用户名: 密码: 验证码:
碳基超级电容器及其电气性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超级电容器作为一种新型的储能器件,既具有较大的能量密度和功率密度,同时又具有较长的循环寿命,在新能源发电、脉冲功率电源系统、电动汽车及电能武器等领域得到了广泛的应用。
     首先,本文以超级电容器为研究对象,根据双电层电容的形成机理,深入研究了电极-溶液界面的结构和性质,探讨了电解液离子在多孔电极及溶液间的分布特点和传递规律。在总结现有超级电容器模型的基础上提出双电层的矩阵式模型,研究了双电层电容器内部电荷、电压的分布规律。同时针对超级电容器电极的特点,根据该模型初步探讨了影响双电层电容器储能的因素和超级电容器的自放电机理。
     其次,以碳纳米管为基体,研究了碳纳米管分别与活性炭、二氧化锰、聚苯胺组成复合电极材料的电化学性能,着重分析了电极材料组成对电容性能的影响。其中聚苯胺/碳纳米管电极具有较优的电容性能,其比电容为245F·g-1,等效串联电阻(ESR)为0.811Ω。为了提高电极材料的储能特性,本文采用低温氧等离子体改性的方法,对电极材料进行改性处理。通过研究不同的处理时间,对比分析了不同改性深度下电极材料的微观结构和电化学性能。实验结果表明,经过1Omin的改性处理后,各电极材料接枝上了羟基官能团,微观结构更加均匀,阻抗性能得到明显提升。聚苯胺/碳纳米管电极材料的比电容为320F·g-1,为改性前的1.3倍,ESR为0.32ΩΩ,较改性前降低了60.5%;二氧化锰/碳纳米管电极材料的比电容为260.9F·g-,为改性前的1.27倍,ESR为0.35f2,较改性前降低了60.7%。由此证明,氧等离子体改性为超级电容器电极材料的优化制备提供了一定的思路。
     第三,采用聚氯乙烯作为封装材料,对超级电容器单元进行封装。封装外壳尺寸为φ37mm×10mm的圆柱形,其内部采用堆叠式结构。在此基础上对超级电容器单元和三单元组成的串联模块进行循环充放电试验。结果表明,经1000次循环充放电试验后,其电容保持率最高可达98%。
     最后,在储能系统、脉冲功率系统及其他高功率的应用场合,由于超级电容器的单体电压较低,通常需要将若干电容器单元串联组成储能模块来满足负载对电源系统电压等级的要求。但由于制造工艺、使用环境等因素会造成串联单元的性能不一致,从而在充电时会使得各串联单体间电压不均衡。故针对此问题,本文设计了基于PIC单片机控制的电压均衡系统,该系统由电压采集单元、控制单元及均衡主电路组成,以实现串联超级电容器组在充电过程中单体间的均衡充电,从而提高储能系统的安全性和效率。实验结果表明,针对10组单体参数为55V、9F电容器串联组成的储能系统,该均衡电路能够实现在0-20A,0-550V范围内的均衡充电。
As a novel kind of energy storage component, supercapacitor has high energy density, power density and cycle life. It has a wide application in the fields such as new kinds of electricity generation, pulse power system, electric vehicles and electromagnetism weapons.
     Firstly, in this paper, the supercapacitor was regarded as the research object. On the basis of the formation mechanism for the double layer capacity, the structure and properties of the electrode-solution was thoroughly studied. At the same time, the distribution and transmission characteristics of ions in the solution were discussed. After a summary of the models for supercapacitor, the matrix model of the double layer capacitor was proposed. On the basis of this mathematical model, the charges and voltage distribution in the inner side of the double layer capacitor was investigated. Meanwhile, the factors that influence the energy storage and self discharge mechanism of the doule layer supercapacitor was also discussed.
     Secondly, as regard to the field of the supercapacitor electrode, the electrochemical properties of carbon nanotubes (CNT) electrode and actived carbon/carbon nanotubes (AC/CNT) electrode, manganese dioxide/carbon nanotubes (MnO2/CNT) electrode, polyaniline/carbon nanotubes (PANI/CNT) electrode were studied. The influence of the electrode component on the capacitance was deeply investigated, and the PANI/CNT electrode had the best performance, which specific capacitance is245F·g-1, equivalent series resistance (ESR) was0.811Ω. In order to enhance the energy stroage character of the electrode material, the modification based on the oxygen plasma was proposed, and the modification was carried out on the electrode materials. Next, the comparison of different modification time on the electrode materials was investigated, and the results of lOmin modification treatment revealed that the hydroxyl functional group was introduced on the electrode materials, the micro morphology was uniformly distributed. Furthermore, as regard to the electrochemical properties, the impedance of each electrode was improved, the specific capacitance of PANI/CNT and MnO2/CNT electrode were320F·g-1and260.9F·g-1respectively, which were1.3and1.27times of the electrodes before modification. The ESR of PANI/CNT and MnO2/CNT electrode were0.32Ω and0.35Ω, which were reduced by60.5%and60.7%respectively after10min modification. This demonstrates that the plasma modification is suitable to the optimized preparation of the electrode material.
     Thirdly, the polyvinyl chloride (PVC) was used as the packaging material and the electrodes as prepared were stackingly assembled in the037mm×10mm cylinder PVC package. The charge-discharge tests were conducted. The results revealed that the best capacitance maintaince of the three series connected module was98%after1000cycles.
     Finally, in the fields of energy storage system, pulsed power system and other high power sources, especially the system based on the supercapacitor, the capacitors need to be series connected in order to fulfill the need of the load due to its low unit voltage. Actually, each unit of the series is inconformity owing to the manufacture technique and operating environment, so the voltage between the units is also imbalanced during the charge process. The voltage balance system based on the PIC microchip unit was designed in this paper in order to solve this problem. The balance system consisted of voltage acquisition unit, controlling unit and main circuit, which in order to achieve the balanced voltage of each unit during the charging process and the maximum efficiency of the energy storage system. As regard to the energy storage system consists of10series connected55V9F supercapacitor module, the experiment results demonstrated that this system could realize the balanced charging in the range of0-20A,0-550V.
引文
[1]李凯杰,曲如晓.技术进步对中国碳排放的影响[J].中国软科学,2012,6:51-52.
    [2]B. E. Conway.电化学超级电容器—科学原理及技术应用[M].陈艾等译.北京:化学工业出版社,2005:9-112.
    [3]A. Burke. Ultracapacitors:why, how, and where is the technology[J]. Journal of Power Sources.2000,91(1):37-50.
    [4]B. E. Conway. Transition from supercapacitor to battery behavior in electrochemical energy storage[J]. Journal of the Electrochemical Society.1991,138(6):1539-1548.
    [5]M. Winter, Brodd. R. J. What are batteries, fuel cells, and supercapci tors [J]. Chemical Reviews.2004,104(10):4245-4269.
    [6]袁国辉.电化学电容器[M].北京:化学工业出版社,2006:3-13,16-28.
    [7]0. Barbieri, M. Hahn, A. Herzog, et al. Capacitance limits of high surface area activated carbons for double layer capacitors[M]. Carbon,2005,43:1303-1310.
    [8]李晶,黄可龙,刘业翔.超级电容器用活性炭的制备与电化学表征[J].材料科学与工艺,2009,17(1):1-4.
    [9]海永强,张文峰,王碧燕,等.超级电容器用活性炭的制备及性能[J].电池,2006,36(2):92-94.
    [10]叶江海,梁逵,刘勇刚.复合活化剂组分质量比对活性炭微球电容性能的影响[J].电子元件与材料,2010,29(8):32-38.
    [11]庄凯,梁逵,李兵红,等.微波法制备煤基超级电容器用活性炭[J].炭素,2006,1:42-44.
    [12]XIE Yingbo, QIAO Wenming, ZHANG Weiyan, et al. Effect of the surface chemistry of activated carbon on its electrochemical properties in electric double layer capacitors [J]. New Carbon Materials,2010,25(4):249-253.
    [13]梁逵,陈艾,周旺,等.碳纳米管作为超大容量离子电容器电极的研究[J].电子学报,2005,5(5):621-623.
    [14]李辰砂,王大志,吴建军,等.热酸处理对基于碳纳米管双电层电容器性能的提高[J].无机材料学报,2003,18(5):122-125.
    [15]R. B. Rakhi, H. N. Alshareef. Enhancement of the energy storage properties of supercapacitors using graphenenanosheets dispersed with metal oxide-loaded carbon nanotubes[J]. Journal of Power Sources,2011,196:8858-8865.
    [16]Gongming Wang, Yichuan Ling, Fang Qian, et al. Enhanced capacitance in partially exfoliated multi-walled carbon nanotubes[J]. Journal of Power Sources.2011,196: 5209-5214.
    [17]Qiang Li, Jianhua Liu, Jianhua Zou, et al. Synthesis and electrochemical performance of multi-walled carbonnanotube/polyaniline/MnO2ternary coaxial nanostructures for supercapacitors[J]. Journal of Power Sources,2011,196:565-572.
    [18]Sung-Woo Hwang, Sang-Hoon Hyun. Synthesis and characterization of tin oxide/carbon aerogel composite electrodes for electrochemical supercapacitors[J]. Journal of Power Sources,2007,172:451-459.
    [19]Yueming Li, Marshall van Zijll, Shirley Chiang. KOH modified graphene nanosheets for supercapacitor electrodes[J]. Journal of Power Sources,2011,196:6003-6006.
    [20]Jun Yan, Zhuangjun Fan, Tong Wei, et al. Fast and reversible surface redox reaction of graphene-MnO2 composites as supercapacitor electrodes[J]. Carbon,2010,48:3825-3833.
    [21]Xiaofeng Wang, Zheng You, Dianbo Ruan. Hydrous ruthenium oxide with high rate pseudo capacitance prepared by a new sol-gel process [J]. Chinese Journal of Chemical Physics, 2006,19(4):341-346.
    [22]Zhang Li, Song Jinyan, Zou Jiyan. Electrochemical property of Ru-Mn-AC multi-element composite electrode materials[J]. Rare Metal Materials and Engineering,2009, 38(1):11-14.
    [23]Xiuhua Tang, Hongjuan Li, Zonghuai Liu. Preparation and capacitive property of manganese oxide nanobelt bundles with birnessite-type structure[J]. Journal of Power Sources,2011,196:855-859.
    [24]Anbao Yuan, Xiuling Wang, Yuqin Wang. Comparison of nano-MnO2derived from different manganese sourcesand influence of active material weight ratio on performance [J].Energy Conversion and Management,2010,51:2588-2594.
    [25]Dongfang Yang. Pulsed laser deposition of cobalt-doped manganese oxide thin films for supercapacitor applications[J]. Journal of Power Sources,2012,198:416-422.
    [26]陈永真.电容器及其应用[M].北京:科学出版社,2005:1-15.
    [27]曹楚南,张鉴清.电化学阻抗谱导论[M].北京:科学出版社,2002:15-60,76-107.
    [28]Xingwei Li, Xiaohan Li, Na Dai, et al. Preparation and electrochemical capacitance performances of super-hydrophilic[J]. Journal of Power Sources,2010,195:5417-5421.
    [29]贺晓书,丛文博,华黎.PANI/MWCNT复合材料电容性能研究[J].电源技术,2010,34(11):1152-1154.
    [30]Kalakodimi Rajendra Prasad, Norio Miuraa. Polyaniline-MnO2 composite electrode for high energy density electrochemical capacitor[J]. Electrochemical and Sol id-State Letters,2004,7(11):425-428.
    [31]S. K. Mondal, Keshab Barai, N. Munichandraiah. High capacitance properties of polyaniline by electrochemical deposition on a porous carbon substrate[J]. Electrochimica Acta,2007,52:3258-3264.
    [32]Malcolm D. Ingrama, Halgard Staesche, Karl S. Ryder. Activated polypyrrole electrodes for high-power supercapacitor applications[J].Sol id State Ionics,2004,169:51-57.
    [33]Santhosh Paul, Yoonsng Lee, Jiae hoi, et al. Synthesis and electrochemical characterization of polypyrrole/multi-walled carbon nanotube composite electrodes for supercapacitor applications[J]. Bull Korean Chemical Society,2010,31 (5): 1228-1232.
    [34]Wei Suna, Ruilin Zhenga, Xuyuan Chen. Symmetric redox supercapacitor based on micro-fabrication with three-dimensional polypyrrole electrodes [J]. Journal of Power Sources,2010,195:7120-7125.
    [35]高峰阁,田艳红.聚噻吩/活性炭复合材料作为超级电容器电极材料的电性能[J].高分子材料科学与工程,2011,27(2):152-155.
    [36]谢金龙,李艳霞,初振明,等.超级电容器储能材料的研究进展[J].材料导报,2012,26(8):14-18.
    [37]Zang J F, Bao S J, Li C M, et al. Well-aligned cone-shaped nanostructure of polypyrrole/Ru02 and its electrochemical supcapacitor[J]. Journal of Physical Chemistry,2008,112(38):43-47.
    [38]Prasad KR, Miura N. Polyaniline-MnO2 composite electrode for high energy density electrochemical capacitor[J]. Electrochemistry Solid-State Letter,2004,7(11):425-428.
    [39]D. Kalpana, Y. S. Lee, Y. Satod. New, low-cost, high-power poly(o-anisidine-co-metanilic acid)/activated carbon electrode for electrochemical supercapacitors[J]. Journal Power Sources,2009,190(2):592-595.
    [40]Belanger Daniel, Ren Xiaoming, et al. Characterization and long term performance of polyaniline-based electrochemical capacitors[J].Journal of Electrochemical Society,2000,147(8):2923.
    [41]申来法,张校刚,原长洲,等.SnO2/MWCNTs纳米复合材料的低热固相制备及其超电容特性研究[J],无机化学学报,2009,25(9):1601-1606.
    [42]彭波,刘素琴,黄可龙,等.化学共沉淀法制备超级电容器电极材料MnO2[J].电源技术,2005,29(8):531-534.
    [43]C. Portet, P. L. Taberna, P. Simon, et al. Modification of Al current collector surface by sol - gel deposit for carbon-carbon supercapacitor applications[J]. Electrochimica Acta,2004,49:905-912.
    [44]T. P. Gujar, V. R. Shinde, C.D. Lokhande, et al. Spray deposited amorphous Ru02for an effective use in electrochemical supercapacitor[J].Electrochemistry Communications, 2007,9:504-510.
    [45]黄彬,江奇,谢德钰,等.模板法制备聚苯胺空心微球材料及其电化学性能[J].功能材料,2011,42(1):144-147.
    [46]黎小辉,黎运宇,甘卫平,等.超级电容器氧化物电极材料的研究进展[J].广东有色金属学报,2006,16(1):62-66.
    [47]Lee J K, Pathan M H, Jung K D, et al. Electrochemical capacitance of nanocomposite films formed by loading carbon nanotubes with ruthenium oxide[J]. Journal of Power Sources,2006,159(2):1527-1531.
    [48]苏凌浩,范少华,崔玉民.纳米MnO2超级电容器的研究综述[J].河南科技大学学报:自然科学版,2006,27(1):35-38.
    [49]胡亚菲.超级电容器活性炭电极材料的孔径调控和表面改性[D].上海:同济大学,2008.
    [50]D. Tashima, A. Sakamoto, M. Taniguchi. Surface modification of carbon electrodes using an argon plasma[J]. Vacuum,2009,83:695-698.
    [51]白柳杨,袁方利,胡鹏.高频等离子体法制备微细球形镍粉的研究[J].电子元件与材料,2008,27(1):20-22.
    [52]褚国红,李辉,何颖源,等.FEP纤维的等离子体表面改性[J].功能材料,2011,42(7):1332-1334.
    [53]韩俊波,于国萍,魏正和,等.Ti02纳米晶的等离子体改性及光电转换性能的研究[J].光学与光电技术,2005,3(3):36-38.
    [54]Pehr Bjornbom. Charge-discharge of an electrochemical supercapacitor electrode pore non-uniqueness of mathematical model[J]. Electrochemistry Communications,2007,9: 211-215.
    [55]李海东,祁新春,齐智平.双电层电容器的应用模型[J].电池,2007,37(4):322-324.
    [56]李忠学,陈杰.牵引型碳基超级电容器双RC模型参数的试验测定[J].兰州交通大学学报,2006,25(2):79-81.
    [57]Eckhard Karden, Stephan Buller, Rik W. A frequency-domain approach to dynamical modeling of electrochemical power sources[J]. Electrochimica Acta,2002,47:2347-2356.
    [58]C. H. Wu, Y. H. Hung, C.W. Hong. On-line supercapacitor dynamic models for energy conversion and management[J].Energy Conversion and Management,2012,53:337-345.
    [59]刘春娜.国外超级电容器发展动态[J].电源技术,2012,36(7):930-932.
    [60]李建玲,梁吉,徐景明.双电层电容器有机电解液研究进展[J].电源技术,2001,25(3):229-234.
    [61]祁新春,齐智平,韦统振.超级电容器恒流充放电热行为分析[J].高电压技术,2008,34(12):3048-3053.
    [62]Ariana Cormiea, Andrew Crossa, Anthony. F. Hollenkamp. Cycle stability of birnessite manganese dioxide for electrochemical capacitors[J]. Electrochimica Acta,2010,55 (22): 7470-7478.
    [63]封世领,刘强,李志强.基于FPGA的超级电容器均衡充电电路设计与实现[J].电源技术,2011,35(5):540-542.
    [64]Dirk Linzen, Stephan Buller, Eckhard Karden, et al. Analysis and evaluation of charge balancing circuits on performance, reliability and lifetime of supercapacitor systems[J]. Journal of Power Sources,2003,49:1589-1595.
    [65]R.Kotz, M. Carlen. Principles and applications of electrochemical capacitors[J]. Electrochimica Acta,2000,45(15):2483-2498.
    [66]F. Belhachemi, S. Rael, B. Davat. Physical based model of power electric double-layer supercapacitors[C]. IAS Annual Meeting, Italy,2000:3069-3076.
    [67]Marie-Francoise J. N., Gualous H., Berthon A. Supercapacitor thermal-and electrical behavior modelling using ANN[C].Electric Power Applications, IEEE Proceedings: Electric Power Applications,2006,153(2):255-262.
    [68]Chuan Lin, James A. Ritter, Branko N. Popov et al. A mathematical model of an electrochemical capacitor with double-layer and faradaic processes [J]. Journal of the Electrochemical Society,1999,146(9):3168-3175.
    [69]Hossein Farsi, Fereydoon Gobal. Artificial neural network simulator for supercapacitor performance prediction[J]. Computational Materials Science,2007,39(3):678-683.
    [70]孔治国.电动客车用超级电容器组动态均衡技术研究[D].哈尔滨:哈尔滨工业大学,2007.
    [71]W.C. Chen, C. C. Hu, C. C. Wang, et al. Electrochemical characterization of activated carbon ruthenium oxide nanoparticles composites for supercapacitors[J]. Journal of Power Sources,2004,125(2):292-295.
    [72]吴浩青,李永舫.电化学动力学[M].北京:高等教育出版社,1998:1-16.
    [73]查全性.电极过程动力学导论[M].北京:科学出版社,2004:15-50.
    [74]李荻.电化学原理[M].北京:北京航空航天大学出版社,2008:89-125.
    [75]高颖,邬冰.电化学基础[M].北京:化学工业出版社,2004:45-62.
    [76]F. Rafik, H. Gualous, R. Gal lay, et al. Frequency, thermal and voltage supercapacitor characterization and modeling[J]. Journal of Power Sources,2007,165(2):928-934.
    [77]F. Belhachemi, S. Rael, B. Davat. Physical based model of power electric double-layer supercapacitors[C]. IAS Annual Meeting, Italy,2000:3069-3076.
    [78]T Zhou, B Francois. Modeling and control design of hydrogen production process for an active hydrogen/wind hybrid power system[J]. International Journal of Hhydrogen Energy. 2009,34(1):21-30.
    [79]Chuan Lin, James A.Ritter, Branko N.Popov, et al. A mathematical model of an electrochemical capacitor with double-layer and faradaic processes [J]. Journal of the Electrochemical Society,1999,146(9):3168-3175.
    [80]Oliver Bohlen, Julia Kowal, Dirk Uwe Sauer. Ageing behaviour of electrochemical double layer capacitors Part I. Experimental study and ageing model[J].Journal of Power Sources,2007,172(1):468-475.
    [81]S. Buller, E. Karden, D. Kok, et al. Modeling the dynamic behavior of supercapacitors using impedance spectroscopy[J].IEEE Transactions on Industry Applications,2002,38 (6):1622-162.
    [82]R. A. Dougal, L. Gao, S.Liu. Ultracapacitor model with automatic order selection and capacity scaling for dynamic system simulation[J]. Journal of Power Sources,2004, 126(1-2):250-257.
    [83]S. R. Newton, R. M. Nelms, L. L. Grigsby, et al. A modular state variable approach to the electromagnetic transients problem[J]. IEEE Proceedings:Electric Power Applications, 1989,35 (6):118-122.
    [84]Hossein Farsi, Fereydoon Gobal. Artificial neural network simulator for supercapacitor performance prediction[J]. Computational Materials Science,2007,39:678-683.
    [85]闫晓磊,钟志华,李志强等.HEV超级电容自适应模糊神经网络建模研究[J].湖南大学学报,2008,35(4):33-36.
    [86]SHEN W X, CHAN C C, LOEW C, et al. Adaptive Neuro-Fuzzy modeling of battery residual capacity for electric vehicles[J]. IEEE Transaction on Industrial Electronics,2002, 49(3):677-684.
    [87]Huang J S. Meunier V. A universal model for nanoporous carbon supercapacitors applicable to diverse pore regimes, carbon materials, and electrolytes[J]. Chemistry-A European Journal,2008,14(22):6614-6626.
    [88]Huang J S, Sumpter B G, Meunier V. Theoretical model for nanoporous carbon supercapacitors[J]. Angewandte Chemie International Edition,2008,47(3):520-524.
    [89]Chuan Lin, James A.Ritter, Branko N.Popov et al. A mathematical model of an electrochemical capacitor with double-layer and faradaic processes[J]. Journal of the Electrochemical Society,1999,146(9):3168-3175.
    [90]冯慈璋,马西奎.工程电磁场导论[M].北京:高等教育出版社,2000:31-45.
    [91]邱关源.电路[M].北京:高等教育出版社,1999:231-238.
    [92]Vinay G, Norio M. Polyaniline/single-wall carbon nanotube(PANI/SWCNT) composites for high performance supercapacitors[J]. Electrochimica Acta,2006,52:1721-1726.
    [93]於黄中,陈明光,黄河,等.不同类型的酸掺杂对聚苯胺结构和电导率的影响[J].华南理工大学学报,2003,31(5):21-23.
    [94]张曦,潘春跃,赵悠曼,等PANI/AC复合材料电容器的交流阻抗分析[J].电源技术,2009,33(9):784-786.
    [95]段玉平,刘顺华,管洪涛,等.强磁场作用对聚苯胺颗粒形貌及电性能的影响[J].化学学报,2005,63(17):1595-1599.
    [96]B. Daffos, G. Chevallier, C.Estournes. Spark plasma sintered carbon electrodes for electrical double layer capacitor applications[J]. Journal of Power Sources,2011, 196(4):1620-1625.
    [97]刘红霞,张慧君,陈杰瑢.远程氧等离子体改性聚四氟乙烯表面润湿性与表面结构的研究[J].西安交通大学学报,2010,44(3):120-125.
    [98]程抗,王祖武,左蓉,等.等离子体改性对活性炭纤维表面化学结构的影响[J].炭素,2008,135(3):15-19.
    [99]李瑞华,黄玉东,龙军,等.PBO纤维表面空气冷等离子体改性[J].复合材料学报,2003,20(3):102-107.
    [100]刘洋.射频等离子体改性聚合物润湿及粘接性能研究[D].大连:大连理工大学,2010.
    [101]罗廷和,王铁,曾小宁.交流等离子体在炼钢及铁合金冶炼中的应用[J].武汉科技大学学报,2003,26(3):221-223.
    [102]黄石生,王振民,薛家祥,等.等离子弧喷涂系统的发展与展望[J].焊接技术,2001,30(2):3-5.
    [103]孙亚非,史春元,朱轶峰,等.活性剂等离子弧焊接电弧现象的试验研究[J].航空制造技术,2006,(10):76-81.
    [104]张贵萍,龚克成.聚苯胺的结构与性能[J].高分子材料科学与工程,1993,(10):7-15.
    [105]邓梅根,杨邦朝,胡永达.活化和MnO2沉积提高碳纳米管超级电容器的性能[J].功能材料,2005,36(3):804-805.
    [106]Rongrong Jiang, Tao Huang, Yang Tang, et al. Factors influencing MnO2/multi-walled carbon nanotubes composite's electrochemical performance as supercapacitor electrode[J]. Electrochimica Acta,2009,54:7173-7179.
    [107]Shengwen Zhang, Chuang Peng, Kok C. Ng, et al. Nanocomposites of manganese oxides and carbon nanotubes for aqueous supercapacitor stacks[J]. Electrochimica Acta,2010, 55:7447-7453.
    [108]胡耀强,刘希邈,张丽明,等.活性炭孔结构及润湿性对混合型超级电容器电化学性能的影响[J].炭素,2001,129(1):9-11.
    [109]D.Evans, Seekonk. Mass, Capac i tor [P]. US. US Patent 5,369,547,1994.
    [110]张莉.混合型超级电容器的相关理论和实验研究[D].大连:大连理工大学,2006.
    [111]宋金岩.混合型超级电容器的建模与制备研究[D].大连:大连理工大学,2010.
    [112]张莉,邹积岩,郭莹,等.40V混合型超级电容器单元的研制[J].电子学报,2004(8):1253-1255.
    [113]刘聪.聚氯乙烯/埃洛石纳米管纳米复合材料的结构与性能[D].广州:华南理工大学.2011.
    [114]Klaric I., Vrandecic N. S., Roje U. Effect of poly(vinyl chloride)/chlorinated polyethylene blend composition on thermal stability[J]. Journal of Applied Polymer Science,2000,78(1):166-172.
    [115]Jing P., Genshuan W., Yudong Z. Studies on mechanical and rheological properties of poly(vinyl chloride) modified with elastomers and rigid organic particles [J]. Journal of Applied Polymer Science,2003,88(10):2478-2483.
    [116]Zhang L. X., Zhou C., Sun S. L., et al. Study of compatibility, morphology structure and mechanical properties of CPVC/ABS blends[J]. Journal of Applied Polymer Science, 2010,116(6):3448-3454.
    [117]谢建玲,桂祖桐,蔡绪福.聚氯乙烯树脂及其应用[M].北京:化学工业出版社,2007:34-35.
    [118]Spyker R. L, Nelms R.M. Classical equivalent circuit paramenters for a double-layer capacitor[J]. IEEE Transactions on Aerospace and Electronic Systems,2000,36(3):829-836.
    [119]Linzen D, Buller S, Karden E. Analysis and evaluation of charge balancing circuits on performance, reliability and lifetime of supercapacitor systems[J].IEEE Transaction on Industry Applications,2005,41(5):1135-1141.
    [120]张宁.超级电容器电压均衡系统的研究[D].大连:大连理工大学,2011.
    [121]刘和平,刘林,余红欣,等. PIC18FXXX单片机原理及接口程序设计[M].北京:北京航空航天大学出版社,2004:25-106.
    [122]张占松,蔡宣三.开关电源的原理与设计[M].北京:电子工业出版社,2006:201-209.
    [123]王兆安,黄俊.电力电子技术[M].北京:机械工业出版社:2005:33-40.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700