用户名: 密码: 验证码:
爆炸荷载下复式空心钢管混凝土柱的动态响应及损伤评估
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着国民经济的不断发展,由于燃气泄漏、易燃易爆品堆置不当、电器老化而引发的爆炸发生几率逐渐增大,致使建筑结构受到爆炸冲击作用的可能性随之增大。同时,由于全世界范围内恐怖袭击时有发生,爆炸对于建筑结构的威胁正与日俱增。要使结构在爆炸冲击荷载作用下有着较好的抗爆性能,避免结构破坏,柱本身的抗爆性能起着非常重要的作用。复式空心钢管混凝土柱具有承载力高、塑性好、抗弯刚度大的特点,被广泛用做工程结构中的重要受力构件。因此研究复式空心钢管混凝土柱的爆炸冲击破坏效应,进而建立其损伤评估方法具有重要的理论意义和工程应用价值。本文采用试验研究和数值模拟方法对爆炸荷载下复式空心钢管混凝土柱的动态响应和损伤评估进行系统研究,具有重要的理论意义和工程应用价值。主要的研究工作和创新成果包括以下几个方面:
     (1)研究了爆炸冲击波与复式空心钢管混凝土柱相互作用的数值模拟方法。基于显式动力学程序ANSYS/LS-DYNA,采用ALE流固耦合的加载方式建立了考虑地面反射的爆炸荷载下钢管混凝土柱、空气及炸药的有限元数值模型;进一步研究讨论了空气有限元网格划分对数值模拟结果的影响。结果表明网格尺寸大小对冲击波传播的波形和传播时间均有较大影响。冲击波压力峰值随着网格尺寸的增加呈下降趋势,网格密度越大,冲击波压力峰值与试验采集压力峰值越接近;
     (2)设计完成了两发钢管混凝土柱爆炸试验。通过对测点压力及柱宏观变形的分析,结果表明在折合距离为1.1m/kg1/3的第一发试验条件的爆炸荷载作用下,柱产生的变形属于弹性变形,没有塑性变形产生,柱仍有着良好的承载能力;在折合距离为0.14m/kg1/3第二发试验条件的爆炸荷载作用下,复式空心钢管混凝土柱迎爆面柱中发生了明显的塑性弯曲变形。柱迎爆面柱底肋板上缘柱表面有一条细微未贯通裂缝存在。结果表明柱端部节点强度与构件整体强度协调对提升复式空心混凝土柱的抗爆性能尤为重要;
     (3)研究了复式空心钢管混凝土柱各参数对爆炸冲击波与结构柱的相互作用以及作用于柱上爆炸荷载规律的影响。通过参数分析,结果表明增大空心率可以使柱核心区混凝土承受的压力减小,从而在一定程度上改善复式空心钢管混凝土柱的抗爆性能;即使正压的作用时间一致,圆截面产生的压力值也要低于方截面,因此圆截面抗爆性能要优于方截面;提高混凝土强度等级对改善复式空心钢管混凝土柱的抗爆性能影响不大;折合距离变化对复式空心钢管混凝土柱的动态响应和抗爆性能有较大影响。柱迎爆面位移峰值的增加率随着折合距离的减小而迅速增加,压力峰值的增加率远大于折合距离的降低率,折合距离越小时,柱迎爆面压强变化也相应越敏感;
     (4)建立了基于复式空心钢管混凝土柱中弯曲挠度变形量的超压—冲量损伤准则。在进行大量数值模拟试算的基础上,建立了基于本文的复式空心钢管混凝土柱损伤等级分界线,即P-I曲线。并拟合建立了P-I曲线数学表达式。同时将所得公式推广到一般情况,建立了以迎爆面柱中挠度为指标的复式空心钢管混凝土柱弯曲变形损伤评估准则。
With the continuous development of the national economy, accidental explosions mightalso occur because of the aging of the gas container or the electric machine and improperstorage of tinder and explosive in chemical plants. At the same time, explosion is a growingthreat to the building structure because more and more explosive terror attacks and explosiveaccidents have happened around the world. In order to keep structure having excellentexplosion resisting performance, the explosion resisting performance of column itself plays avery important role. Duplex hollow CFST (Concrete Filled Steel Tube) column has manymerits such as higher bearing capacity, better plasticity, and higher bending stiffness. Theevaluation for the explosion resisting performance of duplex hollow CFST column hasimportant theoretical significance and practical value. Experiment analysis and numericalsimulation method are integrated to study dynamic response and damage assessment ofduplex hollow CFST column subjected to blast loading in this dissertation, and the primarywork and achievements are as follows:
     (1) Simulation of blast wave prorogation and its interaction with duplex hollow CFSTcolumn are studied. Using a explicit dynamic finite element analysis program,ANSYS/LS-DYNA, and with ALE fluid-solid coupling method, a finite element model ofCFST column is developed for simulating dynamic response and damage assessment.Furthermore, the influence of the mesh size effect on the numerical results is also analyzed.The results show that the mesh size has greater impact on the waveform and the propagationtime. The peak pressure decreases according to the mesh size increases. The simulating resultscorrespond with the experiment results well when the mesh density increases.
     (2) The explosion experiments in connection with CFST columns have performed. Theexplosion experiments have been executed for the popular CFST column and the duplexhollow CFST column respectively. By analysis about column macroscopic deformation andthe pressure values of measurement points at the scale distance of1.1m/kg1/3, the results showthat the popular CFST column still has a good carrying capacity and its deformation belongsto elastic stage. And by analysis about column deformation at the scale distance of 0.14m/kg1/3, the results show that the plastic bending deformation occurs on the surface facingthe explosive of the duplex hollow CFST column and there is a minor crack on the upside ofrib plate. So, it is important to strengthen the joint of column in order to keep the explosionresisting performance of duplex hollow CFST column.
     (3) Parametric studies are adopted to investigate the effects of column parameters ondynamic response and damage of duplex hollow CFST column. The results show that thehollow rate increases according to the decrease of pressure in the inner concrete. The resultsalso show that explosion resisting performance of the circular section is superior to the squaresection for the former has lower pressure value under the same explosive shock wave. And,the adjustment to the concrete strength grade has little effect on explosion resistingperformance. However, the adjustment to the scale distance has great effect on explosionresisting performance of duplex hollow CFST column. The peak displacement increasesquickly according to the decrease of the scale distance. The pressure on the surface facing theexplosive changes more sensitively according to the lower value of the scale distance.
     (4) Damage assessment criterion for duplex hollow CFST column are discussed andestablished. A pressure-impulse damage criterion for duplex hollow CFST column is definedbased on the deflection of the surface facing the explosive of the duplex hollow CFST column,and a numerical method to generate pressure-impulse diagram (P-I curve) is established. Andfinally, Damage assessment criterion is established to evaluate the damage situation for theduplex hollow CFST column under the condition of bending deformation.
引文
[1]蔡绍怀.现代钢管混凝土结构[M].北京:人民交通出版社,2003.
    [2]韩林海.钢管混凝土结构-理论与实践(第二版)[M].北京:科学出版社,2007.
    [3]钟善桐.钢管混凝土结构在我国的应用和发展[J].建筑技术,2001,32(2):80-82.
    [4]蔡绍怀.我国钢管高强混凝土结构技术的最新进展[J].建筑科学,2002,8:1-7.
    [5] Shams M, Saadeghvaziri M A. State of the art of concrete-filled steel tubular columns.ACI Structural Journal,1997,94(5):558-571.
    [6] Gourley B C, Tort C, Haijar J F, et al. A synopsis of studies of the monotonic and cyclicbehaviour of concrete-filled steel tube beam-columns. Report No.ST1-01-4(Version3.0),Department of Civil Engineering, University of Minnesota,2001.
    [7] Shanmugam N E, Lakshmi B. State of the art report on steel-concrete composite columns.Journal of Constructional Steel Research,2001,57(10):1041-1080.
    [8]钟善桐.钢管混凝土结构(第三版)[M].北京:清华大学出版社,2003.
    [9]王志浩,成戎.复合方钢管混凝土短柱的轴压承载力[J].清华大学学报(自然科学版),2005,45(12):1596-1599.
    [10]黄宏,陶忠,韩林海.圆中空夹层钢管混凝土柱轴压工作机理研究[J].工业建筑,2006,36(11):11-14.
    [11] Committee on Research for the Security of Future U.S. Embassy Buildings, of theBuilding Research Board(BRB), Commission on Engineering and Technical Systems,National Research Council. The Embassy of the Future: Recommendations for theDesign of Future U.S. Embassy Buildings[M]. Washington, D. C.: National AcademyPress,1986.
    [12] Committee on the Protection of Federal Facilities Against Terrorism, Building ResearchBoard, National Research Council. Protection of Federal Office Buildings againstTerrorism[M]. Washington, D. C.: National Academy Press,1988.
    [13] ARMY TM5-1300, Structures to Resist the Effects of Accidental Explosions[S].Washington, D. C.: U. S. Department of the Army, Navy and the Air Force,1990.
    [14] Low HY, H Hao. Reliability analysis of reinforced concrete slabs under explosiveloading[J]. Structural Safety,2001,23(2):157-178.
    [15]方秦,吴平安.爆炸荷载作用下影响RC梁破坏形态的主要因素分析[J].计算力学学报,2003,20(1):39-42.
    [16]师燕超,李忠献.爆炸荷载作用下钢筋混凝土柱的动力响应与破坏模式[J].建筑结构学报,2008,29(4):112-117.
    [17] A Heidarpour, MA Bradford. Beam-Ccolumn element for non-linear dynamicanalysis of steel members subjected to blast loading[J]. Engineering Structures,2011,33:1259-1266.
    [18] Ke-Chiang Wu, Bing Li, Keh-Chyuan Tsai. Residual axial compression capacityof localized blast-damaged RC columns[J]. International Journal of ImpactEngineering,2011,38:29-40.
    [19] HH Jama, MR Bambach, GN Nurick. Numerical modeling of square tubular steelbeams subjected to transverse blast loads[J]. Thin-Walled Structures,47(2009):1523-1534.
    [20] Wei J, LR Dharani. Response of laminated architectural glazing subjected to blastloading[J]. International Journal of Impact Engineering,2006,32(12):2032-47.
    [21] Lu Y, K Xu. Prediction of debris launch velocity of vented concrete structures underinternal blast[J]. International Journal of Impact Engineering,2007,34(11):1753-1767.
    [22]焦延平,郭东,张虹,等.爆炸荷载作用下钢筋混凝土梁非线性有限元分析[J].振动与冲击,2003,22(3):65-67.
    [23]魏雪英.爆炸冲击荷载下混凝土和砖砌体材料及结构的响应[R].西安建筑科技大学博士后研究工作报告,2006.
    [24]冯红波,赵均海,魏雪英,等.爆炸荷载作用下钢管混凝土柱的有限元分析[J].解放军理工大学学报,2007,8(6):680-684.
    [25]刘锦春,方秦,张亚栋,等.爆炸荷载作用下内衬钢板的混凝土组合结构的局部效应分析[J].兵工学报,2004,25(6):773-776。
    [26]田力,李忠献.地下爆炸波冲击下隔震连续梁桥动力响应分析[J].天津大学学报(自然科学与工程技术版),2005,38(7):602-610.
    [27]李国强,孙建运,王开强.爆炸冲击荷载作用下框架柱简化分析模型研究[J].振动与冲击,2007,26(1):8-11.
    [28]武海军,黄风雷,付跃升,等.钢筋混凝土中爆炸破坏效应数值模拟分析[J].北京理工大学学报,2007,27(3):200-204.
    [29]肖黎,屈文忠,周艳国.框架结构在制导爆炸荷载作用下的毁伤效应[J].武汉理工大学学报,2010,32(2):34-37.
    [30]都浩,邓芃,杜荣强.爆炸荷载作用下钢筋混凝土梁动力响应的数值分析[J].山东建筑科技大学学报(自然科学版),2010,29(6):50-54.
    [31] Ma GW, HJ Shi, DW Shu. P-I diagram method for combined failure modes ofrigid-plastic beams[J]. International Journal of Impact Engineering,2007,34(6):1081-1094.
    [32] Shi Y, H Hao, Z-X Li. Numerical derivation of pressure-impulse diagrams for predictionof RC column damage to blast loads[J]. International Journal of Impact Engineering,2008,35:1213-1227.
    [33] Shuichi Fujikura, Michel Bruneau. Experimental investigation of seismically resistantbridge piers under blast loading[J]. Journal of Bridge Engineering,2011,16:63-71.
    [34] Shuichi Fujikura, Michel Bruneau, Diego Lopez-Garcia. Experimental Investigation ofMultihazard Resistant Bridge Piers Having Concrete-Filled Steel Tube under BlastLoading[J]. Journal of Bridge Engineering,2008,13:586-594.
    [35] Eric B. Williamson, Oguzhan Bayrak, Carrie Davis, etc. Performance of Bridge ColumnsSubjected to Blast Loads. I: Experimental Program[J]. Journal of Bridge Engineering,2011,16:693-702.
    [36] G. Daniel Williams, Eric B. Williamson. Response of Reinforced Concrete BridgeColumns Subjected to Blast Loads[J]. Journal of Structural Engineering,2011,137:903-913.
    [37] Tonatiuh Rodriguez-Nikl, Chung-ShengLee, Gilbert A. Hegemier, etc. ExperimentalPerformance of Concrete Columns with Composite Jackets under Blast Loading[J].Journal of Structural Engineering,2012,138:81-89.
    [38] Li QM, H Meng. Pressure-Impulse Diagram for Blast Loads Based on DimensionalAnalysis and Single-Degree-of-Freedom Model[J]. Journal of Engineering Mechanics,2002.128(1):87-92.
    [39] Fallah AS, Louca LA. Pressure-impulse diagrams for elastic-plastic-hardening andsoftening single-degree-of-freedom models subjected to blast loading[J]. InternationalJournal of Impact Engineering,2007,34(4):823-842.
    [40] Krauthammer T, Astarlioglu S, Blasko J, Soh TB, Ng PH. Pressure-impulse diagrams forthe behavior assessment of structural components[J]. International Journal of ImpactEngineering,2008,35(8):771-783.
    [41]龚顺风,朱升波,张爱晖,等.爆炸荷载的数值模拟及近爆作用钢筋混凝土板的动力响应[J].北京工业大学学报,2011,37(2):199-205.
    [42]龚顺风,夏谦,金伟良.近爆作用下钢筋混凝土柱的损伤机理研究[J].浙江大学学报(工学版),2011,45(8):1405-1410.
    [43]李天华.爆炸荷载下钢筋混凝土板的动态响应及损伤评估[D].长安大学博士学位论文,2012.
    [44]魏雪英,白国良.爆炸荷载下钢筋混凝土柱的动力响应及破坏形态分析[J].解放军理工大学学报,2007,8(5):525-529.
    [45]潘金龙,周甲佳,罗敏.爆炸荷载下FRP加固双向板动力响应数值模拟[J].解放军理工大学学报(自然科学版),2011,12(6):643-648.
    [46]吴赛.爆炸荷载下复式钢管混凝土柱动力响应研究[D].长安大学硕士学位论文,2012.
    [47]冯红波.爆炸荷载作用下钢管混凝土柱的动力响应研究[D].长安大学硕士学位论文,2008.
    [48] Smith P.D., Mays G.C., Rose T. A., etc. Small scale models of complex geometry forblast overpressure assessment[J]. International Journal of Impact Engineering,1992,12(3):345-360.
    [49] Smith P.D., Rose T. A blast wave propagation in city streets-an overview[J]. Progress inStructural Engineering and Materials,2006,8(1):16-28.
    [50] B. Luccioni, D. Ambrosini, R. Danesi. Blast load assessment using hydrocodes[J].Engineering Structures,2006,28(12):1736-1744.
    [51]都浩,李忠献,郝洪.建筑物外部爆炸超压荷载的数值模拟[J].解放军理工大学学报(自然科学版),2007,8(5):413-418.
    [52]都浩.城市环境中建筑爆炸荷载模拟及钢筋混凝土构件抗爆性能分析[D].天津大学博士学位论文,2008.
    [53]师燕超.爆炸荷载作用下钢筋混凝土结构的动态响应行为与损伤破坏机理[D].天津大学博士学位论文,2009.
    [54] Yang G, T-S Lok. Analysis of RC structures subjected to air-blast loading accounting forstrain rate effect of steel reinforcement[J]. International Journal of Impact Engineering,2007,34(12):1924-1935.
    [55]师燕超,李忠献.爆炸荷载作用下钢筋混凝土结构破坏倒塌分析研究进展[J].土木工程学报,2010,43(S):83-92.
    [56] Luccioni BM, RD Ambrosini, RF Danesi. Analysis of building collapse under blastloads[J]. Engineering Structures,2004,26(1):63-71.
    [57] Pandey AK, et al. Non-linear response of reinforced concrete containment structureunder blast loading[J]. Nuclear Engineering and Design,2006,236(9):993-1002.
    [58]杜义欣,刘晶波,伍俊,等.常规爆炸下地下结构的冲击震动环境[J].清华大学学报(自然科学版),2006,46(3):322-326.
    [59]李忠献,田力.地下爆炸波作用下基底滑移隔震大跨结构的动力响应分析[J].计算力学学报,2005,22(4):457-464.
    [60]王年桥,杨秀敏,杨科之.内爆荷载作用下结构等效静载计算方法[J].解放军理工大学学报(自然科学版),2002,3(4):31-33.
    [61]国胜兵,王明洋,赵跃堂,等.爆炸地震波作用下地下结构动力响应数值分析[J].世界地震工程,2004,20(4):137-142.
    [62]李秀地,郑颖人,徐干成.爆炸荷载作用下地下结构的震塌破坏模型研究[J].爆破,2006,23(1):6-9.
    [63]金伟良,方韬.钢筋混凝土框架结构破坏性能的离散单元法模拟[J].工程力学,2005,22(4):67-73.
    [64] Ma G, H Hao, Y Zhou. Assessment of structure damage to blasting induced groundmotions[J]. Engineering Structures,2000,22(10):1378-1389.
    [65] Hao H, G-W Ma, Y Lu. Damage assessment of masonry infilled RC frames subjected toblasting induced ground excitations[J]. Engineering Structures,2002.24(6):799-809.
    [66] Wu C, H Hao, Y Lu. Dynamic response and damage analysis of masonry structures andmasonry infilled RC frames to blast ground motion[J]. Engineering Structures,2005,27(3):323-333.
    [67] Grierson DE, L Xu, Y Liu. Progressive-failure analysis of buildings subjected toabnormal loading[J]. Computer-Aided Civil and Infrastructure Engineering,2005,20(3):155-171.
    [68] Oswald CJ. Prediction of injuries to building occupants from column failure andprogressive collapse with the BICADS computer program[C]. In2005StructuresCongress and the2005Forensic Engineering Symposium-Metropolis and Beyond,Apr20-242005.2005. New York, NY, United States: American Society of CivilEngineers, Reston, VA20191-4400, United States.
    [69] Crawford JE, et al. Retrofit of reinforced concrete structures to resist blast effects[J]. ACIStructural Journal,1997,94(4):371-377.
    [70] Muszynski LC, MR Purcell. Composite reinforcement to strengthen existing concretestructures against air blast[J]. Journal of Composites for Construction,2003,7(2):93-97.
    [71] Ishikawa N, M Beppu. Lessons from past explosive tests on protective structures inJapan[J]. International Journal of Impact Engineering,2007,34(9):1535-1545.
    [72]石少卿,刘颖芳,尹平,等.新型抗冲击、抗爆炸防护结构的研究[J].后勤工程学院学报,2004,20(3):9-11.
    [73] Sucuoglu Haluk, Citipitioglu Ergin, Altin Sinan. Resistance mechanisms in RC buildingframes subjected to column failure[J]. Journal of Structural Engineering,1994,120(3):765-782.
    [74] Williams MS, Lok TS. Structural Assessment of Blast Damaged Buildings[C]. Structuresunder Shock and Impact VI: Proceedings of International Conference on Structuresunder Shock and Impact,399-409,200.
    [75] B.M. Luccioni, R.D. Ambrosini, R.F. Danesi. Analysis of building collapse under blastloads[J]. Engineering Structures,2004,26:63-71.
    [76] Ruwan Jayasooriya, David P. Thambiratnam, Nimal J. Perera, etc. Blast and residualcapacity analysis of reinforced concrete framed buildings[J]. Engineering Structures,2011,33:3483-3495.
    [77] Pandey, A. K.. Non-linear response of reinforced concrete containment structure underblast loading[J]. Nuclear Engineering and Design,2006,236(9):993-1002.
    [78]阎石,王积慧,王丹,等.爆炸荷载作用下框架结构的连续倒塌机理分析[J].工程力学,2009,26(S1):119-123.
    [79]申祖武,龚敏,王天运,等.汽车炸弹爆炸冲击波作用下建筑物的动力响应分析[J].振动与冲击,2008,27(8):165-168,186.
    [80] Li Z X, Shi Y C. Methods for progressive collapse analysis of building structures underblast and impact loads[J]. Transactions of Tianjin University,2008,14(5):329-339.
    [81]师燕超,李忠献,郝洪.爆炸荷载作用下钢筋混凝土框架结构的连续倒塌分析[J].解放军理工大学学报(自然科学版),2007,8(6):652-658.
    [82]宋拓,吕令毅.爆炸冲击对多层钢框架连续倒塌性能的影响[J].东南大学学报(自然科学版),2011,41(6):1247-1252.
    [83]陈华燕,曾祥国,朱文吉,等.爆炸荷载作用下桥梁动态响应及其损毁过程的数值模拟[J].四川大学学报(工程科学版),2011,43(6):15-19.
    [84] Joseph Charles Gannon. Design of Bridges for Security Agianst Terrorist Attacks[D].The thesis of applying for Master Degree in The University of Texas at Austin,2004.
    [85]金丰年,袁小军,周健南,等.爆炸荷载作用下大跨度动被覆结构荷载分布规律[J].解放军理工大学学报(自然科学版),2011,12(6):635-642.
    [86]张小鹏,葛飞,邢怀念,等.大型爆炸防护结构的动态应力测试与分析[J].爆炸与冲击,2010,30(1):101-104.
    [87]代仁平,郭学彬,宫全美,等.隧道围岩爆破冲击损伤防护的轻气炮试验及数值模拟[J].爆炸与冲击,2011,30(7):133-137.
    [88] H.H. Jama, G.N. Nurick, M.R. Bambach, etc. Steel square hollow sections subjected totransverse blast loads[J]. Thin-Walled Structures,2012,53:109-122.
    [89]李翼祺,马素贞.爆炸力学[M].北京:科学出版社,1992.
    [90] Kuhl A. L, REICHENBACH H. Combustion effects in confined explosions[J].Proceedings of the Combustion Institute,2009(32):2291-2298.
    [91] Esparza E. D., Baker W. E. Measurement of blast waves from bursting pressurizedfrangible spheres[R]. NASA CR-2843, Southwest Research Institute, San Antonio,Texas,1977.
    [92] Brode H. L. Numerical solution of spherical blast waves[J]. Journal of Applied Physics,American Institute of Physics, New York,1955,26(6):766-775.
    [93] Mills C. A. The design of concrete structure to resist explosions and weapon effects[C].Proceedings of1st International conference on concrete for hazard protections,Edinburgh, UK,1987:61-73.
    [94]张守中.爆炸基本原理[M].北京:国防工业出版社,1988.
    [95]周听清.爆炸动力学及其应用[M].安徽:中国科学技术出版社,2001.
    [96] Henry J. The dynamics of explosion and its use[M]. Amsterdam: Elsevier,1979.
    [97] Wu Chengqing, Hao Hong. Modeling of simultaneous ground shock and air blastpressure on nearly structures from surface explosions[J]. International Journal of ImpactEngineering, Elsevier,2005,(31):699-717.
    [98] TM5-856, Design of Structures to Resist the Effects of Atomic Weapons[S]. U. S.Department of Defense, Washington, DC,1965.
    [99] Newmark, Nathan M. An engineering approach to blast resistant design[J]. ASCETransactions,1956,121:45-64.
    [100] John M. Biggs. Introduction to Structural Dynamics[M]. Mcgraw-Hill Book Company,1964.
    [101] Manual No.42, Design of Structures to Resist Nuclear Weapons Effects[S]. Reston,VA: American Society of Civil Engineers,1985.
    [102] ConWep: Conventional weapons effects program[Z]. DW Hyde, ERDC Vicksburg MS,1991.
    [103] Smith PD, Hetherington JG. Blast and ballistic loading of structures[M].Butterworth-Heinemann, Oxford,1994.
    [104] Mays G. C., Smith P. D. Blast effects on buildings[M]. Thomas Telford, London,1995.
    [105] PSADS: Protective structures automated design system v1.0[Z]. US Army Corps ofEngineers,1998.
    [106] C. N. Kingery, G. Bulmash. Airblast parameters from TNT spherical air blast andhemispherical surface burst[R]. Report ARBL-TR-02555, U. S. Army BRL, AberdeenProving Ground, MD,1984.
    [107] Randers Pehrson G, Bannister K A. Airblast loading model for DYNA2D andDYNA3D[R]. Army Research Laboratory, Rept. ARL-TR-1310,1997.
    [108] W. E. Baker, P. A. Cox, P. S. Westine, etc. Explosion Hazards and Evaluation[M].Amsterdam: Elsevier,1983.
    [109]程宝坪.深圳赛格广场钢管混凝土柱—钢结构施工特点[J].施工技术,2000,29(6):2-5.
    [110]卢先军.半连通钢管混凝土柱芯钢管角节点模型试验研究[D].长安大学硕士学位论文,2005.
    [111] GB/T2975-1998,钢材力学及工艺性能试验取样规定[S].1999.
    [112] GB/T228.1-2010,金属材料拉伸试验[S].2011.
    [113] GB/T50081-2002,普通混凝土力学性能试验方法[S].2003.
    [114]东南大学,同济大学,天津大学合编.混凝土结构设计原理[M].北京:中国建筑工业出版社,2008.
    [115] GB50204-2002,混凝土结构工程施工质量验收规范[S].2002.
    [116] GB50010-2010,混凝土结构设计规范[S].2011.
    [117] Hao H, Cheong H K, Cui S J. Numerical study of dynamic buckling of steel columnssubjected to underground explosion[J]. Key Engineering Materials,2002,233-236:211-216.
    [118] Cui S J, Cheong H K, Hao H. Elastic-plastic dynamic response and buckling of steelcolumns under ground strong vertical ground motion[J]. Key Engineering Materials,2002:217-222.
    [119]李国强,孙建运,王开强.爆炸冲击荷载作用下框架柱简化分析模型研究[J].振动与冲击,2007,26(1):8-11.
    [120]马云玲,谢冰,何大治,等.圆钢管混凝土爆炸响应的数值分析[J].武汉理工大学学报,2010,32(14):120-124.
    [121]孙建运.爆炸冲击荷载作用下钢骨混凝土柱性能研究[D].同济大学博士学位论文,2006.
    [122]尚晓江,苏建宇,王化锋,等. ANSYS/LS-DYNA动力分析方法与工程实例[M].北京:中国水利水电出版社,2008.
    [123]石少卿,康建功,汪敏,等. ANSYS/LS-DYNA在爆炸冲与冲击领域内的工程应用[M].北京:中国建筑工业出版社,2011.
    [124] LS-DYNA Theoretical Manual[S]. California: Livermore Software TechnologyCorporation,2006.
    [125]赵海鸥. LS-DYNA动力分析指南[M].北京:兵器工业出版社,2003.
    [126] Riedel W. Thoma K, Hiermaier, etc. Penetration of reinforced concrete byBETA-B-500numerical analysis using a new macroscopic concrete model forhydrocodes[C]. Proceedings of9th International Symposium on Interaction of theEffects of Munitions with Structures, Berlin,1999:315-322.
    [127] MALVAR L. J., CRAWFORD J. E., WESEVICH J. W., etc. A plasticity concretematerial model for DYNA3D[J]. International Journal of Impact Engineering,1997,19(9/10):847-873.
    [128] Malvar L. J., Simons D. Concrete Materials Modeling in Explicit Computations[C].Workshop on Recent Advances in Computational Structural Dynamics and HighPerformance Computing. USAE Waterways Experiment Station, Vicksburg, MS,1996:165-194.
    [129] C. N. Kingery, G. Bulmash. Airblast parameters from TNT spherical air blast andhemispherical surface burst[R]. Report ARBL-TR-02555, U. S. Army BRL, AberdeenProving Ground, MD,1984.
    [130] Randers Pehrson G, Bannister K A. Airblast loading model for DYNA2D andDYNA3D[R]. Army Research Laboratory, Rept. ARL-TR-1310,1997.
    [131] User’s guide on protection against terrorist vehicle bombs[S]. U. S. Naval facilitiesengineering service center,1998,5.
    [132]白金泽. LS-DYNA3D理论基础与实例分析[M].北京:科学出版社,2005.
    [133]成凤生,宋浦,顾晓辉,等. TNT装药爆炸波在刚性平面上方传播反射的数值研究[J].爆破器材,2011,40(4):1-4.
    [134]卢红琴,刘伟庆.空中爆炸冲击波的数值模拟研究[J].武汉理工大学学报,2009,31(19):105-108.
    [135] GANTES C J, PNEVMATIKOSN G. Elastic-plastic response spectra for exponentialblast loading[J]. International Journal of Impact Engineering,2004,30:323-343.
    [136] SHI Yan-chao, LI Zhong-xian, HAO Hong. Mesh size effect in numerical simulation ofblast wave propagation and interaction with structures[J]. Transactions of TianjinUniversity,2008,14(6):396-402.
    [137] GONG Shun-feng, LU Yong, JIN Wei-liang. Simulation of airblast load and its effecton RC Structures[J]. Transactions of Tianjin University,2006,12(Suppl):165-170.
    [138]廖维张.常规武器爆炸作用下地下结构的动力响应及智能隔震研究[D].北京工业大学硕士学位论文,2007.
    [139]杨鑫,石少卿,程鹏飞.空气中TNT爆炸冲击波超压峰值的预测及数值模型[J].爆破,2008,25(1):15-18.
    [140]李顺波,东兆星,齐燕军,等.爆炸冲击波在不同介质中传播衰减规律及数值模拟[J].振动与冲击,2009,28(7):115-117.
    [141] Krauthammer T., Otani R. K. Mesh. Gravity and load effects on finite elementsimulations of blast loaded reinforced concrete structures[J]. Computers&Structures,1997,63(6):1113-1120.
    [142] Luccioni B., Ambrosini D., Danesi R. Blast load assessment using hydrocodes[J].Engineering Structures,2006,28(12):1736-1744.
    [143] Chapman T. C., Rose T. A., Smith P. D. Blast wave simulation using AUTODYN2D: aparametric study[J]. International Journal of Impact Engineering,1995,16(5-6):777-787.
    [144]石磊,杜修力,樊鑫.爆炸冲击波数值计算网格划分方法研究[J].北京工业大学学报,2010,36(11):8-11.
    [145] CECS28-2012,钢管混凝土结构设计与施工规程[S].2012.
    [146] GJBT-543-01SG519,多、高层民用建筑钢结构节点构造详图[S].2009.
    [147] GB50779-2012,石油化工控制室抗爆设计规范[S].2012.
    [148] Morrill K B, Malvar L J, Crawford J E, etc. Blast resistant design and retrofit ofreinforced concrete columns and walls [C]. Proceedings of the2004StructuresCongress—Building on the Past: Securing the Future,116Nashville, TN, USA: K&CCorporation,2004:1471-1478.
    [149]吴宗之,高进东,魏利军.危险评价方法及其应用[M].北京:冶金工业出版社,2001.
    [150] Stephens M. M. Minimizing damage to refineries from nuclear attack, natural and otherdisasters[R]. The office of oil and gas, Dept. of the Interior, USA,1970.
    [151]赵衡阳.气体和粉尘爆炸原理[M].北京:兵器工业出版社,1996.
    [152] Jarrett D. F. Derivation of British explosives safety distances[J]. Annuals of the NewYork Academy of Science,1968,152(Article1):18-35.
    [153] Mays G. C., Smith P. D. Blast effects on buildings-design of buildings to optimizeresistance to blast loading[M]. London: Thomas Telford,1995.
    [154] Krauthammer T. Blast mitigation technologies: developments and numericalconsiderations for behaviour assessment and Design[J]. In: Int. Conf. on Structures UnderShock and Impact, SUSI.1998:3-12.
    [155] Merrifield R. Simplified calculations of blast induced injuries and damage[R]. Rep.No.37, Health and Safety Executive Specialist Inspector,2008.
    [156] Q. M. Li, H. Meng. Pressure-Impulse Diagram for Blast Loads Based on DimensionalAnalysis and Single-Degree-of-Freedom Model[J]. Journal of Engineering Mechanics,2002,128(1):87-92.
    [157] Q. M. Li, H. Meng. Pulse loading shape effects on pressure-impulse diagram of anelastic-plastic single-degree-of-freedom structural model[J]. International Journal ofMechanical Sciences,2002,44(9):1985-1998.
    [158] W. W. El-Dakhakhni, S. H. Changiz Rezaei, W. F. Mekky, etc. Response sensitivity ofblast-loaded reinforced concrete structures to the number of degrees of freedom[J].Canadian Journal of Civil Engineering,2009,36(8):1305-1320.
    [159] Soh TB, Krauthammer T. Load–impulse diagrams of reinforced concrete beamssubjected to concentrated transient loading[R]. Technical report PTC-TR-006-2004.University Park, PA: Protective Technology Center, Pennsylvania State University,2004.
    [160] Ng PH, Krauthammer T. Pressure-impulse diagrams for reinforced concrete slabs[R].Technical report PTC-TR-007-2004. University Park, PA: Protective Technology Center,Pennsylvania State University,2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700