用户名: 密码: 验证码:
自复位记忆合金阻尼器的数值模拟及工程应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
形状记忆合金(Shape Memory Alloy)的超弹性是指材料在外力作用下会发生马氏体相变,产生较大的变形,应力去除后会发生马氏体逆相变,并恢复到原来的形状。利用记忆合金的超弹性可以耗能,开发出了多种自复位记忆合金阻尼器,部分记忆合金阻尼器也在实际工程中得到了应用。利用自复位的记忆合金阻尼器进行耗能减震时,不需要外部能量的输入,结构没有残余侧移,值得重视。
     为推广记忆合金阻尼器的工程应用,本文利用记忆合金材料的Brinson本构模型,通过MATLAB编程进行阻尼器的力学性能模拟,并在此基础上通过时域积分进行SMA阻尼器减震效果分析与评价。本文具体工作如下:
     1.介绍了对记忆合金的超弹特性,并对直径1mm的NiTi SMA丝进行了力学试验,研究了加载速率、应变幅值及循环次数等因素对SMA超弹特性的影响。同时,介绍了记忆合金的唯象本构模型的发展演变过程,并利用Brinson本构模型在MATLAB中编程得到材料的相变运动方程的数值解,从而描述SMA材料的应力-应变关系。实验与理论分析结果表明采用Brinson模型的数值模拟能很好的反映SMA材料的超弹性。
     2.介绍了三种典型的自复位SMA阻尼器构造,通过将阻尼器元件分为回位组和耗能组,并在此基础上研究了阻尼器发生相对位移时各功能组元件的内力变化。针对利用预张拉的SMA丝组耗能、弹簧提供回位力的自复位SMA阻尼器,建立了力学平衡方程,并在Brinson本构模型的基础上,根据阻尼器内部相对位移推算出耗能组反力,叠加弹簧反力,借助MATLAB编程从而计算出整个阻尼器的力-位移滞回曲线。
     3.利用记忆合金本构模型,通过MATLAB编程,对布置自复位SMA阻尼器进行减震的三层钢框架结构进行了结构动力响应分析。具体分析过程如下:首先将结构模型简化为层间剪切模型,并提取出主结构的刚度矩阵、质量矩阵和阻尼矩阵;建立被动结构的动力方程,利用Wilson-θ法并考虑阻尼器提供的控制力,在MATLAB软件中编制了结构的动态仿真分析程序。选取El Centro(NS)波、Northridge(NS)波和Taft波作为地震激励,对结构分别进行了有控和无控的动力响应分析,对比了两种情况下结构的层间位移响应、楼层最大加速度与最大楼层剪力。
     4.为评价自复位SMA阻尼器的振动控制效果,对自复位SMA阻尼器进行了Benchmark结构分析,具体为:针对高、中、低层三种Benchmark结构,在SAP2000中建立了有限元模型,分析了有控与无控结构的地震动响应,评价了自复位SMA阻尼器对不同结构的减震作用。另外,对采用自复位SMA阻尼器加强的某6层宿舍楼加固工程,分析了阻尼器布置方式对结构减震效果的影响。
For shape memory alloys (SMAs) in their austenitic state, stress induced martensitetransformation occurs upon loading, resulting in large deformations. Reverse transformationsfrom martensite to austenite occurs when withdrawing applied loads. This results in thealloys restoring their initial shape. This is called the super elastic effect of SMA. Manytypes of SMA based self-centering dampers were presented recently with using superelasticity,and some dampers were applied in the real conditions. When using the self-centering SMAdampers for vibration controlling during earthquake event, there are no needs for outer energyinputs and no residual interstorey drifts. This attracts more attentions of the engineers.
     To extend the applications of the SMA damper, this paper investigates the numeralsimulations of the mechanical behavior of the SMA damper by programing in MATLABenvironments based on the material constitutive models. Moreover, the vibration controleffects of the SMA damper are evaluated by time history analysis of passive structures. Theworks of this paper are listed in details as follows:
     1. The superelastic behavior of SMAs are introduced. The tensional experiments of1mm diameter NiTi SMA wires were conducted, and the effects of loading rate, strainamplitude and loading cycles on superelasticity are studied. The evolution process of severalphenomenologital constitutive models are introduced. Among these models, the Brinsonconstitutive model is selected to describe the strain-stress relationship of the superelastic SMAby programming in MATLAB environments. Good agreement between the experimental andnumerical results is observed.
     2. The configurations are introduced and summarized based on three types ofself-centering SMA dampers. These dampers consists of two functional groups, recentring andenergy dissipating groups. The damper working principle is studied by figuring out theinternal force changement with relative displacement of both ends of the damper. For theSMA damper with springs offering restore force and two groups of SMA wires dissipatingenergy, the force equilibrium equations are presented. With using the Brinson model, theforce-displacement relationships of the damper are described by programming in MATLABenvironments.
     3. For a three-storey steel frame equipped with the SMA damper, the structural responseis simulated by time history analysis program in MATLAB environments based on materialconstitutive model. The simulation is conducted as follows: The main frame is simplied as a inter-story shearing structure. Then, the mass, stiffness matrix together with the dampingmatrix of the main structure are presented. The dynamic equations with considering thecontrolling force offered by the SMA damper are founded. With using Wilson-θ method, theequations are solved and the structural responses are simulated by time history analysisprogram in MATLAB environments. The earthquake waves, such as El-Centro(NS)、Northridge(NS) and Taft waves, are selected as earthquake excitations, the structuralresponses including inter-storey drift, floor accelerations, inter-storey shear force withconsidering the damper effect are contrasted with those without the damper.
     4. To assess the vibration control effect of the SMA damper, the Benchmark structuresare analyzed as follows: For high, medium and lower Benchmark frames, the finite elementmodels are set up in SAP2000environments, the structural responses with equipped the SMAdamper and without the damper are contrasted. The vibration control effects of the damper areevaluated. In addition, the SMA dampers was applied to strengthen a6-storey frame. Thestructural vibration control effects are analyzed with considering the damper distributions
引文
1.阎维明,周福霖,谭平,土木工程结构振动控制的研究发展.世界地震工程,1997.13(2): p.8-20.
    2.杨大智,智能材料与智能系统.2000,天津:天津大学出版社.
    3. Liu, Y., Some aspects of the properties of Nita shape memory alloy. Journal of Alloysand Compounds,1997.247(1-2): p.115-121.
    4. Liu, Y. and Z.L. Xiao, Cyclic deformation of NiTi shape memory alloys. MaterialsScience and Engineering,1999. A273-275(15): p.673-678.
    5. Ip, K.H., Energy dissipation in shape memory alloy wire under cycle bending. SmartMaterials and structures,2000.9(5): p.653~659.
    6. Tadaki, T., K. Otsuka, and K. Shimizu, Shape Memory Alloys. Ann. Rev. Mater. Sci,1988(18): p.25-45.
    7. Muller, I., A Model for a Body with Shape Memory Alloy. Arch Rat. Mech. Anal,1979.70(1): p.61-77.
    8.王健,沈亚鹏,王社良,形状记忆合金的本构关系.上海力学,1998.19(3): p.185-195.
    9. Falk, F., Model free energy, mechanics, and thermodynamics of shape memory alloys.Acta Metallurgical,1980.28(12): p.1773-1780.
    10. Falk, F., One-dimensional model of shape memory alloys. Arch Mechanics,1983.35(1):p.63-84.
    11. Maugin and S. Gadet, Existence of solitary waves in maetensitic alloys. InternationalJournal of Engineering Science,1991.292(2): p.243-258.
    12. Abeyartane, R. and J. Knowles, Kinetic relations and propagation of phase boundariesin solids. Arch Rational Mechanics,1991.114(2): p.119-154.
    13. Abeyartane, R. and J. Knowles, A continuum model of a thermoelastic solid capable ofundergoing phase transitions. Journal of Mechanics and Physical Solids,1993.41(3): p.541-571.
    14. Chien, H.W., Stress-inducedphase transformations in solids and associated double-wellpotential. Int J Solids Structures,1995.32(3/4): p.525-542.
    15. Brinson, L.C., One-Dimensional Constitutive Behavior of Shape Memory Alloys:Thermomechanical Derivation with Non-Constant Material Functions and RedefinedMartensite Internal Variable. Journal of Intelligent Material Systems and Structures,1993. Vol.4: p.229~242.
    16. Liang, C., The constitutive modeling of shape memory alloys,1990, Department ofMechanical Engineering,Virginia Polytechnic Institute and State University: Virginia.
    17. Raniechi, B., C. Lexcellent, and K. Tanaka, Thermodynamic models of pseudoelasticbehavior of shape memory alloys. Arch Mechanics,1992.44(3): p.261-284.
    18. Tanaka, K. and Y. Sato, Phenomenological description of the mechanical behavior ofshape memory alloys. Trans os JSME,1992.53(491): p.1368-1373.
    19. Byod, J.G. and D.C. Lagoudas, A thermodynamic constitutive model for the shapememory material. Part I. The monolithic shape memory alloys. Int. J. Plast,1996.12(6):p.805-842.
    20. Byod, J.G. and D.C. Lagoudas, A thermodynamic constitutive model for the shapememory material. Part II. The SMA composite material. Int. J. Plast,1996.12(7): p.843-873.
    21. Auricchio, F. and R.L. Taylor, Shape memory alloys: Macromodelling and numericalsimulations of the superelastic behavior. Computer Methods in Applied Mechanics andEngineering,1997.146(3-4): p.281-312.
    22. Auricchio, F. and R.L. Taylor, Shape memory alloys: modeling and numericalsimulations of the finite strain superelastic behavior. Computer Methods in AppliedMechanics and Engineering,1997.143(1-2): p.175-194.
    23. Graesser, E.J. and F.A. Cozzarelli, Shape-memory alloys as new materials for aseismicisolation. Journal of Engineering Meehanies,1991.117(11): p.2590-2608.
    24. Graesser, E.J. and F.A. Cozzarelli, A proposed three-dimensional constitutive model ofshape memory alloys. Journal of Intelligent Material Systems and Structures,1994.5(1):p.75~83.
    25. Inshin, Y. and T.J. Pence, A thermomecanical model for a one variant shape memorymaterial. J. Intell. Matl. Syst. Struct.,1994.5(4): p.455-473.
    26. Inshin, Y. and T.J. Pence, A constitutive model for hysteretic phase transition behavior.Int. J. Eng. Sci.,1994.32(4): p.681-704.
    27. Patoor, E. and A. Eberhardt, Micromechanical modeling of superelasticity in shapememory alloys. J Phys Ⅳ,1996.1(6): p.277-292.
    28. Patoor, E., A. Eberhardt, and M. Berveiller, Thermomechanical behavior of shapememory alloys. Arch Mechanics,1988.40(5-6): p.775-794.
    29. Patoor, E., A. Eberhardt, and M. Berveiller, Micromechanical modeling ofsuperelasticity in shape memory alloys. Arch Mech,1993.296: p.38-54.
    30. Boyd, J.G. and D.C. Lagoudas, A thermodynamical constitutive model for shapememory materials, Part II. The SMA composite material,1996.12(7): p.843-873.
    31. Lu, Z.K. and G.J. Weng, Martensitic transformation and stress-strain relations ofshape-memory alloy. J. Mech. Phys. Solids,1997.45(11-12): p.1905-1928.
    32. Lu, Z.K. and G.J. Weng, A self-consistent model foe the stress-strain behavior ofshape-memory alloy polycrystals. Acta. Mater.,1998.46(15): p.5423-5433.
    33. Clark, P.W., I.D. Aiken, and J.M. Kelly. Experimental and analytical studies of shapememory alloy damper for structural control. in Proceedings of SPIE2445.1995. SanDiego,.
    34. Robert, K., H. Jack, and S. Steve. Structural damping with shape memory alloy: oneclass devices. in Proceeding of the International Society for Optical Engineering.1995.San Diego,.
    35. Dolce, M., D. Cardone, and R. Marnetto, Implementation and testing of passive controldevices based on shape memory alloys. Earthquake Engineering and StructuralDynamics,2000.29(7): p.945-968.
    36.薛素铎,董军辉,卞晓芳等,一种新型形状记忆合金阻尼器.建筑结构学报,2005.26(3): p.45-50.
    37.彭刚,姜袁,利用SMA开发耗能阻尼器的试验研究.工程力学,2004.21(2): p.183-187.
    38.倪立峰,李秋胜,李爱群等,新型形状记忆合金阻尼器的试验研究.地震工程与工程振动,2002.22(3): p.145-148.
    39.倪立峰,李爱群,左晓宝等,形状记忆合金拉压型超弹性阻尼器的试验研究.地震工程与工程振动,2003.23(5): p.205-208.
    40. Zhang, Y. and S. Zhu, Seismic Response Control of Building Structures withSuperelastic Shape Memory Alloy Wire Dampers. Journal of Engineering Mechanics,
    2008.134(3): p.240-251.
    41. Zhu, S. and Y. Zhang, Seismic behaviour of self-centring braced frame buildings withreusable hysteretic damping brace. Earthquake Engineering and Structural Dynamics,
    2007.36(10): p.1329-1346.
    42. MA, H.W. and C. CHO, Feasibility study on a superelastic SMA damper withre-centering capability. Materials Science and Engineering A,2008.473(1-2): p.290-296.
    43.李宏男,钱辉,宋钢兵,一种新型SMA阻尼器的试验和数值模拟研究.振动工程学报,2008.21(2): p.179-184.
    44. Mauro, S. and Domenico. Experimental study on seismic devices based on shapememory alloys. in12thWorld Conference on Earthquake Engineering.2000(CD-ROM)Auckland,.
    45. Li, H., C.X. Mao, and J.P. Qu, Experimental and theoretical study on two types of shapememory alloy devices Earthquake Engineering and Structural Dynamics,2008.37(3): p.407-426.
    46.李惠,毛晨曦,新型SMA耗能器及结构地震反应控制试验研究.地震工程与工程振动,2003.23(1): p.133-139.
    47.邢德进,李忠献,基于SMA阻尼器的大跨桥梁地震位移控制分析.大连理工大学学报,2006.46(增刊): p.94-98.
    48.邢德进,汪明栋, SMA阻尼器设计及框架结构地震反应控制分析.工程抗震与加固改造,2011.33(1): p.43-47.
    49.王立军,毛晨曦,董金芝,安装形状记忆合金阻尼器的剪力墙结构抗震性能分析.世界地震工程,2011.27(3): p.101-107.
    50. HAN, Y.L., D.J. XING, and E.T. XIAO, NiTi-wire shape memory alloy dampers tosimultaneously damp tension, compression and torsion Journal of Vibration and Control,2005.11(8): p.1067-1084.
    51. HAN, Y.L., et al., A kind of NiTi-wire shape memory alloy damper to simultaneouslydamper tension, compression and torsion. Structural Engineering and Mechanics,2006.22(2): p.241-262.
    52.邢德进,一种形状记忆合金超弹性拉、压、扭阻尼器的研究,2003,东南大学:东南.
    53.肖尔田,一种新型形状记忆合金超弹性阻尼器的理论与实验研究,2004,东南大学:东南.
    54. Ren, W.J., H.N. Li, and G.B. Song. Design and numerical evaluation of an innovativemulti-directional shape memory alloy damper. in Proceedings of Active and PassiveSmart Structures and Integrated Systems.2007. Bellingham,.
    55.宋娃丽,戴辰,任文杰等,多维形状记忆合金阻尼器的设计及性能研究.河北工业大学学报,2010.39(1): p.103-107.
    56.左晓宝,李爱群,黄镇,超弹性SMA复合阻尼器的计算模型及参数分析.振动工程学报,2005.18(2): p.161-166.
    57.左晓宝,李爱群,倪立峰等,一种超弹性SMA复合阻尼器的设计与实验.东南大学学报(自然科学版),2004.34(4): p.459-463.
    58.钱辉,李宏男,任文杰等,形状记忆合金复合摩擦阻尼器设计及实验研究.建筑结构学报,2011.32(9): p.58-64.
    59.王利,薛素铎,庄鹏, SMA复合摩擦阻尼器在网架结构中的减振效果分析.建筑结构,2008.38(2): p.67-69.
    60.薛素铎,石光磊,庄鹏, SMA复合摩擦阻尼器性能的试验研究.地震工程与工程振动,2007.27(2): p.145-151.
    61.薛素铎,王利,庄鹏,一种SMA复合摩擦阻尼器的设计与性能研究.世界地震工程,2006.22(2): p.1-6.
    62. Higashino, M., A. Aizawa, and P.W. Clark. Experimental and analytical studies ofstructural control system using shape memory alloy in Proceedings of the2ndInternational Workshop on Structural Control.1996. Hong Kong,.
    63.北京金土木软件技术有限公司, SAP2000中文版使用指南.2006:北京:人民交通出版社.
    64. Mauro, D. and C. Donatello, Theoretical and ExperimentalStudies for the Application ofShape Memory Alloys in Civil Engineering. Journal of Engineering Materials andTechnology,2006.128: p.302-311.
    65. Piedboeuf, M.C., R. Gauvin, and M. Thomas, Damping behaviour of shape memoryalloys: Strain amplitude, frequency and temperature effects. Journal of Sound andVibration,1998.214(5): p.885-901.
    66.左晓宝,超弹性形状记忆合金丝(NITi)力学性能的试验研究.土木工程学报,2004.37(12): p.10-16.
    67.吴波,形状记忆合金力学性能的试验研究.地震工程与工程振动,1999.19(2): p.104.
    68.巩建鸣,户伏寿昭,承受各种循环加载的TiNi形状记忆合金的超弹性变形行为.功能材料,2002.33(4): p.391-393,397.
    69. Miyazaki, S., et al., Effect of Cyclic Deformation on the Pseudoelasticity Characteristicsof NiTi Alloys. Acta Metallurgica,1986.17: p.115-120.
    70. Tobushi, H., et al., Influence of strain rate on superelastic behaviour of TiNi shapememory alloy. Proceedings of the Institution of Mechanical Engineers Part L-Journal ofMaterials-Design and Applications,1999.213(L2): p.93-102.
    71.吴昀泽;形状记忆合金的力学性能与本构模型研究[D];华南理工大学;2012年.
    72.凌育洪,彭辉鸿,张帅,超弹性NiTi丝的力学性能.华南理工大学学报(自然科学版),2010.38(4): p.131-135.
    73.凌育洪,彭辉鸿,张帅,一种新型SMA阻尼器及其减震性能.华南理工大学学报(自然科学版),2011.39(6): p.119-125.
    74. Raniechi, B., C. Lexcellent, and K. Tanaka, Thermodynamic models of pseudoelasticbehavior of shape memory alloys. Arch Mechanics,1992.44(3).
    75. Tanaka, K. and Y. Sato, Phenomenological description of the mechanical behavior ofshape memory alloys. Trans os JSME,1992.53(491): p.1368-1373.
    76. Liang, C. and C.A. Rogers, A multi-dimensional constitutive model for shape memoryalloys. Journal of Engineering Mathematics,1992.26(3): p.429-43.
    77. Liang, C. and C.A. Rogers, One-dimensional thermomechanical constitutive relationsfor shape memory materials (Reprinted from Journal of Intelligent Material Systemsand Structures, vol1, pg207-234,1990). Journal of Intelligent Material Systems andStructures,1997.8(4): p.285-302.
    78. BRINSON, L.C., One Dimensional Constitutive Behavior of Shape Memory Alloy:Thermomechanical Derivation with Non-constant Material Functions and RedefinedMartensite and Internal Variable. Journal of Intelligent Material Systems and Structures,1993.4: p.229-242.
    79. Lin, P., et al., Deformation properties associated with martenstic and R-phasetransformation in NiTi shape memory alloy. Trans. J of SME,1994.60(569(A)): p.126-133.
    80. Sato, Y. and K. Tanaka, Estimation of energy dissipation in alloys due to stress-inducedmartensitic transformation. Res Mechanica,1988.23(4): p.381-93.
    81. Tanaka, K. and S. Nagaki, A thermomechanical description of materials with internalvariables in the process of phase transitions.
    82. Liang, C., The constitutive modeling of shape memory alloys, in Virginia:Department ofMechanical Engineering1990, Virginia Polytechnic Institute and State University.
    83.楼顺天, MATLAB程序设计语言.1997,西安:西安电子科技大学出版社.
    84.任文杰,超弹性形状记忆合金丝对结构减震控制的研究,2008,大连理工大学:大连.
    85.钱辉,形状记忆合金阻尼器消能减震结构体系研究,2008,大连理工大学.
    86. Ma, H. and C. Cho, Feasibility study on a superelastic SMA damper with re-centringcapability. Materials Science and Engineering a-Structural Materials PropertiesMicrostructure and Processing,2008.473(1-2): p.290-296.
    87.凌育洪,彭辉鸿,马宏伟, SMA在结构被动控制中的研究现状及工程应用.江西理工大学学报,2010.31(1): p.42-46.
    88.倪立峰,李爱群,左晓宝等,形状记忆合金超弹性阻尼性能的试验研究.地震工程与工程振动,2002.22(6): p.129~134.
    89.李化,高层钢结构应用形状记忆合金拉索的振动控制分析,北京交通大学:北京.
    90. Chopra, A.K.,结构动力学—理论及其在地震工程中的应用.2010,北京:高等教育出版社.
    91.薛素铎,赵均,高向宇,建筑抗震设计.2003:北京:科学出版社.
    92.黄宗明,白绍良,赖明,结构地震反应时程分析中的阻尼问题评述.地震工程与工程振动,1996.16(2): p.95-106.
    93.刘晶波,杜修力,结构动力学.2005:北京:机械工业出版社.
    94.邢国起,吴俊喜,板-柱-轻钢结构房屋住宅体系动力特性试验研究.潍坊学院学报,2011.11(6): p.145-150.
    95.施卫星,魏丹,韩瑞龙,钢结构房屋动力特性脉动法测试研究.地震工程与工程振动,2012.32(1): p.114-120.
    96.储德文,王明贵,谭世友,钢结构房屋动力特性实测与分析.建筑科学,2007.23(5):p.37-40.
    97.黄本才,高层建筑钢结构振动阻尼比测试与分析.抗震与抗风,1997(4): p.20-25.
    98.曹资, et al.,空间结构抗震分析中的地震波选取与阻尼比取值.空间结构,2008.14(3): p.3-8.
    99.武藤清,结构的动态设计.1979:同济大学科技情报站.
    100. Speneer, B.F., Jr, and S.J. Dyke. Benchmark problem in structural control. inProceedings of ASCE Structural Congress XV.1997. Reston, Oregon.
    101. Yang, J.N., et al. A benchmark problem for response control of wind-excited tallbuildings. in Proceedings of the2nd world Conference on Structural Control.1999.Wiley,New York.
    102. Spencer, B.F., R.E. Christenson, and S.J. Dyke. Next generation benchmark controlProblems for Seismically excited buildings. in Proceedings of the2nd world Conferenceon Structural Control.1999. Wiley,New York.
    103.吴波,李惠,建筑结构被动控制的理论与应用.1997,哈尔滨:哈尔滨工业大学出版社.
    104. Ohtori, Y., et al., Benchmark Control Problems for Seismically ExcitedNonlinearBuildings. Journal of Engineering,2004.
    105.李钢,李宏男,新型软钢阻尼器的减震性能研究.振动与冲击,2006.25(3): p.66-72.
    106.凌宏华,新型阻尼器的工作机理及在抗震加固工程中的应用[D],2011,华南理工大学.
    107.建筑抗震设计规范.2010,中国建筑工业出版社:北京.
    108.邓宗才,牛坤, SMA超弹性及阻尼器减震效果的数值模拟.工程抗震与加固工程,2007.29(2): p.8-12.
    109. GasParini, D.A. and E.H. Vanlnarehe., Simulated Earthquake Motions Compatible WithPrescribed Response Spectrum.1976.
    110.刘晶波,杜修力,结构动力学.2005:北京:机械工业出版社.
    111.周云,周福霖,耗能减震体系的能量设计方法.世界地震工程,1997.13(4): p.7-13.
    112.建筑抗震试验方法规程.1999,中国建筑工业出版社:北京.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700