.茄科植物比较基因组学研究进展[J].江西农业学报,2007(2):35-38.
    [29]李嫒媛,傅廷栋,马朝芝.芸薹属植物比较基因组学研究进展[J].植物学通报,2007(2):200-207.
    [30]赵金荣,王晓玲,白羊年.豆科植物比较基因组学研究进展[A].海南省生物工程协会.海南生物技术研究与发展研讨会论文集[C].海南省生物工程协会,2006,11.
    [31]潘增祥,许丹,张金璧,林飞,吴宝江,刘红林.基于直向同源序列的比较基因组学研究[J].遗传,2009(05):457-463.
    [32]张森,李辉,顾志刚.功能基因组学研究的有力工具——比较基因组学[J].东北农业大学学报,2005(5):124-128.
    [33]宋立强,李妍,郭照江.比较基因组学研究与应用中的辩证思维[J].医学与哲学,2004(1):4-7.
    [34]徐小刚,刘雅婷.实时荧光定量PCR在植物病害中的应用[J].中国农学通报,2009, (7):52-56.
    [35]侯宇.荧光定量PCR技术研究进展及其应用[J].贵州农业科学,2009(6):29-32.
    [36]陈旭,齐凤坤,康立功,李景富.实时荧光定量PCR技术研究进展及其应用[J].东北农业大学学报,2010(8):148-155.
    [37]梁烨,陈双燕,刘公社.新一代测序技术在植物转录组研究中的应用[J].遗传,2011(12):1317-1326.
    [38]周华,张新,刘腾云,余发新.高通量转录组测序的数据分析与基因发掘[J].江西科学,2012(5):607-611.
    [39]吴琼,孙超,陈士林,罗红梅,李滢,孙永珍,牛云云.转录组学在药用植物研究中的应用[J].世界科学技术(中医药现代化),2010(3):457-462.
    [40]姚坚强.中国糯玉米穗部发育相关基因的转录组测序与功能分析[D].浙江大学,2011.
    [41]吴大利,侯岁稳.干扰RNA(RNAi)作用机理及其在植物细胞工程中的应用进展[J].中国生物工程杂志,2006(9):84-90.
    [42]朱学文,李凤梅.RNA干扰及其在植物中的应用进展[J].长江大学学报(自科版)农学卷,2007(3):96-99.
    [43]HUANG S, LI R, ZHANG Z, et al. The multilevel and dynamic interplay between plant and pathogen[J]. Plant Signal Behav,2009,4(4):283-293.
    [44]JONATHAN P. ANDERSON, CYNTHIA A, et al. An evolutionary arms race. Funct Plant Biol [J]. Author manuscript; available in PMC 2011 July 7[J]. Published in final edited form as:Funct Plant Biol,2010,37(6):499-512.
    [45]THOMAS B, SHENG Y. Innate immunity in plants:An arms race between pattern recognition receptors in plants and effectors in microbial pathogens. Science[J]. Author manuscript; available in PMC 2010 May 8. Published in final edited form as.-Science, 2009,324(5928):742-744.
    [46]NATASHA M, HUANG J. Ian A Dubery Self/nonself perception in plants in innate immunity and defense[J]. Self Nonself,2010,1(1):40-54.
    [47]强磊,林凡云,伦玮.抑制性消减杂交技术(SSH)及其在植物抗病性机制研究中的应用[J].陕西农业科学,2006(2):29-30.
    [48]李堆淑.物诱导抗病性机制的研究进展[J].商洛学院学报,2008(2):46-50.
    [49]李淼,檀根甲,承河元,吴芳芳,韩翔,张成林.植物抗病性研究现状与前景展望[J].江西农业大学学报(自然科学),2002(5):731-736.
    [50]张晓燕.水杨酸诱导植物抗病性机制的研究进展[J].河北林果研究,2000(3):288-291.
    [51]刘若晗.植物抗病性分子机制研究进展[J].内蒙古农业科技,2009(6):36-37.
    [52]朱小源,杨健源,曾列先,杨祁云.基因组学与植物抗病性研究进展[J].广东农业科学,2004(1):37-39.
    [53]郑伟尉,臧运祥.水杨酸(SA)与植物抗病性关系的研究进展[J].河北果树,2005, (1):1-3.
    [54]范文艳,姜述君.植物抗病性及抗病信号转导的研究进展[J].中国农学通报,2005,(2):249-252.
    [55]张德水,陈受宜.植物抗病性的分子生物学研究进展[J].植物病理学报,1997(2):4-10.
    [56](美)泰兹,(美)奇格尔,主编.宋纯鹏,王学路等译.植物生理学[M].科学出版社,2009.
    [57]CALEB K, BRAD D. From Perception to Activation:The Molecular-Genetic and Biochemical Landscape of Disease Resistance Signaling in Plants[M]. Arabidopsis Book, 2010,8:12.
    [58]BRODY J, ROGER W. Plant NBS-LRR proteins in pathogen sensing and host defense Nat Immunol. Author manuscript; available in PMC 2007 December 1[J]. Published in final edited form as:Nat Immunol,2006,7(12):1243-1249
    [59]WALTER S, GUGLIELMO R, MARCO D, et al. PRGdb:a bioinformatics platform for plant resistance gene analysis[J]. Nucleic Acids Res,2010,38 (Database issue):D814-D821
    [60]吴嘉,杨红玉,郭丽红.植物NB-LRR类R蛋白的结构和功能[J].植物保护,2009,(6):1-5.
    [61]GUPTA S K, RAI A K, KANWAR S S, et al. Comparative Analysis of Zinc Finger Proteins Involved in Plant Disease Resistance[J]. PloS one,2012,7(8):e42578.
    [62]DMARIS A, CORINA VLOT A, MARY C, et alSalicylic Acid Biosynthesis and Metabolism[M]. Arabidopsis Book,2011,9:e0156.
    [63]THOMAS E. Dissecting the WRKY Web of Plant Defense Regulators[J]. PLoS Pathog, 2006,2(11):e126.
    [64]CLEMENCIA M. ROJAS, MUTHAPPA S, et al. Mysore Glycolate Oxidase Modulates Reactive Oxygen Species-Mediated Signal Transduction during Nonhost Resistance in Nicotiana benthamiana and Arabidopsis[J]. Plant Cell,2012,24(1):336-352.
    [65]杨海灵,聂力嘉,朱圣庚,周先碗.谷胱甘肽硫转移酶结构与功能研究进展[J].成都大学学报(自然科学版),2006(1):19-24.
    [66]王敏丽,姜佳丽,王天佑,谭文,林东昕,刘宾.谷胱甘肽转硫酶T1、M1和P1基因多态与反流性食管炎易感性[J].中华消化杂志,2003(1):23-26.
    [67]吴昊,郑波,王建嶂,裴继华,姜丽娜,薛战雄.谷胱甘肽转硫酶基因多态性与浙江汉族溃疡性结肠炎易感性的相关性[J].世界华人消化杂志,2010(26):2780-2784.
    [68]黄霞,曾嘉,王敏,柳建设,邱冠周.铁硫簇的结构、功能及生物合成研究进展[J].现代生物医学进展,2008(5):944-947,951.
    [69]DAVID A, HUBERT, YIJIAN HE, et al. Specific Arabidopsis HSP90.2 alleles recapitulate RAR1 cochaperone function in plant NB-LRR disease resistance protein regulation[J]. Proc Natl Acad Sci U S A,2009,16,106(24):9556-9563.
    [70]Gerben van Ooijen, Ewa Lukasik, Harrold A. van den Burg, Jack H. Vossen, Ben J. C. Cornelissen and Frank L. W. Takken. The small heat shock protein 20 RSI2 interacts with andis required for stability and function of tomato resistance protein I-2[J]. The Plant Journal,2010,63:563-572
    [71]程维杰,李秋玲,孙延鸣,王洪梅,李建斌,仲跻峰.热休克蛋白70(HSP70)研究进展[J].畜牧兽医杂志,2008(6):55-57.
    [72]STEVEN A, WHITHAM, ROBERT J, et al. Arabidopsis RTM2 Gene Is Necessary for Specific Restriction of Tobacco Etch Virus and Encodes an Unusual Smalleat Shock-like Protein. The Plant Cell. Vol.12,569-582
    [73]杨官品,张蕾,董超华.热休克蛋白22结构和功能研究进展[J].中国海洋大学学报(自然科学版),2009(5):965-970.
    [74]BYUNG-H, SUNG-H, HYO-S, et al. Expression of the chloroplast-localized small heat shock protein by oxidative stress in rice.2000, (2):283-290
    [75]王建义,慈忠玲.热激蛋白的研究进展[J].山西林业科技,2008(1):27-32.
    [76]TAN X, BLAKE C, ALEXANDER K, et al. Global expression analysis of nucleotide inding site-leucine rich repeat-encoding and related genes in Arabidopsis[J]. BMC Plant Biol,2007,7:56.
    [77]J E PARKER, M J COLEMAN, V SZABO, et al. The Arabidopsis downy mildew resistance gene RPP5 shares similarity to the toll and interleukin-1 receptors with N and L6[J]. Plant Cell,1997,9(6):879-894.
    [78]ADNANE N, SUSANNA A, AARON M. et al. Genome-wide survey of Arabidopsis natural variation in downy mildew resistance using combined association and linkage mapping[J]. Proc Natl Acad Sci USA,2010,1,107(22):10302-10307.
    [79]ERICA G, CHRISTOPHER T, MARTIN K, et al. A Genome-Wide Survey of R Gene Polymorphisms in Arabidopsis[J]. Plant Cell,2006,18(8):1803-1818.
    [80]MARC T, NISHIMURA A, JEFFERY L. Dangl Arabidopsis and the Plant Immune System[J]. Plant,2010,61 (6):1053-1066.
    [81]QI M, WANG D, CARL A, et al. Genome Sequence Analyses of Pseudomonas savastanoi pv. glycinea and Subtractive Hybridization-Based Comparative Genomics with Nine Pseudomonads[J]. PLoS One,2011,6(1):e16451.
    [82]PETER N. Genome Evolution in Plant Pathogens[J]. Science,2010,10,330 (6010): 1486-1487.
    [83]ROBERT B, JEFFREY C, GREGORY B, et al. Bacterial elicitation and vasion of plant innate immunity[J]. Nat Rev Mol Cell Biol,2006,7(8):601-611.
    [84]MICHAEL R, ADNANE N, PETER H, et al. Co-evolutionary interactions between host resistance and pathogen effector genes in flax rust disease[J]. Mol Plant Pathol,2011, 12(1):93-102.
    [85]王长春,蔡新忠,徐幼平.番茄与叶霉菌互作的分子机理[J].植物病理学报,2006 (5):385-391.
    [86]GEORGINA F, JENS S, MARY C, et al. Multiple Candidate Effectors from the Oomycete Pathogen Hyaloperonospora arabidopsidis Suppress Host Plant Immunity [J]. PLoS Pathog,2011,7(11):e1002348
    [87]KSENIA V, ZHENG C, LAURIEBETH L, et al. Global Analysis of Arabidopsis/Downy Mildew Interactions Reveals Prevalence of Incomplete Resistance and Rapid Evolution of Pathogen Recognition [J]. PLoS One,2011,6(12):e28765.
    [88]FABIAN R, BENINWECK N, MARCO T. Which Morphological Characteristics Are Most Influenced by the Host Matrix in Downy Mildews? A Case Study in Pseudoperonospora cubensis[J]. PLoS One,2012; 7(11):e44863.
    [89]ELIZABETH A, CHENG Z, BISHWO N, et al. Brad Day Alternative Splicing of a Multi-Drug Transporter from Pseudoperonospora cubensis Generates an RXLR Effector Protein That Elicits a Rapid Cell Death PLoS One,2012,7 (4):e34701.
    [90]丁国华,秦智伟,刘宏宇,周秀艳,池春玉,王志坤.黄瓜NBS类型抗病基因同源序列的克隆与分析.园艺学报,2005,32(4):638-642.
    [91]王丽娟,牛德,孙彩玉,秦智伟.霜霉病菌侵染的黄瓜叶片cDNA文库的构建及抗病相关基因筛选[J].园艺学报,2010,37(11):1775-1782.
    [92]李建吾,司胜伟,胡建斌,刘丽君.黄瓜霜霉病抗性相关基因的初步研究[J].园艺学报,2011,38(3):471-478.
    [93]康静.氨基转移酶基因eR基因的克隆及在黄瓜中的遗传转化[D].吉林农业大学,2007.
    [94]TALER D, GALPERIN M, BENJAMIN I, et al. Plant eR genes that encode photorespiratory enzymes confer resistance against disease[J]. Plant Cell,2004,16:172-184.
    [95]HUANG S, LI R, ZHANG Z, et al. The genome of the cucumber, Cucumis sativus L[J]. Nature Genetic,2009,41:1275-1281.
    [96]王岩,李兆阳,唐心,龙卢姗,许鹏,张静,方奎,席景会.拟南芥基因组NBS-LRR类基因家族的生物信息学分析[J].中国农学通报,2009,25(15):40-45.
    [97]BITTNER-EDDY PD, CRUTE IR, HOLUB EB et al. RPP13 is a simplelocus in Arabidopsis thaliana for alleles that specify downy mildew resistance to different avirulence determinants in Peronospora parasitica[J]. Plant J,2000,21:177-188.
    [98]BOTELLA MA, PARKER JE, FROST LN, et al. Three genes of the Arabidopsis RPP1 complex resistance locus recognize distinct Peronospora parasitica avirulence determinants[J]. Plant Cell,1998,10:1847-1860.
    [100]COOLEY MB, PATHIRANA S, WU HJ, et al. Members of the Arabidopsis HRT/RPP8 family of resistance genes confer resistance to both viral and oomycete pathogens[J]. Plant Cell.2000,12:663-676.
    [101]MCDOWELL JM, DHANDAYDHAM M, LONG TA, et al. Intragenic recombination and diversifying selection contribute to the evolution of downy mildew resistance at the RPP8 locus of Arabidopsis[J]. Plant Cell,1998,10:1861-1874.
    [102]PARKER JE, COLEMAN MJ, SZABO V, et al. The Arabidopsis downy mildew resistance gene RPP5 shares similarity to the Toll and Interleukin-1 receptors with N and L6[J]. Plant Cell,1997,9:879-894.
    [103]PARKER JE, HOLUB EB, FROST LN, et al. Characterisation of edsl, a mutation in Arabidopsis suppressing resistance to Peronospora parasitica specified by several different RPP genes[J]. Plant Cell,1996,8:2033-2046.
    [104]骆蒙.基于抑制差减杂交方法的小麦抗白粉病相关基因表达谱研究[D].中国农业科学院,2001.
    [105]于秀梅.条锈菌诱导的小麦抑制差减杂交文库构建(SSH)及其表达序列标签(ESTs)研究[D].西北农林科技大学,2006.
    [106]刘蕾,徐进,许景升,张丽勃,张昊,冯洁.应用抑制性差减杂交法筛选植物青枯菌致病相关基因[J].农业生物技术学报,2012(7):745-755.
    [107]赵胡.应用抑制性差减杂交法分离法分离阜豆苗期根系镉胁迫诱导表达的基因[J].生物学杂志,2012(5):15-18.
    [108]JOHN L, ROBERT E, CAROLE L, et al. Rapid transcriptional response of apple to fire blight disease revealed by cDNA suppression subtractive hybridization analysis[J]. Tree Genetics & Genomes,2009,5:27-40.
    [109]JOSEPH A, VERICA, SIELA N, et al. Isolation of ESTs from cacao (Theobroma cacao L.) leaves treated with inducers of the defense response[J]. Plant Cell Rep,2004, 23:404-413.
    [110]PENG G, XIE LEI, HUJ, et al. Identifacation of genes that are preferentially expressed in conidiogenous cell development of Metarhizium anisopliae by suppression subtractive hybridization[J]. Curr Genet,2009,55:263-271.
    [111]ZHAO C, WANG A, SHI Y, et al. Luldentification of defense-related genes in rice responding to challenge by Rhizoctonia solani[J]. Theor Appl Genet,2008,116:501-516
    [112]罗志勇,陆秋恒,刘水平,陈湘晖,罗建清,汤立军,胡维新.人参植物皂苷生物合成相关新基因的筛选与鉴定[J].生物化学与生物物理学报,2003(6):554-560.
    [113]盛慧,秦智伟,周秀艳,武涛.利用SSH技术鉴定黄瓜胚胎发育相关基因[J].中国农业科学,2010(11):2292-2299.
    [114]金晓霞.利用抑制消减杂交(SSH)技术筛选乙烯利诱导黄瓜茎尖雌性表达相关基因[D].东北农业大学,2011.
    [115]王少干,商海红,计志斌,闫恒超,李俊文,刘爱英,石玉真,龚举武,巩万奎,王涛,袁有禄.陆地棉开花后20d纤维抑制性消减文库的构建及分析[J].分子植物育种,2012(4):462-468.
    [116]徐利利.油松胚珠游离核时期消减杂交文库的构建[D].北京林业大学,2010.
    [117]YUAN H, CHEN X, ZHU L, et al. Identification of genes responsive to brown planthopper Nilaparvata lugens Satol (Homoptera:Delphacidae) feeding in rice[J]. Planta, 2005,221:105-112.
    [118]张俊红,李喜焕,常文锁,张彩英.大豆耐低磷品种低磷胁迫SSH文库构建与ESTs分析[A].中国作物学会大豆专业委员会.第23届全国大豆科研生产研讨会论文摘要集[c].中国作物学会大豆专业委员会,2012,1.
    [119]王天佐,赵敏桂,张文浩.干旱胁迫下黄花苜蓿与蒺藜苜蓿两个抑制性差减杂交文库的构建及分析[J].草业学报,2012(6):175-181.
    [120]李子银,陈受宜.植物的功能基因组学研究进展[J].遗传,2000(1):57-60.
    [121]张胜利,李东方,李学斌,单长卷,魏琦超,王春虎.十字花科植物比较基因组学研究进展[A].美国James Madison大学、武汉大学高科技研究与发展中心、美国科研出版社.Proceedings of International Conference on Engineering and Business Management (EBM2011)[C].美国James Madison大学、武汉大学高科技研究与发展中心、美国科研出版社,2011,4.
    [122]LIU Z, MOLLEE C, ANTONETTE T, et al. Identification of expressed resistance gene-like sequences by data mining in 454-derived transcriptomic sequences of common bean(Phaseolus vulgaris L.)[J]. BMC Plant Biol,2012,12:42.
    [123]LIN H, FABIENNE M, STE'PHANE D, et al. Transcriptome analysis during somatic embryogenesis of the tropical monocot Elaeis guineensis:evidence for conserved gene functions in early development[J]. Plant Mol Biol,2009,70:173-192
    [124]LI Z, ZHANG Z, YAN P, et al. RNA-Seq improves annotation of protein-coding genes in the cucumber genome[J]. BMC Genomics,2011,12:540.
    [125]LIU Z, MOLLEE C, ANTONETTE T, et al. Identification of expressed resistance gene-likesequences by data mining in 454-derived transcriptomic sequences of common bean(Phaseolus vulgaris L.)[J]. BMC Plant Biolog,2012,12:42.
    [126]LI Z. ZHANG Z, YAN P, et al. Zhangjun Fei. Kui Lin. RNA-Seq improves annotation of protein-coding genes in the cucumber genome[J]. BMC Genomics,2011, 12:540.
    [127]蔡宁.黑龙江省黄瓜霜霉病菌生理小种分化的研究[D].东北农业大学,2008:22-25.
    [128]RICE, P, LONGDEN I, BLEASBY A. EMBOSS:the European Molecular Biology Open Software Suite[J]. Trends Genet,2000,16(6):276-277.
    [129]CHEN, Z.-Z. X., C.-H. ZHU, S., GoPipe:streamlined gene ontology annotation for batch anonymous sequences with statistics[J]. PROGRESS IN BIOCHEMISTRY AND BIOPHYSICS,2005,32(2):187-190.
    [130]KANEHIXX M, et al. KEGG for representation and analysis of molecular networks involving diseases and drugs. Nucleic Acids Res.38(Database issue):D355-360.
    [131]MORTAZAVI, A, et al. Mapping and quantifying mammalian transcriptomes by RNA-Seq[J]. Nat Methods,2008,5(7):621-628.
    [132]WANG L, FENG Z, WANG X, et al. DEGseq:an R package for identifying differentially expressed genes from RNA-seq data[J]. Bioinformatics,2010,26(1):136-138.
    [133]董娟,张玉秀,陈琼,赵琦.叶绿体小热激蛋白的研究进展[J].生物技术通,2000,(3):19-24.
    [134]INBAL N, TAL I, SUSAN L, et al. Dual Role for Tomato Heat Shock Protein 21: Protecting Photosystem II from Oxidative Stress and Promoting Color Changes during Fruit Maturation[J]. Plant Cell,2005,17(6):1829-1838.
    [135]马辉,张智俊,罗淑萍.植物MADS-box基因研究进展[J].生物技术通,2006,(6):14-18.
    [136]杨金莹,孙爱清,刘箭.热激蛋白ClpB的结构和功能[J].植物生理学通,2006,(2):326-330.
    [137]白宇杰,马华升,王火旭,阮松林.植物细胞亲环素研究进展[J].植物生理学通,2010(9):881-889.
    [138]李宏,黄晓天.高等植物转座子的超家族及其应用(综述)[J].亚热带植物科学,2010(3):93-96.
    [139]SIMON A, TRAVERS A, AND MARIO A, et al. Functional coevolutionary networks Of The Hsp70-Hop-Hsp90 System Revealed Through Computational Analyses. On behalf of the Society for Molecular Biology[C].2007,30, Oxford University Press.
    [140]JONES J. D. G, DANGL J. L. The plant immune system[J]. Nature,2006,444: 323-329.
    [141]BART P, THORSTEN N, AND MATTHIEU H. Of PAMPs and Effectors:The Blurred PTI-ETI Dichotomy[J]. The Plant Cell,2011,23:4-15.
    [142]DANGL J, JONES J. Plant pathogens and integrated defence responses to infection [J]. Nature,2001,411:826-833.
    [143]TIMOTHY K, JEFFERY L. NB-LRR proteins:Pairs, pieces, perception, partners and pathways. Curr Opin Plant Biol. Author manuscript; available in PMC August 1[J]. Published in final edited form as:Curr Opin Plant Biol,2010,1,13 (4):472-477.
    [144]王凯,张增艳.SGT1在植物抗病反应中的功能研究进展[J].植物遗传资源学报,2008,9(1):115-118.
    [145]张玉成,牛姣,徐晓召,王华,王西平.葡萄醛脱氢酶(ALDH2)基因进化、表达及启动子功能的生物信息学分析[J].西北农林科技大学学报(自然科学版),2012(9):169-180.
    [146]SHANG Y, LI X, CUI H, et al. RAR1, a central player in plant immunity, is targeted by Pseudomonas syringae effector AvrB. Proc Natl Acad Sci USA[J].2006 December 12; 103(50):19200-19205.
    [147]ZHU S, JEONG R, SRIVATHSA C et al. SAG101 Forms a Ternary Complex with EDS1 and PAD4 and Is Required for Resistance Signaling against Turnip Crinkle Virus[J]. PLoS Pathog,2011,7(11):e1002318.
    [148]CARMEN G, FEDERICO P, ESTHER N. The Ve-mediated resistance response of the tomato to Verticillium dahliae involves H2O2, peroxidase and lignins and drives PAL gene expression[J]. BMC Plant Biol,2010,10:232.
    [149]DVIR T, MARJANA G, IDO B, et al. Plant eR Genes That Encode Photorespiratory Enzymes Confer Resistance against Disease[J]. Plant Cell,2004,16(1):172-184.
    [150]CLEMENCIA M, MUTHAPPA S, WANG K, et al. Glycolate Oxidase Modulates Reactive Oxygen Species-Mediated Signal Transduction during Nonhost Resistance in Nicotiana benthamiana and Arabidopsis[J]. Plant Cell,2012,24(1):336-352.
    [151]SIGRUN R, MA C, STEFFEN L, LAVANYA B. AraPerox. A Database of Putative Arabidopsis Proteins from Plant Peroxisomes[J]. Plant Physiol,2004 September; 136 (1):2587-2608.
    [152]李莹.黄瓜细菌性角斑病菌的分子鉴定及抗病相关基因克隆与分析[D].东北农业大学,2009.
    [153]Shang Y, Li X, Cui Haitao, Ping He, et al. RAR1, a central player in plant immunity, is targeted by Pseudomonas syringae effector AvrB[J]. Proc Natl Acad Sci USA,2006,12; 103(50):19200-19205.
    [154]RAPHAEL B, JULIEN V, THOMAS G, et al. Hsp90 cleavage by an oxidative stress leads to its client proteins degradation and cancer cell death[J]. biochemical pharmacology,2009,77:375-383.
    [155]YOKO A, HIROYUKI K, ICHIZO K. Evolutionary genome engineering using a restriction-modification system[J]. Nucleic Acid s Res,2011, (20):9034-9046.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700