用户名: 密码: 验证码:
基坑开挖与降水对支护结构受力及地面变形影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在地下水位较高的场地进行深基坑工程的设计及施工,降水开挖引起局部水文地质条件的变化与支护结构及周边环境之间是相互制约、相互作用的。
     本文首先对太原市汾河低阶地地层进行了分类整理,按照地层变化规律、粒径组成、渗透性质及帷幕底部可能嵌固进入地层透水性质的不同,将基坑止水帷幕分为三类嵌固模式。每种模式给出了相应的渗流变化特征及其对支护结构及地面变形的影响程度。
     本文对太原市中环壹号深基坑工程监测资料进行整理分析,依此为模拟基础,以比奥固结理论为基础利用Flac3D的cysoil模型进行数值模拟,深入研究了止水帷幕为第二类嵌固模式时,水头边界条件下分别采用侧向和上部两种不同水头补给位置时,降水回灌四种组合方式的渗流条件与支护结构及地面变形之间的相互作用;并对地下水位改变、土体性质改变、渗透系数改变、回灌条件改变引起基坑周边地面沉降的影响规律进行了分析研究。
     最后对渗透系数与降水前后土体的力学性质测试的试验方法及参数的变化规律进行了深入的分析研究。
     通过以上分析研究获得的主要认识及结论为:
     1、材料本构关系cysoil模型是摩尔-库仑的衍生模型,采用定律为增量弹性法则、破坏准则和流动准则。运用该模型将降水回灌的渗流变化与土力学有机地组合起来,与比奥固结理论相结合能很好反映地下水的渗流特征及开挖应力改变之间的作用。模拟结果与中环壹号监测资料对比,地面沉降的模拟吻合率高达90%以上,地下连续墙墙体水平位移的吻合率为60%-80%,水平支撑的撑力吻合率达80%以上,说明该模型适用于本论文研究的基坑开挖降水工程。
     2、通过对各项水文参数改变的模拟得出:
     1)水头边界条件的侧向固定水头补给位置适用于第一类、第二类嵌固模式,上部固定水头补给位置适用于第三类嵌固模式。
     2)分步降水加回灌的降水开挖工况对基坑周边地面变形控制最为有利。回灌是控制地面沉降的有效手段,回灌井位置在基坑开挖深度(0.5~1.0)H范围内最佳。
     3)根据正交水平原理提供了回灌井深度、回灌压力、回灌井数量及排数、帷幕深度各因素及因素组合对地面沉降的贡献系数表,来评价各参数及参数组合对地面沉降的影响程度,以便设计施工中采用最优最经济的回灌组合方式。
     4)降水引起基坑外地面沉降曲线为“凹”形:从基坑边至最大沉降点处为对数曲线,从最大沉降点至降水影响范围的最外边界处为线性关系。利用回归关系给出第二类嵌固模式下基坑外地面变形与渗透系数变化关系的计算公式。
     5)考虑回灌渗流应力场作用比不考虑渗流作用,地表沉降降低50%,坑底隆起增35%,支护结构的水平位移增加30%,水平支撑轴力增加15%。设计中需考虑回灌渗流作用,以降低支护结构的风险。
     6)墙体水平位移受水平侧向支撑的限制,同一断面出现两头小中间大的鼓肚子挠曲形状。墙体的最大水平位移位置在墙顶下0.85H处,在开挖深度(0.4-0.85)H水平位移增量大,该段落为支护结构的最薄弱部位,是设置支撑及施工监测的重点部位。
     7)地表沉降量随着土体弹性模量的增大而减小;地表最大沉降和弹性模量曲线大致呈折线形分布。随着土体模量的提高,土体变形滑移面的斜率在增大,滑移面越来越陡,土体的变形影响范围在减小。但土体模量的提高对支护结构的变形影响不大。
     3、对水文参数的试验研究得出:
     1)综合考虑取样过程中土样的扰动程度、取土深度、土样应力释放情况、孔隙水压力消散程度及渗透系数对土层影响的权重等因素,提出对室内试验测出的渗透系数的修正公式。
     2)降水过程相当于给土体一个预压加固作用,降水后土体压缩模量ES1-2增大25%;粘聚力增大33%;内摩擦角增大8%。
     3)高压固结多级卸荷回弹试验土体均出现“回滞圈”,卸荷曲线的斜率不一致,但回弹的路径几乎是一组平行线。
     本文的研究成果是对太原市中环壹号工程的支护体系研究中得出的,对水位较高的河流一级阶地基坑开挖的设计及施工具有一定的借鉴和指导作用,对深大基坑中渗流场与支护结构、周边环境的相互作用理论的研究具有一定的意义。
Local variations of hydrogeological conditions due to precipitation and excavation, support structures and ambient environment constraint and interact each other during design and construction of deep foundation pit works at sites with high water level.
     First of all, this article sorted the low-terrace strata in Fen River, Taiyuan city, and classified the foundation pits into three embedding modes according to stratigraphic variation rule, particle size composition, permeability property and different water permeability when the curtain bottom might be embedded into layers. For each mode, it presented its characteristics of seepage variation and the respective influences on support structure and ambient environment.
     This article still systematically sorted and analyzed monitoring information for the deep foundation pit works of Zhonghuan No.1residential project in Taiyuan, China; and makes in-depth study on interactions among precipitation-reinjection combinations, variation in seepage condition, support structure and ambient environment through numerical simulation using Flac3D Cysoil model based on Biot's consolidation theory; studies laws of influences of variations in water table, soil properties, permeability coefficient and reinjection condition on land subsidence around the foundation pit.
     Finally, in-depth studies have been made for different methods to test permeability coefficient and soil mechanical properties before and after precipitation..
     The main conclusions from above studies are as follows:
     1. The Cysoil model for material constitutive relationship is a derived Mohr-Coulomb model, the laws adopted are incremental elasticity rule, failure criterion and flow criterion. Studies demonstrate that, this model integrates precipitation-reinjection-induced seepage variation and soil mechanics constructively, coupled with Biot's consolidation theory, it is able to reflect interaction between groundwater seepage characteristics and excavation stress change very well. By applying this model, simulation of ground subsidence can match up to90%, the horizontal displacement of the underground continuous wall can match up to60%to80%, and the support of horizontal support structures can match up to above80%, all of the above studies prove that this model is suitable for foundation pit excavation and precipitation works studied in this paper.
     2. Through simulation of the change of each hydrological parameter, we can see that:
     1) The laterally fixed hydraulic head applies to the first and second types of embedding modes, while the top-fixed hydraulic head applies to the third type of embedding mode.
     2) The mode of multi-step precipitation plus reinjection is most favorable for control of ground deformation. Reinjection is an effective means to control ground subsidence. It is optimum to place a reinjection well within depths0.5-1.0times the excavation depth of foundation pit.
     3) In order to evaluate attribution of depth of recharge well, recharge pressure, number of recharge well and curtain depth to the ground subsidence, the parameters and different combination of parameters have been provided according to orthogonal level principle, and therefore the optimum recharge combination can then be selected.
     4) Owing to precipitation, the curve of subsidence outside the foundation pit is "concave" shaped:The segment from foundation pit edge to the maximum subsidence point is logarithmic curve, while the segment from the maximum subsidence point to the outermost boundary of precipitation scope is linear relationship. A calculation formula for permeability coefficient versus ground deformation outside foundation pit in the second type of embedding mode was given.
     5) Compared with the case of not taking seepage effect into account, the case of taking seepage stress field into account shows ground subsidence decreasing by50%, pit bottom upheaval rising by35%, horizontal displacement of support structure increasing by30%, and axial force of foundation pit support structure increasing by15%. It is therefore necessary to take seepage into account during design.
     6) The wall horizontal displacement is limited by horizontal lateral braces, and a plump buckling shape smaller at two ends and larger at the center appears at one section. The maximum horizontal displacement of wall occurs at a distance of17m below the wall top, the horizontal displacement increment gets larger at excavation depth of8-17m, the interval with excavation depth being0.4-0.85times depth of foundation pit is the weakest portion of support structure and the key position of monitoring and supporting.
     7) The maximum land subsidence curve and elasticity modulus curve roughly exhibit fold-line distribution. With increase in soil modulus, the slip surface of soil deformation gets steeper and steeper with increasing slope, and the influencing scope of soil deformation is reduced. However, the increase in soil modulus has not much impact on deformation of support structure.
     3. From the tests and studies of hydrological parameters, we can see that:
     1) This article takes into account such factors as disturbance of soil sample during sampling, depth of borrow pit, stress release of soil sample, dissipation of pore water pressure, and weight of permeability coefficient on soil layer, and put forward a correction formula for permeability coefficient measured in laboratory test.
     2) The precipitation process is equivalent to a preloading effect of soil, which change the effective stress in soil, and after precipitation, compression modulus Es1-2increases by25%, cohesive force rises by33%, and internal friction angle increases by8%.
     3)"Hysteresis loops" appear for all soil samples in multi-stage high pressure consolidation and rebound test, in which slopes of unloading curves are not consistent, but rebound paths are almost a group of parallel lines.
     The research achievements in this article are obtained from a study on the support system of Zhonghuan No.1residential project in Taiyuan City, China; they have certain reference and guidance values for design and construction of foundation pit excavation works on the first-level terrace of any high-water-level river, and are of certain significance to the theoretical research of interactions among the seepage field in a large deep foundation pit, support structure and ambient environment.
引文
[1]朱爱国,沈永祥.关于丛坑支护设计现状的几点认识[J].广西土木建筑,2000,25(1):1-4.
    [2]苗国航.岩土工程纵横谈[M].北京:人民交通出版社.2010.
    [3]钱家欢,殷宗泽.土工原理与计算(第二版)[M].南京:中国水利水电出版社.1996.
    [4]陈希哲.土力学地基基础[M].北京:清华大学出版社.1998.
    [5]Peck,R.B.(1969).Deep excavations and tunneling in soft ground.Proc.,7th Int.Conf.Soil Mech. Found. Engrg.,225-281 [1]
    [6]Bjerrum,L.and Eide,O.,Stability of Strutted Excavation in clay[J].Geotechnique,London,England,1956, 6:57-62
    [7]Clough,GW.,and Reed,M.W.(1984).Measured behavior of braced wall in very soft clay.J.Geotech. Engrg. ASCE,110(1),1-19
    [8]Clough,G.W.,Smith,E.M.,and Sweeney,B.P.(1989).Movement control of excavation support systems by iterative design.Proc.ASCE Found Engrg.:Current Principles and Pract.,Vol.2 ASCE,New York,869-884
    [9]Clough,G.W.,and O'Rourke,T.D.(1990).Construction induced movements of in situwalls.Proc.,ASCE, New York,439-470
    [10]Karlsrud,K.(1986).Preformance monitoring in deep supported excavations in soft clay.Proc.,4th Int.Geo.Seminar,Field Instrumentation and In-Situ Measurement,Nanyang Technological Institute,Singapore,187-202
    [11]Ou,C.Y,Hsien,P.G.,and Chiou,D.C.(1993).Characteristics of ground surface settlement during excavation.Can.Geotech.J.,Ottawa,30,758-767
    [12]刘建航,侯学渊.基坑工程手朋[M].中国建筑工.北京:业出版社,1997
    [13]侯学渊,陈永福(1989).深基坑开挖引起周围地基土沉陷的计算[J].岩土工程师.1989,07:03-13.
    [14]金鸣.软上地基深基坑护壁结构的侧向上压力分布研究[J].冶金建筑技术与管理.1994,03:13-14.
    [15]蒋洪胜,刘国彬.基坑主动区土压力计算模式的分析研究[J].山东建筑工程学院学报1998,02:18-22.
    [16]杨光华.深基坑开挖中多支撑支护结构的上压力问题[J].岩土工程学报,1998,11:113-115.
    [17]陈书中.经典上压力理论的局限与小变位上压力计算的建议[J].上工基础.1997,06:15-21.
    [18]徐日庆.考虑位移和时间的土压力计算方法[J].浙江大学学报(工学版),2000,04:22-27.
    [19]Mana,A.I.(1978) Finite element analysis of deep excavation behavior in soft clay.PHD dissertation, Stanford,Univ.,Stanford, Calif.,71-106
    [20]谭跃虎,吉同筠.软土深挖基坑中挡墙侧向变形分析与计算[J]..岩土工程学报,1995,04:71-76.
    [21]毛鹏飞,魏磊,黄宏伟.深基坑开挖中地下连续墙侧向位移计算的变分解法[J].岩土工程技术,2000,(2):63-66,71.
    [22]孙钧,袁金荣.深大基坑施工变形的智能预测与控制[J].地下工程与隧道.2000,04:12-23.
    [23]吴铭炳.软上地基深基坑支护中的上压力[J].工程勘察,1999,(2):15-17.
    [24]高文华,杨林德,沈蒲生(2000).香港广场深基坑围护结构变形的时空效应分析[J].湖南大学学报(自然科学版),2000,27(1):86-91.
    [25]陈观胜,严洪龙,陈昌平.深基坑开挖对周围建筑物的保护[J].城市道桥与防洪,2003,(2):28.
    [26]骆祖江,李朗,曹惠宾等.复合含水层地区深基坑降水三维渗流场数值模拟——以上海环球金融中心基坑降水为例[J].工程地质学报,2006,01:72-77.
    [27]张亚奎。深基坑开挖对近邻建筑物变形影响的研究[D].北京工业大学,2003.
    [28]Attwell P.B..Soil movoment incluced by tunneling and their effects or pipelines and structures. Blackic.Chapman and Hall.1986:20-46
    [29]Debasis Roy,Keith E. Robinson. Surface settlements at a soft soil site due to bedrock dewatering[J]. Engineering Geology,2009.08:109-117.
    [30]杨天亮,严学新,王寒梅,熊巨华,陈洪胜.基坑施工引发的工程性地面沉降研究[J].上海地质,2009,02:15-21.
    [31]Ge.Xuewu.kesponse of a shield-driven tunnel to deep excavations in soft clay.HongKong University of Science and Technology (Peoples Republic of China) PH.D.2002:15-237
    [32]Lame Ishihava,k,Relations between process of Solutions,Soils and Found.1970,10(3):50-65
    [33]T. R. Shearer. A numerical model to calculate land subsidence, applied at Hangu in China[J]. Engineering Geology,1998,49(2):85-93.
    [34]Shilun Feng, Yonghong Wu, Jun Li, Pulin Li, Zhiyu Zhang, Dian Wang. The Analysis of Spatial Effect of Deep Foundation Pit in Soft Soil Areas[J].Procedia Earth and Planetary Science,2012:309-313.
    [35]张莲花,孔德坊.沉降变形控制的基坑降水最优化方法及应用[J].岩土工程学报,2005,10:1171-1174.
    [36]张莲花.丛坑降水引起的沉降变形时空规律及降水控制研究[D].成都理工学院,2001.
    [37]丰晓,唐翠萍,许烨霜.基坑开挖工程降水引起的沉降预测[J].中国市政工程,2007,03:64-65+95.
    [38]蒋麟,工需.基坑开挖及支护的影响分析[J].华章,2011,21:306-309.
    [39]赵金亮,王安华,韩圣钱.基坑开挖降水的三维有限元模拟分析[J].科技咨询导报,2007,25:162-16.
    [40]闫金凤,刘晓彬,孙宗军,宋时春.基坑开挖降水的三维流固祸合分析[J].山东大学科技学报(自然科学版),2010.02:51-56.
    [41]曹孝华,章杨松.基坑开挖降水引起地表沉降的有限元分析[J].西部探矿工程,2006,10:1-3.
    [42]李允忠,汪稔.基坑开挖孔隙水压力变化规律试验研究[J].岩土力学,2002,06:813-816+820.
    [43]冯晓腊,熊文林,胡涛,沈江涛.三维水-上耦合模型在深基坑降水计算中的应用[J].岩上力学与工程学报,2005,04:1196-1201
    [44]平扬,白师伟,徐燕萍.深基坑工程渗流-力耦合分析数值模拟研究[J].岩土力学,2001,01:37-41.
    [45]周志芳,朱宏高,陈静等.深基坑降水与沉降的非线性耦合计算[J].岩上力学,2004,12:1984-1988.
    [46]李筱艳.基于位移反分析的深基坑渗流场与应力场完全耦合分析[.J].岩石力学与工程学报,2004,08:1269-1274.
    [47]骆祖江,刘金宝,张月萍,武永霞.深基坑降水与地面沉降变形三维耦合数值模拟[J].江苏大学学报(自然科学版),2006,04:356-359.
    [48]黄新,宋汉周.基于降水优化方案的某基坑地面沉降数值模拟[J].勘察科学技术,2013,01.
    [49]李相然,苗延威,王笃国.基坑开挖中的环境岩十工程问题研究[J].中国地质灾害与防治学报,2001,02:37-41+58.
    [50]唐翠萍,许烨霜,沈水龙,王敏华.基坑开挖中地下水抽取对周围环境的影响分析[J].地下空间与工程学报,2005,04:634-637.
    [51]林川,周丁恒,曹力桥.考虑渗流固结耦合作用的软土深基坑降水施工的三维数值[J].隧道建设,2010,S1:187-193.
    [52]张彬,王安华,韩圣钱.三维丛坑降水开挖的应力变化模拟分析[J].岩土工程界,2008,03:46-49+58.
    [53]廖红建,姬建.深基坑开挖中饱和-非饱和土体渗流-沉降的耦合分析[J].应用力学学报,2008,04;637-640+736.
    [54]吴林高,方兆昌.基坑工程降水案例[M].北京:人民交通出版社.2009.
    [55]吴林高等.工程降水施工与丛坑渗流理论[M].北京:人民交通出版社.2003.
    [56]孔祥言.高等渗流力学[M].北京:中国科技大学出版社.1999.
    [57]华南理工大学,东南大学,浙江大学,湖南大学.地丛及丛础[M].北京:中国建筑工业出版社2003.
    [58]高大钊.土力学与基础工程[M].北京:中国建筑工业出版社,1998.
    [59]龚晓南.高等土力学[M].杭州:浙江大学出版.2006.
    [60]孙书伟,林航,任连伟Flac3D在岩土工程中的应用[M].北京:中国水利水电出版社.2011.
    [61]彭武斌Flac3D实用教程[M].北京:机械工业出版社.2009.1.
    [62]陈育民,徐鼎、平FLAC/FLAC3D基础与工程实例[M].北京:中国水利水电出版社.2009
    [63]刘波,韩彦辉FLAC原理、实例与应用指南[M].北京:人民交通出版社.2005.
    [64]李同录,李萍编著.岩土工程数值分析[M].西安:陕西人民教育出版社.2004.
    [65]尚岳全,黄润秋编著.工程地质研究中的数值分析方法[M].成都:成都科技大学出版社.1991.
    [66]FLAC3D version 4.0 Example Application[M].ITASCA.2009.
    [67]FLAC3D Fast Lagrangian Analysis of Continua in 3 Dimensions Fluid-Mechanical Interaction[M]. ITASCA,2009.
    [68]FLAC3D Fast Lagrangian Analysis of Continua in 3 Dimensions Theory and Background[M]. ITASCA,2009.
    [69]李立军.双排桩支护结构的数值分析与现场试验研究[D].太原理工大学,2013.
    [70]胡其志,庄心善,宋桂红.基坑开挖引起周边地面沉降的数值分析[J].河南建材,2010,01:56-57+59.
    [71]陈伟.基坑开挖与降水对坑底工程桩影响的数值分析[J].结构工程师,2011,05:140-145.
    [72]刘建军,杨前雄,史沛元.深基坑降水过程中地下水渗流数值模拟[J].地下水,2005,27(5)
    [73]周顺新.深基坑支护结构渗流效应的有限元分析[D].扬州大学,2007.
    [74]孙文娟,沈水龙,李耀良,唐翠萍.基坑开挖前降水引起的地面沉降的工程实例分析[J].岩土工程学报,2008,S1:314-318.
    [75]王翠英,殷坤龙,王家阳.建筑工程基坑降水设计方案优化的探讨[J].施工技术,2005,01:15-17.
    [76]纪佑军,刘建军,薛强.基坑地下水渗流数值模拟[J].武汉工业学院学报,2006,01:72-77.
    [77]璩继立,刘国彬,张建峰.东昌路地铁车站降承压水引起地而沉降的研究[J].土木工程学报,2002,05:93-99.
    [78]谢康和,柳崇敏,应宏伟,杨伟.成层土中基坑开挖降水引起的地表沉降分析[J].浙江大学学报(工学报),2002,03:9-12+21.
    [79]许晔霸,余恕国,沈水龙.地下水开采引起地面沉降预测方法的现状与未来[J].防灾减灾工程学报,2006,03:352-357.
    [80]骆祖江,郑飞,童学平、地下水渗流沉降的三维耦合模型[J].资源调查与环境,2009,01:55-61.
    [81]贾彩虹,王媛,张雪颖.深丛坑工程流固耦合模型的发展进程与动向[J].四川建筑科学研究,2010,06:80-84.
    [82]李志鸢,梁仁旺,相兴华,张晓婷.基坑抗隆起稳定性各计算公式及数值分析的对比[J].建筑科学,2013,05:89-92.
    [83]数值模拟深基坑降水和优化控制地面沉降[D].上海大学.
    [84]张小伟,姚笑青.基坑工程变形的渗流应力耦合有限元分析[J].地下空间与工程学报,2012,02:339-344.
    [85]王志华,周恩全,陈国兴.孔压增长后的饱和砂体流体特性及其孔压相关性[J].岩土工程学报,2012,03:528-533.
    [86]罗晓辉.深基坑开挖渗流与应力耦合分析[J].工程勘察,1996.06:37-41.
    [87]裴利华.非稳定渗流基坑变形分析[J].铁道勘察与设计,2007,04:52-55.
    [88]C. S. Desal, "Seepage analyses of earth banks under drawdown", J. Soil Mech.& Found, Div.,Yb1.98, SM11,1972.
    [89]David Muir Wood.,Soil behaviour and critical state soil mechanics.America.Cambridge university press.,1990,37:84-107
    [90]C S. Desai Seepage analysis of earth banks under drawdown[J]. J. Soil Mech.& Found. Div., 98SM(11):1972,1143-1163.
    [91]Neuman S P, witherspoon P A Analysis of non-steady flow with a free surface using the finite element method[J]. Water Resources Research,1971,7(3):174-187.
    [92]ATC Goh, FH Kulhawy, KS Wong. Reliability assessment of basal-heave stability for braced excavations in clay[J]. Journal of Geotechnical and Geoenviromental Engineering,2008,134(2): 145-153.
    [93]Chang M F. Basal Stability Analysis of Geoenvironmental Engineering[J]. ASCE,2003,129(8): 738-755.
    [94]王爱兰.丛坑降水对周围地表沉降的影响分析[D].福建农林大学,2011.
    [95]王雪玲,牛辉.基坑渗流与土的岩性分析[J].价值工程,2012,03:90-91.
    [96]P.Egger, "Influence of wall stiffness and anchor prestressing on earth pressure distributuion",Proc. Sth European Conf. on Soil Mech.& Found Eng., Madrid, Vol.1,2,1972.
    [97]S.P.Neuman, P.Awitherspon, "Analysis of nonsteady flow with a free surface using the finite element method",Water Resources Research,Vol.7, No.3,1971.
    [98]张晓婷,梁仁旺,相兴华,李志鸢.丛坑降水对地而沉降影响因素的数值分析[J].建筑科学,2013,05:30-33.
    [99]瞿成松,肖震,徐丹,韩传梅.回灌试验渗流分析[J].地下工程与隧道,2011,03:11-13+56.
    [100]瞿成松,陈蔚,黄雨.人工回灌控制基坑工程地面沉降的数值模拟[J].中国海洋大学学报(自然科学版),2011,06:87-92+108.
    [101]沈鹏云.渭河河床沉积物渗透系数空间变异性研究[D].西安:西北大学硕士学位论文,2012.
    [102]施水清等.渗透系数空间变异性研究[J].水科学进展,2005,03:210-214.
    [103]魏道垛,胡中雄.上海浅层地基土的前期固结压力及有关压缩性参数的试验研究[J].岩土工程学报,1980,04:13-22.
    [104]张聪.地下水位变化对砂土地基承载特性影响试验研究[D].沈阳建筑大学,2011.:6-8.
    [105]张晓婷.基坑降水对支护结构及土体变形影响因素的数值分析[D].太原:太原理工大学硕士学位论文,2013.
    [106]安璐.超深基坑分层降水开挖条件下坑内土体性状研究[D].天津:天津大学硕士学位论文,2008
    [107]邓指军.基坑卸荷回弹特性的试验及研究[D].上海:同济大学硕士学位论文,2008
    [108]RonC.K.W.,A model for strain-induced permeability anisotropy in deformable granular media,Can. Geotech[J].2003,40:95-106
    [109]Terzaghi K. Theoretical soil mechanics [M]. New York:Wiley,1943.7
    [110]Towhata I;Sasaki Y;Tokida K-I Tamari H. Prediction of permanent displacement of liquefied ground by means of minimum energy principle[J]. Soil and Foundations,1992.32(3)97-116.
    [111]Hamada M, Wakamatsu K. A study on ground displacement caused by soil liquefaction[J]. Joural of Geotechnical Engineering,1998,111-43(596):189-208.
    [112]Dungca J R, Kuwano J, Saruwatari T. Shaking table tests on the lateral response of a pile buried in liquefied sand [C]//Proceedings of 11th International Conference on Soil Dynamics and Earthquake Engineering. Berkeley, California,2004:471-477.
    [113]Huwang J I, Kim C Y, Chung C K. Viscous fluid characteristics of liquefied soils and behavior of piles subjected to flow of liquefied soils[J]. Soil Dynamics and Earthquake C2006,26(2/4): 313-323.
    [114]Miyaj I M, Kitaura M, Koike T. Experimental study on characteristics of liquefied ground flow[C]// Proceedings of 1st International Conference on Earthquake Geotechnical Engineering. Rotterdam: A.A.Balkema,1995:969-974.
    [115]Towhata I,Vargas-Monge, Orense R P. Shaking table tests on subgrade reaction of pipe embedded in sandy liquefied subsoil[J]. Soil Dynamics and Earthquake Engineering,1999,18(5):347-361.
    [116]Sawicki A, Mierczynski J. On the behavior of liquefied soil[J]. Computers and Geotechnics, 2009,36(4):531-536.
    [117]Koga Y, Matsuo O. Shaking table tests of embankments resting on liquefaction sandy ground[J]. Soils and Foundations,1990.,30(4):162-174.
    [118]L.Lam, D.GFredland,"Saturated-unsaturrated transient finite element seepage model for geotechnical engineering", Adv. Water Resotrrce,Vol.7, No.3,1984.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700