用户名: 密码: 验证码:
地下结构动力变形分析及其对地表建筑地震响应的影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着经济的飞速增长,我国城市化进程日益加快,人口和物质财富逐渐向城市高度集中,开发地下空间,建立以地铁为主体的城市地下交通系统作为缓解城市交通最快捷、最有效的途径越来越引起重视。城市地下空间的飞速开发,其抗震安全性必然会成为建筑工程抗震和城市防灾减灾研究的重要内容。大型地下结构内部人口比较集中,空间受限,疏散缓慢,一旦遭受地震破坏,直接造成的生命和财产损失与地上结构相比将更为严重,而且地下结构的修复工作相对困难,间接经济损失同样巨大。地铁交通工程大都贯穿于城市内部,其地表附近一般都已经存在建成的建筑物,或者为了交通方便而在地铁工程附近新建商业区、居民小区等,地下空间结构的存在将改变临近建筑物的地基条件,并改变地震波的传播路径,进而影响地表建筑的地震响应。
     本文针对上述问题,重点分析了地下结构的动力变形特性,以及地下结构的存在对地表临近建筑结构地震响应的影响,主要研究内容如下:
     (1)根据土-地下结构拟静力相互作用法,分析排水和不排水条件土体中,地下结构剪切变形与输入激励波波长的关系。研究了土-地下结构拟静力相互作用法的计算原理和适用条件;建立有限元模型,输入由地下结构横截面尺寸所确定的不同频率的正弦波作为激励,分析在排水和不排水条件下,不同高宽比地下结构的剪切变形与激励波波长的关系,给出了不排水条件时采用静力代替动力荷载进行计算的适用条件;同时分析了柔度系数以及土体与地下结构的相对刚度两因素的影响规律。
     (2)研究了单自由度体系在含有速度脉冲的近断层地震动作用下的响应,对比分析了矩形地下结构在脉冲型近断层地震动和无脉冲远场地震动作用下的剪切变形。首先运用小波分析的方法将含有速度脉冲的近断层地震动分解为高频波和脉冲波两部分,分别分析其对单自由度体系动力响应的影响,论述了仅用脉冲模型模拟近断层地震动的局限性;其次,建立不同截面形状的地下结构模型,计算不同柔度系数时,地下结构在远场地震动和脉冲型近断层地震动作用下的剪切变形系数,研究脉冲型近断层地震动对地下结构地震响应的影响,以及随柔度系数变化的规律。
     (3)分析了地表建筑结构常用的简化模型,研究了高阶振型对地表结构层间位移谱、以及对层间位移沿结构无量纲高度分布的影响;以地铁车站为研究算例,重点分析当地铁车站埋置于不同类型场地中时,地下结构的存在对地表临近建筑能够产生影响的地表区域范围。根据现行规范对场地类型的规定,选取软土、中软土和硬土三种类型的均质场地做为研究基准,以纯弯曲、纯剪切和弯剪组合三种类型的结构作为研究对象,给出了有、无地铁车站时,三种场地中所选结构层间位移角的变化趋势;将地铁车站水平宽度作为地下结构与地表建筑相对距离的衡量基准,分析地下结构的尺寸与其所能影响到的地表建筑所处位置的关系,总结地下结构的影响范围随场地条件变化的规律,并分析对不同类型地表结构的影响程度;研究不同场地条件下,地下结构的存在对场地设计地震动的影响。
     (4)地铁车站属于大型地下空间结构,以两层双柱三跨式地铁车站为例,着重从场地土体刚度、加速度峰值以及地表建筑变形类型三个方面进行分析,研究地下结构对地表临近建筑地震响应的影响。首先在有限元软件中分别建立无车站的自由场模型和土体-地铁车站相互作用模型,基于广义层间位移谱分析地铁车站的存在对地表临近建筑结构地震响应的影响;其次,研究了地表结构自震特性和距车站水平距离两个因素对地表结构层间位移角、及其沿结构无量纲高度分布的影响规律,同时分析了场地土体与地下结构相对刚度,以及输入地震动峰值加速度的变化对所得结果的影响;最后,分析了不同自振周期的地表结构所受地下结构影响的变形类型。
     (5)以成层土体中浅埋地铁区间隧道为研究对象,分析隧道对不同类型地表建筑地震响应的影响以及所能影响到的地表区域范围。首先根据有、无隧道存在的情况下地表结构层间位移的计算结果,分析隧道的影响随地表建筑与隧道之间的相对位置发生变化的规律;其次,针对隧道可能贯穿建筑下方的情况,重点分析了隧道对位于其上方的地表结构层间位移角的影响,给出了不同自振周期地表结构的层间位移角在有、无隧道影响下沿结构高度的分布,并分析地表建筑的变形类型。
With the development of modern society, the increasing cost and decreasing availability of surface land often results in the development of new space and transportation infrastructure placed underground.As a prevalent part of the infrastructure of modern cities,underground structures, such as subway transportation system and underground plaza, are used for a wide range of application and becoming an important part of urban lifeline in China. If underground structures were destroyed during the earthquake, they might result in more serious damage than the surface buildings for their characteristics:population concentration in the structures, space limitation, exit blockage and so on; in addition, it will be confronted with complex difficulties for the repairing. The failures of a number of underground structures in recent earthquake suggest that the seismic performance of underground structures is not safety as being expected; therefore, the seismic analysis of underground structures becomes an important research content and attracts much attention of civil engineering and urban disaster prevention and reduction. Generally, Underground transportation system will be throughout the modern cities, and subway stations may be built in commercial or residential areas where surface buildings already exist, or the presence of an underground transportation facility may attract new construction in its vicinity. As a result, the underground station may not only change the original site conditions, but also may have an effect on local ground motions. Clearly, it is necessary to investigate the interaction between underground structures and adjacent ground buildings since seismic design of surface buildings is commonly based on the assumption that there is no cavity in the foundation.
     Based on the above issues, the research emphasis in this dissertation are the dynamic deformaction of the underground structures and the influence of underground structures on adjacent surface buildings, and the major contents are concluded as follows:
     (1) The relationship between racking deformation of structure and wave length of input motion is investigated by pseudo-static interaction analysis when underground station is buried in drained and un-drained conditions separately. The principle and the adaptive conditions are described; The FEM models and a number of harmonious sinusoidal waves whose frequencies are calculated by the dimension of the underground structure are used to determine the variation of the racking coefficient with the excited wave length in both drained and un-drained condition; the adaptive issue which assumes that the static method can be used in dynamic analysis is discussed when the condition is changed from drained to un-drained; finally, the effect of two factors which means flexibility ratio and relative stiffness between ground and structure is also analyzed.
     (2) Seismic analysis of SDOF systems under near-fault ground motion with velocity pulse is investigated, and racking deformations of the underground structure with rectangle section subjected to far-field and near-fault ground motions are contrastively analyzed. Firstly, the near-fault ground motion with velocity pulse are decomposed into pulse-type component and high-frequency component by wavelet analysis method, and the effect of each component on the SDOF system is studied; Then, the racking coefficients of underground structure with different flexibility ratios and section dimensions are extensively calculated when the structures subjected to excitations with and without pulse, and the effect of near-fault ground motion on the underground structure is discussed and concluded; Finally, the influence of the flexibility ratios on the issue is also studied.
     (3) The simplified model and the principle of the generalized inter-story drift spectrum are introduced briefly, and the influence of high modes on the inter-story drifts and their distribution along the height of structures is analyzed. The range of areas in where the surface structures will be influenced by the subway station is extensively investgated when the station is buried in different types of homogeneous foundations. According to the Code for seismic design of buildings, the foundations where station is buried are assumed to be three types:soft site, medium soft site and stiff site. Simultaneously, the adjacent structures are equivalently simplified as flexural, shear and combined shear-flexural models. The variation tendency of the inter-story drift ratios of structures is investigated in the three foundations with and without subway station; the relationship between the dimension of the station and the position where the surface buildings exist is emphatically analyzed; the range of area in where the dynamic response of surface buildings will be effected by the subway station is studied and concluded; Finally, the influence of the underground structures on the seismic design patameters of ground motions for different site conditions is investigated and concluded statistically.
     (4) A subway station with two-story-three-span-island is considered to investigate the influence of the underground structure on the adjacent surface buildings, which is focused on relative stiffness, peak acceleration and deformation types of the structures. Firstly, generalized inter-story drift spectrum combined with two FEM models with and without subway station are used to analyze the change of the inter-story drift of the surface buildings because of the existence of a underground station; Then, the influence of two key factors, the fundamental period of the building and the distance between the building and the station, on the IDR distribution along the height of the structures is investigated; Following, the effect of two factors, the relative stiffness and the PGA of the input motion, on the seismic response of adjacent building is summarized and concluded; Finally, the deformation types for the structures with different foundational periods caused by the existence of a station are extensively analyzed.
     (5) A typical subway tunnel which is buried in the layered soil is selected to analyze the influence on the dynamic response of the surface adjacent structures. Firstly, based on the generalized inter-story drift spectrum, the variation of the response of the surface structures with the distance from the tunnel is investigated when there is a tunnel in the foundation and not; Secondly, as a characteristic of subway tunnel, it is possible that the surface structures exist on the top of the tunnel, therefore, the influence of subway tunnel on the buildings which stand on the top of the tunnel is investigated; Finally, the difference of IDR distribution along the height between when the tunnel exists and not is summarized, and the deformation types of the structures are analyzed.
引文
[1]陈国兴.岩土地震工程学[M].北京:科学出版社,2007.
    [2]FAHIMIFAR A.. The prediction of seismic damages in tunnels and underground spaces and the method of controlling them, (Persian paper), Jadeh [J]. Journal of Ministry of Road & Transportation of Iran,2003,48:76-89.
    [3]SHARIFI B. M.. Modeling of underground spaces response due to dynamic loading, Case study: Power-house of Karun-3 Dam-Iran [D]. MSc. Thesis submitted in Mining Faculty of Amirkabir University of Technology, Iran,2004.
    [4]AASHTO. LRFD bridge design specifications, second edition,2011 interim revisions [D]. American Association of State Highway and Transportation Officials, Washington D.C.1998.
    [5]林皋.地下结构抗震分析综述(上)[J].世界地震工程,1990,6(2):1-10.
    [6]林皋.地下结构抗震分析综述(下)[J].世界地震工程,1990,6(3):1-10.
    [7]HASHASH Y.M.A., HOOK J.J., SCHMIDT B., et al. Seismic design and analysis of underground structures [J]. Tunnelling and Underground Space Technology,2001(16):247-293.
    [8]ROWE R.. Tunnelling in seismic zones [J]. Tunnels & Tunnelling,1992,12
    [9]KUESEL T.R.. Earthquake design criteria for subways [J]. Journal of Structure Division, ASCE ST6, 1969:1213-1231.
    [10]潘昌实.隧道地震灾害综述[J].隧道及地下工程。1990,11(2):1-9.
    [11]SUNIL S., WILLIAN R.J..地震队地下洞室的破坏(雷谦荣译)[J].地下空间,1992(4):335-344.
    [12]李彬.地铁地下结构抗震理论分析与应用研究[D].北京:清华大学,2005.
    [13]王璐.地下建筑结构实用抗震分析方法研究[D].重庆:重庆大学,2011.
    [14]高峰.地下结构动力分析若干问题研究[D].四川:西南交通大学,2003.
    [15]张建明,张嘎.土体与结构物动力相互作用研究进展[J].土力学与地基基础工程,2001,20(1):854-865.
    [16]孙超,薄景山,齐文浩,等.地下结构抗震研究现状及展望[J].世界地震工程,2009,25(2):94-99.
    [17]于翔,陈启亮,赵跃堂等.地下结构抗震研究方法及其现状[J].解放军理工大学学报,2000,1(5):63-69.
    [18]张庆贺,朱合华,庄荣,等.地铁与轻轨[M].北京:人民交通出版社,2002.
    [19]潘昌实.隧道及地下结构物抗震问题的研究概况[J].世界隧道,1996,11(5):7-16.
    [20]陈正发.粘性土地基中地铁隧道动力离心模型试验系统开发[D].北京:清华大学,2005.
    [21]ASCE. Earthquake damage evaluation and design considerations for underground structures [M]. American Society of Civil Engineers, Los Angeles Section,1974.
    [22]JSCE. Earthquake resistant design for civil engineering structure in Japan. Japan Society of Civil Engineering, Tokyo,1988.
    [23]OKAMOTO S.. Introduction to earthquake engineering (2nd Ed) [M]. Japan:University of Tokyo Press,1984.
    [24]NAKAMURA S., YOSHIDA N., IWATATE T.. Damage to Daikai subway station during the 1995 Hyogoken-Nambu earthquake and its investigation [R]. Japan Society of Civil Engineers, Committee of Earthquake Engineering,1996:287-295.
    [25]王文晖.地下结构抗震设计理论与分析方法对比研究[D].北京:清华大学,2008.
    [26]JSCE. Earthquake resistant design code in Japan [S]. Japan Society of Civil Engineering,Tokyo, 2000.
    [27]林皋.土-结构动力相互作用[J].世界地震工程,1991,7(2):4-21.
    [28]PHILLIPS J.S., LUKE B.A.. Tunnel damage resulting from seismic loading [C]. Proceedings of 2nd international conference on Rec Adv, in Geotechnical Earthquake and Soil Dynamics, March 11-15, St. Louis. Missouri.1991,207-210.
    [29]ARURLANANDAN K.. Verification of Numerical Procedures for the Analysis of Soil Liquefaction Problems [R]. Balkema, Rotterdam, Netherland,1994.
    [30]FISHMAN K.L., MANDER J.B., RICHARDS R., et al. Laboratory study of seismic free-field response of sand [J].Soil Dynamics and Earthquake Engineering,1995,14(1):33-43.
    [31]SUN L.. Centrifuge Modeling and Finite Element Analysis of Pipeline Buried in Liquefiable Soil [D]. USA:Columbia University,2001.
    [32]TAKAHASHI A., TAKEMURA J.. Liquefaction-induced large displacement of pile supported wharf [J]. Soil Dynamics and Earthquake Engineering,2005,25(11):811-825.
    [33]LING H. I., MOHRI Y., KAWABATA T., et al. Centrifugal modeling of seismic behavior of large diameter pipe in liquefiable soil [J]. Journal of Geotechnical and Geoenvironmental Engineering,2003, 129(2):1092-1101.
    [34]LEE C. J.. Centrifuge modeling of the behavior of caisson-type quay walls during earthquakes [J]. Soil Dynamics and Earthquake Engineering,2005,25(2):117-1301
    [35]ZHAO P.J.. Centrifuge modeling of seismic amplification in some Singapore soil conditions [M.S. Thesis] [D]. Singapore:National University of Singapore,1999.
    [36]YAMAGUCHI A., KAZAMA M., TOYOTA H., et al. Effects of the stiffness of soft clay layer on strong motion response [J]. Soils and Foundations,2002,42(1):17-34.
    [37]KAGAWA T., SATO M., MINOWA C., et al. Centrifuge simulations of large-scale shaking table tests:case studies [J]. Journal of Geotechnical and Geoenvironmental Engineering,2004,130(7): 663-672.
    [38]BRANDENBERG S.J., BOULANGER R.W., KUTTER B.L., et al. Behavior of pile foundations in laterally spreading ground during centrifuge tests[J]. Journal of Geotechnical and Geoenvironmental Engineering,2005.131(11):1378-1391.
    [39]FIEGEL G.L., KUTTER B.L., IDRISS I.M.. Earthquake-induced settlement of soft clay [A]. In Kimura T, Kusakabe O,Takemura J ed. Proc. Of Centrifuge'98. Rotterdam:A. A. Balkema,1998. 231-236.
    [40]刘晶波,刘祥庆,王宗纲,等.砂土地基-地下结构系统离心机振动台模型试验[C].威海:第十届全国岩石力学与工科学术大会论文集,2008:145-151.
    [41]孙海峰.地下结构地震破坏机理研究[D].黑龙江:中国地震局工程力学研究所,2011.
    [42]SHUNZO O.. Introduction to earthquake engineering (2nd Edition) [M].Tokyo:University of Tokyo Press,1984.
    [43]GOTO Y., MATSUDA Y., EJIRI J., et al. Influence of distance between Juxiaposed shield tunnels on their seismic response [C]. Proc.9thh World conference on Earthquake Engineering. Tokyo-Kyoto, Japan,1988.
    [44]IWATATE T., KOBAYASHI Y., KUSU H., et al. Investigation and shaking table tests of subway structures of the Hyogoken-Nanbu earthquake [C].112 WCEE,2000:1043.
    [45]TAMARI Y., TOWHATA I.. Seismic soil structure interaction of cross sections of flexible underground structures subjected to soil liquefaction [J].Soil and Foundation,2003,43(2):69-87.
    [46]黄俊,张波.地铁交叉结构进场地震反应振动台试验研究[J].水电能源科学,2013,31(2):120-122.
    [47]左熹,陈国兴,王志华,等.近远场地震动作用下地铁车站结构地基液化效应的振动台试验[J].岩土力学,2010,31(12):3733-3740.
    [48]程国兴,左熹,王志华,等.地铁车站结构近远场地震反应特性振动台试验[J].浙江大学学报(工学版),2010,44(10):1955-1961.
    [49]左熹,陈国兴,王志华,等.软弱场地上地铁车站结构近远场地震反应特性振动台试验[J].土木工程学报,2010,43(增刊):299-305.
    [50]陈国兴,左熹,王志华,等.近远场地震作用下液化地基上地铁车站结构动力损伤特性和振动台试验[J].土木工程学报,2010,43(12):120-126.
    [51]杨林德,王国波,郑永来,等.地铁车站结构振动台试验机地震响应的三维数值模拟[J].岩石力学与工程学报,2007,26(8):1538-1545.
    [52]陈国兴,庄海洋,杜修力,等.土-地铁车站动力相互作用的大型振动台模型试验研究[J].地震工程与工程振动,2007,27(2):171-176.
    [53]陈国兴,庄海洋,杜修力,等.液化场地土-地铁车站结构大型振动台模型试验研究[J].地震工程与工程振动,2007,27(3):163-170.
    [54]陈国兴,庄海洋,杜修力,等.土-地铁隧道动力相互作用的大型振动台试验:试验方案设计[J].地震工程与工程振动,2006,26(6):178-183.
    [55]陈国兴,庄海洋,杜修力,等.土-地铁隧道动力相互作用的大型振动台试验:试验结果分析[J].地震工程与工程振动,2007,27(3):164-170.
    [56]徐志英,施善云.土与地下结构动力相互作用的大型振动台试验与计算[J].岩土工程学报,1993,15(4):1-7.
    [57]杨林德,季倩倩,郑永来,等.地铁车站结构振动台试验中模型箱设计的研究[J].岩土工程学报,2004,26(1):75-78.
    [58]杨林德,季倩倩,郑永来,等.软土地铁车站结构的振动台模型试验[J].现代隧道技术,2003,40(1):7-11.
    [59]杨林德,杨超,季倩倩,等.地铁车站的振动台试验与地震响应的计算方法[J].同济大学学报(自然科学版),2003,31(10):1135-1140.
    [60]宫必宁,赵大鹏.地下结构与土动力相互作用试验研究[J].地下空间,2002,22(4):320-324.
    [61]陶连金,王沛霖,边金.典型地铁车站结构振动台模型试验[J].北京工业大学学报,2006,32(9):798-801.
    [62]赵大鹏,宫必宁,晏成明.大跨度地下结构振动性态试验研究[J].重庆建筑大学学报, 2002,24(5):52-57.
    [63]施仲衡.地下铁道设计与施工[M].西安:陕西科学技术出版社.1997.
    [64]川岛一彦.地下结构耐震设计[M]日本:鹿岛出版社,1994.
    [65]孙均,侯学渊.地下结构(下册)[M].北京:科学出版社,1988.
    [66]NEWMARK N.M.. Problems in wave propagation in soil and rock[C]. Proceedings of the International Symposium on Wave Propagation and Dynamic Properties of Earth Materials,1967.
    [67]Kusesl T.R.. Structural design of the Bay Area Rapid Transit System [J]. Civil Engineering ASCE. 1968,46-50.
    [68]JOHN C.M., ZAHRAH T.F.. Aseismic design of underground structures [J]. Tunnelling and Underground Space Technology,1987,2(2):165-197.
    [69]THOMS R., KUESEL F.. Earthquake design criteria of subways [J]. Journal of the Structural Division, Proceedings of the American Society of Civil Engineers.1969,6:1213-1231.
    [70]MONSEES J.E., MERRITT J.L.. Seismic modeling and design of underground structures [J]. Numerical Methods in Geomechanics, Innsbruck,1991,1833-1842.
    [71]SHUKLA D.K., RIZZO P.C., STEPHENSON D.E., et al. Earthquake load analysis of tunnels and shafts [C]. Proceeding of the 7thWorld Conference on Earthquake Engineering. Michigan, USA: University of Michigan Press,1980:20-28.
    [72]福季耶娃.地震区地下结构支护的计算,(徐显毅,译)[M].北京:煤炭工业出版社,1986.
    [73]PENZIEN J.. Seismically induced racking of tunnel linings [J]. International Journal of Earthquake Engineering and Structural dynamics,2000,29:683-691.
    [74]李建波.结构-地基动力相互作用的时域数值分析方法研究[D].大连:大连理工大学.2005.
    [75]CHOPRA A.K., PERUMALSWAMI P.R.. Dam-Foundation Interaction during Earthquake [J]. Pro. 4th World Conf. Earthquake. Engineering, Santiago, Chile,1969.
    [76]DASGUPTA G.A., A finite element formulation for unbounded homogeneous continua[J]. Journal.of Appl. Mech., ASME.1982,49:136-14.
    [77]SONG C.M., WOLF J.P.. Dynamic stiffness of unbounded medium based on damping solvent extraction [J]. Earthquake Engineering and Structural Dynamics,1994,23 (2):169-181.
    [78]SONG C.M., WOLF J.P.. The scaled boundary finite element method:a primer solution procedures [J]. Computer and Structures,2000,78(3):211-225.
    [79]NAKAMURA N.A.. A practical method to transform frequency dependent impedance to time domain [J]. Earthquake Engineering and Structural Dynamic,2006.35(2):217-231.
    [80]NAKAMURA N.A.. Improved methods to transform frequency-dependent complex stiffness to time domain [J]. Earthquake Engineering and Structural Dynamics,2006,35 (8):1037-1050.
    [81]杜修力,赵建锋.考虑土-结构相互作用效应的结构地震响应时域子结构分析法[J].北京工业大学学报,2007,33(5):517-523.
    [82]HUO H., BOBET A.. Load Transfer Mechanisms between Underground Structure and Surrounding Ground Evaluation of the Failure of the Daikai Station [J]. Journal of Geotechnical and Geoenvironmental Engineering,2005,131 (12):1522-1533.
    [83]庄海洋,陈国兴,胡晓明.两层双柱岛式地铁车站结构水平向非线性地震反应分析[J].岩石力学与工程学报,2006.25(增1):3074-3079.
    [84]庄海洋,程绍革,陈国兴.阪神地震中大开地铁车站震害机制数值仿真分析[J].岩土力学,2008,29(1):245-250.
    [85]刘华北,宋二祥.可液化土中地铁结构的地震响应[J].岩土力学,2005,26(3):381-386.
    [86]CHOI J.S., LEE J.S., KIM J.M.. Nonlinear earthquake response analysis of 2-D underground structure with soil-structure interaction including separation and sliding at interface[C].15th ASCE Engineering Mechanics Conference, June 2-5,2002, New York:Columbia University,1-8.
    [87]王国波.软土地铁车站结构三维地震响应计算理论与方法的研究[D].上海:同济大学,2007.
    [88]孙超.地铁地下结构抗震性能及分析方法研究[D].哈尔滨:中国地震局工程力学研究说,2009.
    [89]刘晶波,李彬,谷音.地铁盾构隧道地震反应分析[J].清华大学学报(自然科学版),2005,45(6):757-760.
    [90]曹炳政,罗奇峰,马硕,等.神户大开地铁车站的地震反应分析[J].地震工程与工程振动,2002,22(4):102-107.
    [91]杨超,杨林德,季倩倩.软土地铁车站地震响应数值计算方法的研究[J].地下空间与工程学报,2006,2(1):87-91.
    [92]CELSO R., TRIBIKRAM K.. A hybrid modeling of soil-structure interaction problems for deeply embedded structures in a multi-layered medium [J]. Earthquake Engineering and Structural Dynamics, 1993,22:557-571.
    [93]姜忻良,徐余,郑刚.地下隧道-土体系地震反应分析的有限元和无限元耦合法[J].地震工程与工程振动,1999,3:22-26.
    [94]陈健云,胡志强,林皋.大型地下结构三维地震响应特点研究[J].大连理工大学学报,2003,42(3):344-348.
    [95]陈健云,胡志强,林皋.超大型地下洞室群的三维地震响应分析[J].岩土工程学报,2001,23(4):494-498.
    [96]金峰,王光纶,贾伟伟.离散元边界元动力耦合模型在地下结构动力分析中的应用[J].水利学报,2001,32(2):24-28.
    [97]杨光,刘曾武.地下隧道工程地震动分析的有限元-人工透射边界方法[J].工程力学,1994,4:122-130.
    [98]CLOUGH G.W.. Dynamic interaction effects in arch dams [J]. Earthquake Engineering Research Center, University of California; for sale by the National Technical Information Service, US Dept. of Commerce,1985.
    [99]CLOUHG R.W.. Nonlinear mechanisms in the seismic response of arch dams [J]. International Conference on Earthquake Engineering, Skopje, Yugoslavia 1980.
    [100]廖振鹏.近场波动问题的有限元解法[J].地震工程与工程振动,1984,4:1-14.
    [101]廖振鹏工程波动理论导论(第二版)北京:科学出版社,2002
    [102]LYSMER J., KULEMEYER R.L.. Finite dynamic model for infinite media [J]. Journal Engineering Mechanics Division, ASCE,1969,95:759-877.
    [103]DEEKS A.J., RANDOLPH M.F.. Axisymmetric time-domain transmitting boundaries [J]. Journal of Engineering Mechanics,1994,120(1):25-37.
    [104]刘晶波,谷音,杜义欣.一致粘弹性人工边界及粘弹性边界单元[J].岩土工程学报,2006,28(9):1070-1075.
    [105]谷音,刘晶波.三维一致粘弹性人工边界及等效粘弹性边界单元[J].工程力学,2007,24(12):31-37.
    [106]SMITH W.D.. A nonreflecting plane boundary for wave propagating problems [J]. Journal of Computation Physics,1974,15(5):492-503.
    [107]KUNAR R.R.. A model with non-reflecting boundaries for use in explicit soil-structure interaction analysis [J]. Earthquake Engineering and Structural Dynamics,1980,18:361-374.
    [108]MODARESSI H.. Absorbing boundary element for dynamic analysis of two-phase media [C]. Earthquake Engineering,10th world conference,1157-1161.
    [109]DEGRANDE G., DE R.G.. Absorbing boundary condition for wave propagation in saturated poroelastic media Part I:formulation and efficiency evaluation [J]. Soil Dynamics and Earthquake Engineering,1993,12:411-421.
    [110]AKIYOSHI T., FUCHIDA K., FANG H.L.. Absorbing boundary conditions for dynamic analysis of fluid-saturated porous media [J]. Soil Dynamics and Earthquake Engineering,1994,13:387-397.
    [111]AKIYOSHI T., SUN X., FUCHIDA K.. General absorbing boundary conditions for dynamic analysis of fluid-saturated porous media [J]. Soil Dynamics and Earthquake Engineering,1998,17:397-406.
    [112]GAJO A., SAETTA A., VITALIANI R.. Silent boundary conditions for wave propagation in saturated porous media [J]. International Journal for Numerical and Analytical Method in Geomechanics, 1996,20:253-273.
    [113]ZERFA Z., LORET B.. A viscous boundary for transient analyses of saturated porous media [J]. Earthquake Engineering and Structural Dynamics,2004,33:89-110.
    [114]邵秀民,蓝志凌.流体饱和多孔介质波动方程的有限元解法[J].地球物理学报,2000:264-278.
    [115]刘光磊,宋二祥.饱和无限地基数值模拟的粘弹性传输边界[J].岩土工程学报,2006:2128-2133.
    [116]WANG Z., ZHAO C, DONG L.. An approximate spring-dashpot artificial boundary for transient wave analysis of fluid-saturated porous media [J]. Computers and Geotechnics,2009,26(12):199-210.
    [117]楼梦麟,陈清军,等.侧向边界对桩基地震反应影响的研究[M].上海:同济大学出版社,1999.
    [118]楼梦麟,王文剑,朱彤.土-结构体系振动台模型试验中土层边界影响问题[J].地震工程与工程振动,2000,20(2):30-36.
    [119]BETTSS J.A., PETTESS P.. A new mapped infinite wave element for general wave diffraction problem and its validation on the ellipse diffraction problem [J]. Computer ethods in applied mechanics and engineering,1998,164:17-48.
    [120]CHENG Y.M.. The use of infinite element [J]. Computer and Geotectonics,1996.18(1):65-70.
    [121]庄海洋.十-地下结构非线性动力相互作用及其大型振动台试验研究[D].南京:南京工业大学,2006.
    [122]岳庆霞.地下综合管廊地震反应分析与抗震可靠性研究[D].上海:同济大学,2007.
    [123]SEED H.B., IDRISS I.M.. Soil moduli and damping factors for dynamic response analysis [R]. Report No. EERC70-10. Earthquake Engineering Research Center. University of California, Berkeley,1970.
    [124]PREVOST J.H.. Mathematical modeling of monotonic and cyclic undrained clay behavior [J]. International Journal of Numerical & Analytical Methods in Geomechanics,1997,(1):195-216.
    [125]KABILAMANY K., ISHIHARA K.. Cyclic behavior of sands by multiple shear mechanism models [J]. Soil Dynamics and Earthquake Engineering,1991,10(2):74-79.
    [126]CARTER J.P., BOOKER J.R., WORTHU C.P.. A critical state soil model for cyclic loading [A]. In: Pande G.N., Zienkiewicz O.C. eds, Soil Mechanics Transient and Cyclic Loading [C]. London:John Willey and Son,1982:35-62.
    [127]DAFALLIAS Y.F., HEMNANNL L.R.. A bounding surface soil plasticity model [C]. Inter. Symposium on Soil under Cyclic and Transient Loading, Swansea, January,1980:335-345.
    [128]HARAI H.. Anistropic hardening model for sand subjected to cyclic loading [A]. Soil Dynamics and Liquefaction [C]. Ed, A.S.Cakmak, Elsevier science publishers, N.Y.,1987:3-67.
    [129]GOODMAN R.F., TAYLOR R.L., BREKKE T.L.. A model for the mechanics of jointed rock [J]. Journal of Soil Mechanics & Foundation Division, ASCE,1968,94(SM3):637-660.
    [130]TOKI K.. Separation and sliding between soil and structure during strong ground motion [J]. Earthquake Engineering & Structural Dynamics,1981,9:263-277.
    [131]DESAI C.S., ZAMMZM M.M., LIGHTNER J.G., et al. Thin layer element for interfaces and joints [J]. International Journal for Numerical and Analytical Methods in Geomechanics,1984,1:19-43.
    [132]DRUMM E.C., DESAI C.S.. Determination of Parameters for A Model for the Cyclic Behaviour of Interfaces [J]. Earthquake Engineering & Structural Dynamics,1986,141(18):1-18.
    [133]KATONAL. A simple contact-friction interface element with application to buried culverts [J]. International Journal for Numerical and Analytical Methods in Geomechanics,1983,7(1):371-3841
    [134]雷晓燕,G. Swoboda,杜庆华.接触摩擦单元的理论及其应用[J].岩土工程学报,1994,16(3):23-321.
    [135]ZEGHAL M., TUNCER B.E.. Soil structure interaction analysis:modeling the interface [J]. Canadian Geotechnical Journal,2002,39(3):620-628.
    [136]CLOUGH G.W., DUNCAN J.M.. Finite element analysis of retaining wall behavior [J]. Journal of the Soil Mechanics and Foundations Division,ASCE,1971,97 (SM12):1657-1672.
    [137]GHABOUSSI J., WILSON E.L., ISENBERG J.. Finite element for rock joints and interfaces [J]. Journal of the Soil Mechanics and Foundation Division, ASCE,1973,99 (10):833-848.
    [138]BRANDT J.R.T. Behavior of soil-concrete interfaces[D]. Edmonton, Alberta, Canada:University of Alberta,1985.
    [139]DESAI C.S., MA Y.. Modeling of joints and interfaces using the disturbed-state concept [J]. International Journal of Numerical and Analytical Method in Geomechanics,1992,16:623-653.
    [140]张嘎,张建民.粗粒土与结构接触面统—本构模型及试验验证[J].岩土工程学报,2005,27(10):1175-1179.
    [141]PECK R.B.. Deep excavations and tunnelling in soft ground. In:Proceedings of the 7th International Conference on Soil Mechanics and Foundation Engineering, State of the Art Volume, vol.3. Mexican Society of Soil Mechanics, Mexico,1969,pp.225-290.
    [142]ATTEWELL P.B., WOODMAN J.P.. Predicting the dynamics of ground settlement and its deriving caused by tunnelling in soil. Ground Engineering,1982,15 (7),13-22.
    [143]O'REILLY M.P., NEW B.M.. Settlements above tunnels in the United Kingdom-their magnitude and prediction. Tunnelling'82. The Institution of Mining and Metallurgy, London,1982:55-64.
    [144]YAMAGUCHI I., YAMAZAKI I., KIRITANI Y.. Study of ground-tunnel interactions of four shield tunnels driven in close proximity, in relation to design and construction of parallel shield tunnels. Tunnelling Method,1998,3(13).289-304.
    [145]MROUEH H., SHAHROUR I.. A full 3-D finite element analysis of tunnelling-adjacent structures interaction. Computers and Geotechnics,2003.30:245-253.
    [146]FRANZIUS J.N.. Behaviour of buildings due to tunnel induced subsidence. PhD Thesis. Imperial College of Science, Technology and Medicine, London. UK.,2003.
    [147]PAO Y.H., MOW C.C.. Diffraction of Elastic Waves and Dynamic Stress Concentration [M], New York:Crane. Russak and Company,1973:239-278
    [148]LEE V.W., TRIFUNAC M.D.. Response of Tunnels to Incident SH-Waves [J],Journal of Engineering Mechanics. ASCE,1979,105 (4):643-659
    [149]LEE V.W., KARL J.. On Deformation near a Circular Underground Cavity Subjected to Incident Plane P Waves [J], European Journal of Earthquake Engineering,1993,7(1):29-36
    [150]LEE V.W., KARL J.. Diffraction of SV Waves by Underground Circular, Cylindrical Cavities [J], Soil Dynamics and Earth-quake Engineering,1992,11:445-456
    [151]DAVIS C.A., LEE V.W., BARDET J.P.. Transverse response of underground cavities to incident SV waves [J]. Earthquake Engineering and Structural Dynamics,2001,30 (3):383-410.
    [152]陈国兴,庄海洋,徐烨.软弱地基浅埋隧洞对场地设计地震动的影响[J].岩土工程学报,2004,26(6):739-744.
    [153]GANAINY H., NAGGAR M.. Seismic performance of three-dimensional frame structures with underground stories. Soil Dynamic and Earthquake Engineering,2009,29,1249-1261.
    [154]杨书燕,姜忻良,李新国.隧道对临近建筑物的地震反应影响分析[J].四川大学学报(工程科学版),2007,39(3):41-46.
    [155]AZADI M., HOSSEINI S.M.. The impact of underground tunnel excavation on adjacent buildings during earthquake case study:Shiraz underground Iran. EJGE,2007.
    [156]何伟.地下结构地震响应及其与地表建筑的影响研究[D].大连:大连理工大学,2011.
    [157]HENDRON A.J., FERNANDEZ G.. Dynamic and static design considerations for underground chambers [R]. In:Howard, T.R. (Eds), Seismic Design of Embankments and Caverns, ASCE, NY, 1983,157-197.
    [158]MERRITT J.L., MONSEES J.E., HENDRON A.J.J.. Seismic design of underground structures[R]. In: Mann, CD., Kelley, M.N. (Eds.), Proceedings of the Rapid Excavation and Tunneling Conference (RETC), Society of Mining Engineers of the American Institute of Mining, Metallurgical, and Petroleum Engineers, New York, NY,1985,104-131.
    [159]MONSEES J.E., MERRITT J.L.. Seismic modeling and design of underground structures. Numerical methods in geomechanics. Innsbruck 1988. In:Swoboda, G. (Ed.), Proceedings of the Sixth International Conference on Numerical Methods in Geomechanics. Balkema, Rotterdam, Holland. 1988,1833-1842.
    [160]WANG J.N.. Seismic design of tunnels:a state-of-the-art approach. Monograph 7, Parsons. Brinckerhoff Quade & Douglas, Inc., New York.1993.
    [161]EINSTEIN H.H., SCHWARTZ C.W.. Simplified analysis for tunnel supports [J]. ASCE Journal of the Geotechnical Engineering Division,1979,105 (GT4),499-518.
    [162]DAVIS C.A.. Stress in buried pipes from shear distortions [J]. Geo-engineering for underground facilities. In:Fernandez, G., Bauer, R.A. (Eds.), Geotechnical Special Publication No.90, ASCE, Reston, VA,1999,483-494.
    [163]BOBET A.. Analytical solutions for shallow tunnels in saturated ground [J]. ASCE Journal of Engineering Mechanics,2001,127(12),1258-1266.
    [164]BOBET A.. Effect of pore water pressure on tunnel support during static and seismic loading [J]. Tunnelling and Underground Space Technology,2003,18,377-393.
    [165]BOBET A. Drained and undrained response of deep tunnels subjected to far-field shear loading [J]. Tunnelling and Underground Space Technology,2010,25:21-31.
    [166]JONATHAN D.B., ADRIAN R.M.. Characterization of forward-directivity ground motions in the near-fault region [J]. Soil Dynamics and Earthquake Engineering 2004,24:815-828.
    [167]HALLORSSON B.. The Specific Barrier Model:Its Calibration to Earthquake of Different Tectonic Regions and the Synthesis of Strong Ground Motions for Earthquake Engineering Applications, Ph.D. thesis, University at Buffalo, State University of New York, Buffalo, New York.2004.
    [168]BARAHMSON N.A., SOMERVILLE P.G.. Effects of the hanging wall and footwall on ground motions recorded during the Northbrige earthquake [J]. Bulletin of the Seismological Society of America,1996,86(18):593-599.
    [169]ABRAHAMSON N.A., LITEHISER J.J.. Attenuation of vertical peak acceleration [J]. Bulletin of the Seismological Society of America,1989,79(3):549-580.
    [170]AAGAARD B.T., HALL J.F., HEATON T.H.. Effects of fault dip and slip rake angles on near-source ground motions:why rupture directivity was minimal in the 1999 Chi-Chi, Taiwan, earthquake [J]. Bulletin of the Seismological Society of America,2004,94(1):155-170.
    [171]TOTHONG P., CORNELL C.A.. Structural performance assessment under near-source pulse-like ground motion intensity measures. Earthquake Engineering and Structural Dynamics 2008,37(10):1013-37.
    [172]SPYRAKOS C.C., MANIATAKIS C.A., Taflambas J.. Evaluation of near-source seismic records based on damage potential parameters case-study. Greece. Soil Dynamics and Earthquake Engineering 2008,28:738-53.
    [173]YANG D.X., PAN J.W., LI G.. Non-structure-specific intensity measure parameters and characteristic period of near-fault ground motions. Earthquake Engineering and Structural Dynamics 2009,38(11):1257-1280.
    [174]GREGORY A.M., DANIEL V.M., CHARLES W.R. Near-fault ground motion effects on simple structures [J]. Journal of Structure Engineering,2001,127(9):996-1004.
    [175]CHOPRA A.K., CHINTANAPAKDEE C.. Comparing response of SDF systems to near-fault and far-fault earthquake motions in the context of spectral regions [J]. Earthquake Engineering and Structural Dynamics,2001,30:1769-1789.
    [176]MORTEZAEI A., RONAGH H.R., KHEYRODDIN A. Seismic evaluation of FRP strengthened RC buildings subjected to near-fault ground motions having fling step [J]. Composite Structures 2010, 92:1200-1211.
    [177]HUANG W.G., WANG, J.H., HUANG B.S., et al.. Estimates of Source Parameters for the 1999 Chi-Chi, Taiwan, Earthquake Based on Brune's Source Model [J].Bulletin of the Seismological Society of America.2001,91 (5):1190-1198.
    [178]OGLESBY D.D., ARCHULETA R.J., NIELSEN S.B.. The three-dimensional dynamics of dipping faults [J]. Bulletin of the Seismological Society of America,2000,90:616-628.
    [179]SOMERVILLE P.G., SAIKIA C.K.. WALD D., GRAVES R.. Implications of the Northridge earthquake for strong ground motions from thrust faults [J]. Bulletin of the Seismological Society of America,1995,86:5115-5125.
    [180]KELSON K.I., KANG K.H., PAGE W.D., et al.. Representative styles of deformation along the Chelungpu fault from the 1999 Chi-Chi (Taiwan) earthquake:geomorphic characteristics and responses of man-made structures [J]. Bulletin of the Seismological Society of America,2001, 91(5):930-952.
    [181]卢明奇,田玉基,杨庆山.近断层地震作用下高层建筑结构地震响应分析[J].哈尔滨工业大学学报,2007,39(2):314-317.
    [182]李明,谢礼立,杨永强,等.基于反应谱的近断层地震动潜在破坏作用分析[J].西南交通大学学报2010,45(3):331-335.
    [183]胡进军.近断层地震动方向性效应及超剪切破裂研究[D].哈尔滨:中国地震局工程力学研究所2009.
    [184]MAKRIS N., ROUSSOS Y,. Rocking response and overturning of equipment under horizontal pulse-type motion[R].PEER Report 1998-05.Berkeley:College of Engineering University of California,1-81.
    [185]KRAWINKLER H.. ALA VI B.. Development of an improved design procedure for near-fault ground motions[C]. SMIP 98 seminar on utilization of strong motion data. Oakland CA,1998.
    [186]MENUN C., FU Q.. An analytical model for near-fault ground motions and the response of SDOF systems [J]. Earthquake Spectra 2002, Feb.:249-258.
    [187]AGRAWAL A.K., HE W.L.. A closed-form approximation of near-fault ground motion pulses for flexible structures[C]. In:Proceedings of the 15th ASCE engineering mechanics conference, Columbia University, New York, NY,2002.
    [188]李新乐,朱晞.近断层地震动等效速度脉冲研究[J].地震学报,2004,26(6):634-643.
    [189]MAVROEIDIS G.P., DONG G., PAPAGEORGIOUS A.S.. Near-fault ground motions and the response of elastic and inelastic single-degree-of-freedom (SDOF) systems[J]. Earthquake Engineering and Structural Dynamic 2004,33:1023-1049.
    [190]JACK W.B.. Quantitative classification of near-fault ground motions using wavelet analysis [J].Bulletin of the Seismological Society America,2007,97:1486-1501.
    [191]LUCO N., CORNELL C.A.. Structure-specific scalar intensity measures for near-source and ordinary earthquake ground motions [J]. Earthquake Spectra,23(2):357-392.
    [192]TOTHONG P., CORNELL C.A., BAKER J.W.. Explicit directivity-pulse inclusion in probabilistic seismic hazard analysis [J]. Earthquake Spectra,2007,23(4):867-891.
    [193]FARID S.G., HOSSEIN J., GHANAND M. A.. Study on elastic response of structures to near-fault ground motions though record decomposition [J]. Soil Dynamics and Earthquake Engineering,2010, 30:536-546.
    [194]STEWART J.P., CHIOUS S., BRAY J., et al.. Ground motion evaluation procedures for performance-based design[R].Pacific Earthquake Engineering Research Center (PEER), Report no.09, Sept.2001.
    [195]结构动力学理论以其在地震工程中的应用(第二版),谢礼立等译[M].北京:高等教育出版社,2007.
    [196]ALAVI B., KRAWINKLER H.. Effects of near-fault ground motions on frame structures[R]. The John A. Blume Earthquake Engineering Research Center Report No.138, Feb,2001.
    [197]KALKAN E., KUNNATH S.. Assessment of current nonlinear static procedures for seismic evaluation of buildings [J]. Engineering Structures,2007,29:305-316.
    [198]TIRCA L.D., FOTI D., DIAFERIO M.. Response of middle-rise steel frames with and without passive dampers to near-field ground motions [J]. Engineering Structures,2003,25:169-179.
    [199]陈磊,陈国兴.近断层地震动下双层竖向重叠地铁隧道的地震反应[J].防灾减灾工程学报,2008,28(4):399-408,
    [200]刘洋.近断层地铁隧道地震作用下动力响应数值模拟研究[D].北京:北京交通大学,2009.
    [201]陶连金,王文沛,张波,等.近断层地震动破裂向前方向性与滑冲效应对典型地铁车站结构动力响应的影响[J].地震工程与工程振动,2011,31(6):38-44.
    [202]杨迪雄,潘建伟,李刚.近断层脉冲型地震动作用下建筑结构的层间变形分布特征和机理分析[J].建筑结构学报,2009,30(4):108-118.
    [203]WANG C.J.. Seismic racking of a dual-wall subway station box embedded in soft soil strata [J]. Tunnelling and Underground Space Technology,2011,26(1):83-91.
    [204]MIRANDA E., RSYES C.J.. Approximate lateral drift demands in multistory buildings with nonuniform stiffness [J]. Journal of Structure Engineering,2002,128(7):840-849.
    [205]MIRANDA E., TAGJAVI S.. Approximate floor acceleration demands in multistory building I: Formulation [J]. Journal of Structural Engineering,2005,131(2):203-211.
    [206]MONTES G., ROSENBLUETH E.. Shears and overturning moments in chimneys [C].Proceeding of 2nd Mexican Conference on Earthquake Engineering, Mexican Society of Earthquake Engineering,1968, Veracruz, Mexico.
    [207]WESTERGAARD H.M. Earthquake-shock transmission in tall buildings [J]. Engineering News-Record,1933,111:654-656.
    [208]JENNINGS R.L.. NEWMARK N.M.. Elastic response of multistory shear beam type structure subjected to strong ground motion [C]. Proceeding of 2nd World Conference on Earthquake Engineering, Science Council of Japan, Tokey,1960, Vol.Ⅱ:699-717.
    [209]ROSENBLUETH E., ELORDUY J., MENDOZA E.. Shears and overturning moments in shear buildings during earthquakes [C]. Proceeding of 2nd Mexican Conference on Earthquake Engineering, Mexican Society of Earthquake Engineering,1968, Veracruz, Mexico.
    [210]KHAN F.R., SBAROUNIS J.A.. Interaction of shear walls and frames [J].Journal of Structure and Division ASCE 1964,90(3):285-335.
    [211]ROSMAN R.. Laterally loaded systems consisting of walls and frame [R]. Tall Buildings, Pergamon, New York,1967.
    [212]FAJFAR P., STROJNIK S.. Simplified method for computation of earthquake induced shears and overturning moments in regular multistory structures [C].Proceeding 7th World Conference on Earthquake Engineering. Turkish Society for Earthquake Engineering, Istanbul, Turkey.1981, Vol.7.
    [213]MIRANDA E.. Approximate lateral deformation demands in multistory buildings [J]. Journal of Structure Engineering,1999.125(4):417-425.
    [214]ZALKA K.A.. Stress analysis of building under horizontal load, Part I:Basicbehaviour-deformations [J]. Proceedings Institution of Civil Engineering, Structure Building,2000,140(2):179-186.
    [215]POTZTA G., KOLLAR L.P.. Analysis of building structures by replacement sandwich beam [J]. International Journal of Solids and Structures,2003,40(3):535-553.
    [216]ALGAN B.B. Drift and damage consideration in earthquake resistant design of reinforced concrete buildings [D]. University of Illinois, Urbana-Champaign,1988.
    [217]SOZEN M.A.. Lateral drift of reinforced concrete structures subjected to strong ground motion [J]. Bulletin of the New Zealand National Society for Earthquake Engineering,1983,16(2):107-122.
    [218]MOEHLE J.P.. Strong monitor drift estimates for R/C structures [J]. Journal of Structural Engineering, 1984,110(9):1988-2001.
    [219]QI X., MOEHLE J.P.. Displacement design approach for reinforced concrete structures subjected to earthquakes [R]. Report of EERC/UCB-91/02, Earthquake Engineering Research Center, University of California at Berkeley, Berkeley, California,1991.
    [220]MOEHLE J.P.. Seismic drift and its role in design [C]. Proceeding 5th U.S.-Japan Workshop on the Improvement of Building Structural Design and Construction Practices, San Diego,1994:65-78.
    [221]GULKAN P., SOZEN M.A.. Procedure for determining seismic vulnerability of building structures [J]. ACI structural Journal,1999,96(3):336-342.
    [222]BOZORGNIA Y., BERTERO V.V.. Improved shaking and damage parameters for post-earthquake applications [C]. Proceeding SMIP01 Seminar on Utilization of Strong-Motion Data, California Division of Mines and Geology. Los Angeles 2001:1-22.
    [223]丰定国,王社良.抗震结构设计(第二版)[M].武汉理工大学出版社,湖北,武汉,2003.
    [224]HOUSNER G.W.. Characteristics of strong motion earthquakes [J]. Bulletin of the Seismological Society of America,1947.37(1):19-31.
    [225]HOUSENER G.M., MARTEL R.R., ALFORD J.L.. Spectrum analysis of strong-motion earthquake [J]. Bulletin of the Seismological Society of America,1953,43(2):97-119.
    [226]IWAN W.D.. Drift spectrum:Measure of demand for earthquake ground motions[J]. Journal of Structural Engineering,1997,123(4):397-404.
    [227]CHOPRA A.K.,CHINTANAPAKDEE C..Drift spectrum versus modal analysis of structure response to near-fault ground motions [J]. Earthquake Spectra,2001,17(2):221-234.
    [228]GULKAN P.,AKKAR S.. A simple replacement for the drift spectrum[J]. Engineering Structures, 2002,24:1477-1484.
    [229]KIM J., COLLINS K.R.. Closer look at drift demand spectrum [J]. Journal of Structural Engineering. 2002,128(7):942-945.
    [230]MIRANDA E., AKKAR S.D.. Generalized interstory drift spectrum [J]. Journal of Structural Engineering,2006,132(6):840-852
    [231]DIXIONG Y.,JIANWEI P.. GANG L.. Interstory drift ratio of building structures subjected to near-fault ground motions based on generalized drift spectral analysis [J]. Soil Dynamics and Earthquake Engineering,2010(30):1182-1197.
    [232]AYDINOGLU M.N.. An incremental response spectrum analysis procedure based on inelastic spectral displacements for multi-mode seismic performance evaluation [J]. Bulletin of Earthquake Engineering, 2003,1:3-36.
    [233]KARAVASILIS T.L., BAZEOS N., BESKOS D.E.. Maximum displacement profiles for the performance based seismic design of plane steel moment resisting frames [J]. Engineering Structure, 2006,28(1):9-22.
    [234]王克峰,周云.考虑高振型影响的结构层间位移谱能力分析方法[J].地震工程与工程振动,2005,3(25):33-40.
    [235]秦泗凤,刘春光,林皋,等.基于改进ASPA法的高阶振型对桥墩抗震性能的影响评价[J].中国公路学报,2008,21(5):57-62.
    [236]刘海成,郭全全.考虑高阶振型影响的简化PUSHOVER分析方法[J].哈尔滨工业大学学报,2009,41(10):188-192.
    [237]孙国华,何若全,高晓莹Push-over方法中一种考虑高阶振型影响的水平荷载分布模型[J].北京工业大学学报,2007,33(6):587-591.
    [238]费康.ABAQUS在岩土工程中的应用[M].北京:中国水利水电出版社,2009.
    [239]杜修力,赵密,王进廷.近场波动模拟的人工应力边界条件[J].力学学报,2006,38(1):49-56.
    [240]王子辉.饱和两相与单相土互层场地中地铁车站地震反应分析[D].北京交通大学,2008.
    [241]LIU H., SONG E.. Seismic response of large underground structures in liquefiable soil subjected to horizontal and vertical earthquake excitations [J]. Computers and Geotechnics 2005,32,223-244.
    [242]GWINNER J., BROSOWSHI B.. A penalty approximation for a unilateral contact problem in non-linear elasticity [J]. Mathematical Methods in the Applied Sciences,1989,11(4),447-458.
    [243]KUHLEMEYER R.L., LYSMER J.. Finite element method accuracy for wave propagation problems [J].Soil Mech.& Foundations, Div. ASCE,1973,99(SM5):421-427.
    [244]何伟,陈健云,于品清.地下结构开发对场地地表反应谱影响研究[J].地下空间与工程学报2009,5(6):1098-1002.
    [245]于品清.软土地下结构地震反应及其环境影响评价[D].大连:大连理工大学,2009.
    [246]陈国兴,杨伟林,严新育.南京河西地区软土场地地震动参数研究[J].南京工业大学学报,2002(1):35-40.
    [247]PAUL S. D., ROBERT J. M.. Effect of building stiffness on tunneling-induced round movement[J]. Tunnelling Underground Space Technology,2008,23:438-450.
    [248]MAOSONG H., CHENRONG Z., ZAO L.. A simplified analysis method for the influence of tunneling on grouped piles. Tunneling and Underground Space Technology,2009,24:410-422.
    [249]YOUSSEF M.A.H., DUHEE P., JOHN I.C.Y.. Ovaling deformations of circular tunnels under seismic loading, an update on seismic design and analysis of underground structures[J]. Tunnelling and Underground Space Technology,2005,20:435-441.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700