用户名: 密码: 验证码:
爆炸荷载下钢管混凝土柱抗爆性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
建筑结构除了承受静动荷载以外,也可能遭受到由于爆炸恐怖袭击、偶然燃气爆炸等各种因素引发的爆炸冲击荷载。钢管混凝土结构由于其具有受力合理、承载力高、抗震性能好、施工方便、经济效益显著等优势而在土木工程中得到广泛应用。研究该结构在爆炸冲击荷载下的动态响应具有非常重要的理论意义及工程应用价值。本文采用理论分析、试验研究和数值模拟相结合的方法,对爆炸冲击波与钢管混凝土柱相互作用,爆炸荷载作用下钢管混凝土柱的动态响应、破坏模式和破坏机理等方面展开系统的研究。主要的研究工作和结论如下:
     (1)对钢管混凝土柱构件进行了2发3柱在不同药量、不同比例距离下的静爆试验。测得柱迎爆面和背爆面柱的柱顶、柱中、柱底的超压分布,以及振动加速度和最终位移,为准确预测作用在钢管混凝土柱上的爆炸荷载和评估钢管混凝土柱的破坏形态及破坏机理提供试验依据。试验结果表明,对于刚度较大的结构构件来说,受迎爆面负压区、背爆面的影响很小,可以忽略不计,仅考虑迎爆面的正压区作用效应;当爆炸场中的反射环境较为简单时,测量柱迎爆面反射超压时,可以通过测量自由场中的反射超压近似得到;并且得到了试验爆炸荷载作用下相应的钢管混凝土柱的破坏形态。
     (2)研究了爆炸冲击波与钢管混凝土柱之间的相互作用。通过试验结果中的钢管混凝土柱迎爆面的超压分布,与已有的经验超压公式进行比较,选择TM5-1300中的各爆炸特征参数,为本文爆炸荷载的预测依据,为研究爆炸荷载作用下钢管混凝土柱动态响应提供可靠的爆炸荷载预测。
     (3)建立爆炸冲击波及其与钢管混凝土柱相互作用的数值模拟方法。基于显式动力学程序ANSYS/LS-DYNA,采用流固耦合法,通过选取合理的材料模型、沙漏控制方法、边界条件等因素,建立爆炸冲击波与钢管混凝土柱相互作用的数值模型。通过与试验结果的对比,验证数值方法的正确性,并进行了参数分析。研究结果表明,含钢率对爆炸波与柱相互作用的影响并不明显,截面形状和截面尺寸对爆炸波与柱相互作用的影响较为突出,相同的爆炸环境下,圆形截面柱迎爆面的爆炸荷载强度低于方形截面柱。
     (4)基于等效单自由度体系对钢管混凝土柱的动态响应进行理论分析,引入圆形钢管混凝土柱等效迎爆面的概念,采用延性系数计算出了等效体系在三角形脉冲荷载下的最大动位移,并通过与试验的对比验证了理论计算的可靠性。
     (5)建立钢管混凝土柱在爆炸荷载作用下动态响应的数值模拟方法。并将数值模拟结果、试验结果、理论计算结果进行对比分析。并通过大量的数值模拟,进行参数分析,结果表明,随比例距离的增大,柱中点的水平最大位移和残余位移明显减小,并且衰减很快,当比例距离大于0.3m/kg1/3时,可忽略比例距离对柱中水平位移的影响;降低加载速率和减小截面尺寸,能够有效的降低钢管混凝土柱在爆炸荷载下柱中的水平位移;提高混凝土和钢材的抗压强度、增大含钢率,均能在一定程度上提高钢管混凝土柱的抗爆性能;当方形截面柱边长等于圆形柱直径时,相比圆形柱截面,尽管方形钢管混凝土柱有近似于两倍的惯性矩,但是方柱的截面不利于爆炸荷载的绕射,其迎爆面积相当于圆柱等效迎爆面的四倍,因此,圆形截面柱有较强的抵御爆炸荷载的能力。
     (6)钢管混凝土柱在爆炸荷载作用下的破坏模式分别为:“高峰值低持时”的冲量荷载作用下,易发生剪切破坏;“低峰值高持时”的准静态荷载作用下,易于发生弯曲变形;而在动力荷载的作用下,钢管混凝土柱倾向于发生弯剪破坏。
Except for static load, building structure might also experience explosive dynamicimpacts, such as terrorist bomb attack, gas explosion and etc. Because of sound stress balance,high bearing capacity, and convenient construction method, Concrete Filled Steel Tube (CFST)are comprehensively utilized in civil engineering. Therefore, academic researches on how theCFST would respond to dynamic changes carry significant theoretical meanings as well asapplication values. This essay employs methods of theoretical analysis, experimental studyand numerical modeling to facilitate the whole process; dynamic response, damage modes anddestruction mechanism are thoroughly discussed, using the methods mentioned above. Majorresearch work and outcomes are listed below:
     (1)2shells,3tubes of static explosive experiments on CFST are deployed for differentexplosive amount and in predetermined distances. The researcher measured the overpressuredistribution (on top, in the middle and at the bottom), the vibrating acceleration and thedisplacement lengths on both the plane facing explosion and the one opposite; these dataprovides grounds for predicting explosive load and for evaluating damage modes, destructionmechanism of the CFST. As the experience states, for the structure of comparatively highstiffness, impacts to the negative pressure region of the front plane and the back plane isrelatively small and is neglectable; when the environment is simple, the overpressure put onthe front plane approximately equals to reflecting overpressure in the free field.
     (2) This research studies the interaction between explosive blast and CFST. Bycomparing the facing-explosive overpressure distribution in the experiment with the existingoverpressure formula and by setting explosive characteristic parameter of TM5-1300as aprediction standard, the research provides reliable explosive load prediction for studyingCFST’s dynamic responding when facing explosive load.
     (3) This dissertation develops numerical simulation for the interaction between explosiveblast and CFST. Based on explicit dynamic program ANSYS/LS-DYNA and employingfluid-solid coupling algorithm, the researcher forms the numerical model for the interactionbetween explosive blast and the CFST surface through choosing sound material model, applying hourglass control method and considering boundary conditions. The results provethe numerical reasoning right. After analyzing the parameters, the result states that steel ratiohas barely influence on the interaction, while shape and scale of the section has strong effects.In another word, under the same explosive extent, explosive load on the round section issmaller than the one on the rectangle section.
     (4) This dissertation relies on equivalent single-degree-of-freedom system to study thedynamic response of the CFST. The author introduces the notion of equivalentexplosive-facing plane for CFST and applies ductility coefficient to calculate the maximumdynamic displacement under the triangle pulse load. The above process verifies the equivalentexplosive-facing plane method and the feasibility of theoretical calculation.
     (5) This essay establishes numerical simulative method for the dynamic response andcross-over analyzes the simulative results, the experimental results and the theoreticalcalculation. After massive numerical simulation and parameter analysis, the finals show that,as the scale distance grows, the horizontal maximum displacement and the residualdisplacement drops significantly. When the scale distance is over0.3m/kg1/3, its influence onhorizontal displacement can be ruled out. Lowering loading rate and reducing the size of thesection can evidently bring down the column horizontal displacement. Improving thecompressive strength of concrete and steel and enlarging steel ratio would optimize antiknockperformance of the CFST. Although rectangle CFST has nearly twice the moment of inertiathan round CFST, it is hard for explosive load to diffraction; the plane facing explosive is fourtime of the round one. Thus, round section tube has higher explosive resistance.
     (6) Typical destruction paradigm, according to various load type, can be categorized intoshear fracture, flexural mode and flexural damage. The results show that when the column issubjected to impulsive blast load, the column is inclined to be damage by shear; in thequasi-static region, however, the column is likely damage by flexural mode; and in the regionof dynamic loading, the failure of the column might be a combination of shear and flexuraldamage.
引文
[1]钱七虎,徐更光,周丰峻.反爆炸恐怖安全对策[M].北京:科学出版社,2005.
    [2]李国豪.工程结构抗爆动力学[M].上海:上海科学技术出版社,1989.
    [3]钟善桐.钢管混凝土结构[M].北京:清华大学出版社,2003.
    [4]韩林海.钢管混凝土结构[M].北京:科学出版社,2000.
    [5]赵均海.钢管混凝土结构性能研究[R].西安:长安大学工程理论与应用研究所主编,2009.
    [6] Henrych J. The Dynamics of Explosion and Its Use[M]. Amster dam: Elsevier,1979.
    [7] Brode H L. Blast wave from a spherical charge [J]. Phys Fluids,1959(2):217-218.
    [8] Wu C, Hao H. Modeling of simultaneous ground shock and airblast pressure on nearby structuresfrom surface explosions[J]. International Journal of Impact Engineering,2005,31(6):699-717.
    [9]周听清.爆炸动力学及其应用[M].合肥:中国科学技术大学出版社,2001.
    [10]杨鑫,石少卿,程鹏飞.空气TNT爆炸冲击波超压峰值的预测及数值模拟[J].爆破,2008,25(1):15-31.
    [11] TM5-1300, Structures to Resist the Effects of Accidental Explosion [M]. Department of the ArmyTechnical Manual, Department of the Navy Publication NAVFAC P-397, Department of the AirForce Manual AFM88-22, Department of the Army, the Navy, and the Air Force, June1969.
    [12] Rose TA, Smith PD. The influence of urban geometry on blast wave resultants[J], Proceedings of the16th Military Aspects of Blast and Shock Symposium, Oxford UK,10–15, September,2000.
    [13] Smith PD, Rose TA, et al. Blast loading on buildings from explosions in City Streets [J]. Proceedingsof the Institution of Civil Engineers: Structures and Buildings, v146, n1, February,2001:47–55.
    [14] Rose TA, Smith PD. Influence of the principal geometrical parameters of straight city streets onpositive and negative phase blast wave impulses[J], International Journal of Impact Engineering,2002(27):359–376.
    [15] Smith PD, Rose TA, Krahe SL, et al. Facade failure effects on blast propagation along city streets[J],Proceedings of the Institution of Civil Engineers: Structures and Buildings, v156, n4, November,2003:359–365.
    [16] Smith PD, Rose TA. Blast wave propagation in city streets-An overview[J]. Source: Progress inStructural Engineering and Materials, v8,n1, January/March,2006:16–28.
    [17] Smith PD, Whalen GP, Feng LJ, et al. Blast loading on buildings from explosions in city streets[J].Proc Inst Civil Eng.-Struct Build2001:146(1):47–55.
    [18] Smith PD, Rose TA, Green JA. The effect of arrays of suburban buildings in providing shieldingfrom blast[J]. In: The11th international symposium on interaction of the effects of munitions withstructures,2003.
    [19] Rose TA, Smith PD. The influence of street junctions on blast wave impulses produced by vehiclebombs[J]. In: The11th international symposium on interaction of the effects of munitions withstructures,2003.
    [20] Remennikov AM. A review of methods for predicting bomb blast effects on buildings[J]. Journal ofBattlefield Technol2003:6(3):5–10.
    [21] Remennikov AM. Evaluation of blast loads on buildings in urban environment[J]. The8thInternational Conference on Structures under Shock and Impact,2004:73–82.
    [22] Remennikov AM, Timothy AR. Modeling blast loads on buildings incomplex city geometries[J].Computers and Structures,2005.83:2197–2205.
    [23] Mathisb JT, Stahlb MW. Modeling environmental effects in the simulation of explosionevents[J].International Journal of Impact Engineering,2007(34)973–989.
    [24] Rickman DD, Murrell DW, Small-scale studies of air-blast shielding of structures: preliminaryresults[J].Twenty-third army science Conference,2002:1–4.
    [25] David JG, William GR, Scott JL. Blast phenomena associated with high-speed impact[J],International Journal of Impact Engineering,2007(34):178–188.
    [26]林大超,白春华,张奇.空气中爆炸时爆炸波的超压函数[J].爆炸与冲击,2001,21(1):41-46.
    [27]都浩,李忠献,郝洪.建筑物外部爆炸超压荷载的数值模拟[J].解放军理工大学学报(自然科学版),2007,8(5):413-418.
    [28] Zineddin, M. Z. behavior of Structural Concrete Slabs under Localized Impact [D]. Ph. D. thesis, thePennsylvania University, USA,2002.
    [29] Jacinto, A. C, Ambrosini R. D. Experimental and computational analysis of Plates under Air BlastLoadings [J]. International Journal of impact engineering25(2001):927-947.
    [30] Muszynski, L. C. Purcell, M. R. Use of Composite Reinforcement to Strengthen Concrete andAir-Entrained Concrete Masonry Walls Against Air Blast [J]. ASCE: Journal of Composite forConstruction2003,7(2):98-108.
    [31] Davidson, J. S. Porter, J. R. et al. Explosive Testing of Polymer Retrofit Masonry Walls [J]. ASCE:Journal of Performance of Constructed Facilities2004,18(2):100-106.
    [32] Lungdon, G. S. Yuen, S. C. K. Experimental and Numerical studies on the Response ofQuadrangular stiffened Plates.Part II: Subjected to Local blast loading [J]. International Journal ofimpact engineering (31)2005:85-111.
    [33] Jacob, N.Yuen,C.Y. et al. Scaling Aspects of Quadrangular Plates subjected to Localized BlastLoads-Experiments and Predications [J]. International Journal of Impact Engineering30(2004):1179-1208.
    [34]刘彦东.爆炸冲击荷载作用下简支圆板的动力响应分析[D].长安大学硕士学位论文,2007.
    [35] Teeling-Smith R G, Nurick G N. The deformation and tearing of thin circular plates subjected toimpulsive loads[J]. International Journal of Impact Engineering,1991,11(1):77-91.
    [36] Nurick G N, Shave G C. The deformation and tearing of thin square plates subjected to impulsiveloads-An experimental study[J]. International Journal of Impact Engineering,1996,18(1):99-116.
    [37] Yuen S C K, Nurick G N, Verster W, et al. Deformation of mild steel plates subjected to large-scaledexplosions[J]. International Journal of Impact Engineering,2008,35(8):684-703.
    [38] S. Chung Kim Yuen, G. N. Nurick. Experimental and numerical studies on the response ofquadrangular stiffened plates. Part I: subjected to uniform blast load[J]. International Journal ofImpact Engineering,31(2005):55-83.
    [39] G. S. Langdon, S. Chung Kim Yuen, G. N. Nurick. Experimental and numerical studies on theresponse of quadrangular stiffened plates. Part II: localized blast loading[J]. International Journal ofImpact Engineering,31(2005):85-111.
    [40] Michael G. Oesterle. Blast Simulator Wall Tests: Experimental Methods and Mitigation Strategiesfor Reinforced Concrete and Concrete Masonry[D]. University of California, Sandiego,2009.
    [41] Andra′s Schenker, Ido Anteby, Erez Gal, et al. Full-scale field tests of concrete slabs subjected toblast loads[J]. International Journal of Impact Engineering,2008,35:184-198.
    [42] Chengqing Wu, Ratni Nurwidayati, Deric John Oehlers. Fragmentation from spallation of RC slabsdue to airblast loads[J]. International Journal of Impact Engineering,2009,36:1371–1376.
    [43] Pedro F. Silva P.E., Binggeng Lu. Blast Resistance Capacity of Reinforced Concrete Slabs [J].Journal of Structural Engineering,2009,135(6):708-716.
    [44]张想柏,杨秀敏,陈肇元,等.接触爆炸钢筋混凝土板的震塌效应[J].清华大学学报(自然科学版),2006,46(6):756-768.
    [45]陈肇元,高健,王志浩.人防工程抗爆隔墙的设计[M],防护工程,1992.
    [46]郑全平.钢筋混凝土板爆炸震塌试验研究与数值模拟[D].中国人民解放军理工大学博士论文,2003.
    [47]郑全平,钱七虎,周早生.钢筋混凝土板爆炸震塌试验研究与数值模拟[J].防护工程,2004,26(3):1-3.
    [48]孙文彬.钢筋混凝土板的爆炸荷载试验研究[J].辽宁工程技术大学学报,2009,28(2):217-220.
    [49]郭樟根,曹双寅,王安宝,等.爆炸荷载作用下外贴FRP加固钢筋混凝土双向板试验研究[J].建筑结构学报,2011,32(2):91-97.
    [50] Varma R.K., Tomar C.P.S., Parkash S., et al. Damage to brick masonry panel walls under highexplosive detonations [A]. Pressure Vessels and Piping Division [C]. Fairfield: American Society ofMechanical Engineers,1997.207-216.
    [51] Mays G. C., Hetherington J. G., Rose T. A. Response to blast loading of concrete wall panels withopenings [J]. Journal of Structural Engineering,1999,125(12):1448-1450.
    [52] Dennis, S.T. Baylot, J.T.et al. Response of1/4-Scale Concrete Masonry Unit(CMU) Walls to Blast[J]. Journal of Engineering Mechanics.2002,128(2):134-142.
    [53] Eamon,C.D. Baylot, J. T. Modeling Concrete Masonry Walls Subject to Explosive Loads [J]. Journalof Engineering Mechanics2004,30(9):1098-1106.
    [54] Baylot James T., Bullock Billy, Slawson Thomas R., et al. Blast response of lightly attached concretemasonry unit walls [J]. Journal of Structural Engineering,2005,131(8):1186-1193.
    [55] Makovicka D. Dynamic response of thin masonry wall under explosion effect[A].Structures underShock and Impact VII [C]. Southampton: WIT Press,2002.47-56.
    [56] Muszynski Larry C., Purcel Michael R. Use of composite reinforcement to strengthen concrete andair-entrained concrete masonry walls against air blast [J]. Journal of Composites for Construction,2003,7(2):198-108.
    [57] Fatt M.S.Hoo, Ouyang X., Dinan R.J. Blast response of walls retrofitted with elastomer coatings [A].Structures under Shock and Impact VIII [C]. Southampton:WIT Press,2004.129-138.
    [58] Davidson James S., Porter Jonathan R., Dinan Robert J., et al. Explosive testing of polymer retrofitmasonry walls [J]. Journal of Performance of Constructed Facilities,2004,18(2):100-106.
    [59] Davidson James S., Fisher Jeff W., Hammons Michael I., et al. Failure mechanisms ofpolymer-reinforced concrete masonry walls subjected to blast [J]. Journal of Structural Engineering,2005,131(8):1194-1205.
    [60] Salim H., Dinan R., Townsend P. T. Analysis and experimental evaluation of in-fill steel-stud wallsystems under blast loading [J]. Journal of Structural Engineering,2005,131(8):1216-1225.
    [61] Salim H., Muller P., Dinan R. Response of conventional steel stud wall systems under static anddynamic pressure [J]. Journal of Performance of Constructed Facilities,2005,19(4):267-276.
    [62]张凤华.爆炸冲击荷载作用下钢筋混凝土墙的动力响应分析[D].长安大学硕士学位论文,2007.
    [63]方秦,柳锦春,张亚栋.爆炸荷载作用下钢筋混凝土梁破坏形态有限元分析[J].工程力学,2001,18(2):1-8.
    [64]方秦,吴平安.爆炸荷载作用下影响RC梁破坏形态的主要因素分析[J].计算机力学学报,2003,20(1):39-48.
    [65]方秦,杜茂林.爆炸荷载作用下弹性与阻尼支撑梁的动力响应[J].力学与实践,2006,28(2):30-35.
    [66] J.Magnusson, M.Hallgren. Reinforced high strength concrete beams subjected to air blast loading[R],Swedish Defence Research Agency, Sweden,2004.
    [67] Morrill K B, Crawford J E, Magallanes J M, et al. Development of simplified tools to predict blastresponse of steel beam-column connections[J]. In: Proceeding of2008Structural EngineeringInstitute Congress, Long Beach, California, USA,2008.
    [68] Lauren K. Stewart. Testing and Analysis of Structural Steel Columns Subjected to Blast Loads[D].University of California, Sandiego,2010.
    [69] Shuichi Fujikura, Michel Bruneau. Experimental Investigation of Seismically Resistant Bridge Piersunder Blast Loading[J].Journal of Bridge Engineering,2011,16(1):63-71.
    [70] Eric B. Williamson, Oguzhan Bayrak, Carrie Davis. Performance of Bridge Columns Subjected toBlast Loads. I: Experimental Program[J].Journal of Bridge Engineering,2011,16(6):693-702.
    [71] Eric B. Williamson, Oguzhan Bayrak, Carrie Davis. Performance of Bridge Columns Subjected toBlast Loads. II: Results and Recommendations[J]. Journal of Bridge Engineering,2011,16(6):703-710.
    [72] George Daniel Williams. Analysis and Response Mechanisms of Blast-Loaded Reinforced ConcreteColumns[D]. The University of Texas at Austin,2009.
    [73] G. Daniel Williams, Eric B. Williamson. Response of Reinforced Concrete Bridge ColumnsSubjected to Blast Loads[J]. Journal of Structural Engineering,2011,137(9):903-913.
    [74]魏雪英,白国良.爆炸荷载下钢筋混凝土柱的动力响应及破坏形态分析[J].解放军理工大学学报,2007,8(5):525-529.
    [75]魏雪英.爆炸冲击荷载下混凝土和砖砌体材料及结构的响应研究[R].西安建筑科技大学博士后研究工作报告,2007.
    [76] Wei xue-ying, Mark G. Stewart. Model validation and parametric study on the blast response ofunreinforced brick masonry walls[J]. International Journal of Impact Engineering.2010,37:1150-1159.
    [77] Xue-ying Wei, Hong Hao. Numerical derivation of homogenized dynamic masonry materialproperties with strain rate effects[J]. International Journal of Impact Engineering.2009,36:522-536.
    [78] Wei xueying, Hao hong. Numerical derivation of strain rate effects on material properties of masonrywith solid clay bricks[J]. Transactions of Tianjin University,2006,12(s):147-151.
    [79]孙建运,李国强,陆勇.爆炸荷载作用下SRC柱等效单自由度模型[J].振动与冲击,2007,26(6):82-89.
    [80]孙建运.爆炸冲击荷载作用下钢骨混凝土柱性能研究[D].同济大学博士学位论文,2006.
    [81]师燕超,李忠献.爆炸荷载作用下钢筋混凝土柱的动力响应与破坏模式[J].建筑结构学报,2008,29(4):112-117.
    [82] Yanchao Shi, Hong Hao, Zhong-Xian Li. Numerical derivation of pressure-impulse diagrams forprediction of RC column damage to blast loads[J]. International Journal of Impact Engineering,2008,35(11):1213-1227.
    [83] Biggs J.M. Introduction to Structural Dynamics[M]. New York: McGraw-Hill,1964.
    [84] Pandey, A. K., et al. Non-linear response of reinforced concrete containment structure under blastloading[J]. Nuclear Engineering and Design,2006.236(9):993-1002.
    [85] Luccioni, B.M., R.D. Ambrosini, and R.F. Danesi, Analysis of building collapse under blast loads[J].Engineering Structures,2004.26(1):63-71.
    [86] Wu C Q, HAO H, LU Y. Dynamic response and damage analysis of masonry structures and masonryinfilled RC frames to blast ground motion[J]. Engineering Structures,2005(27)323-333.
    [87] Luccioni B. M., Ambrosini R. D., Danesi R. F. Analysis of building collapse under blast loads[J].Engineering Structures,2004,26(1):63-71.
    [88] Luccioni B. M., Luege M. Concrete pavement slab under blast loads[J]. International Journal ofImpact Engineering,2006,32(8):1248-66.
    [89] Baylot James T, Bullock Billy, Slawson Thomas R. Blast response of lightly attached concretemasonry unit walls [J]. Journal of Structural Engineering,2005,131(8):1186-1193.
    [90] Ruwan Jayasooriya, David P. Thambiratnam, Nimal J. Perera, et al. Blast and residual capacityanalysis of reinforced concrete framed buildings[J]. Engineering Structures,2011(33)3483-3495.
    [91]田力,李忠献.地下爆炸冲击波引起的基底滑移隔震建筑的动力响应[J].爆炸与冲击,2004,24(1):16-23.
    [92]阎石,王积慧,王丹,等.爆炸荷载作用下框架结构的连续倒塌机理分析[J].工程力学,2009,26(s1):119-123.
    [93]师燕超,李忠献,郝洪.爆炸荷载作用下钢筋混凝土框架结构的连续倒塌分析[J].解放军理工大学学报,2007,8(6):652-658
    [94]师燕超,李忠献.爆炸荷载作用下钢筋混凝土结构破坏倒塌分析研究进展[J].土木工程学报,2010,43(s):83-92.
    [95] Li Z X, Shi Y C. Methods for progressive collapse analysis of building structures under blast andimpact loads[J]. Transactions of Tianjin University,2008,14(5):329-339.
    [96]田宏伟.框架结构在地下爆炸冲击下的动力响应研究[D].长安大学硕士学位论文,2007.
    [97]扈鹏.框架结构在爆炸冲击荷载作用下的动力响应及连续倒塌分析研究[D].长安大学硕士学位论文,2008.
    [98]贾萍.钢筋混凝土框架砌体填充墙结构在爆炸冲击荷载作用下的动力响应研究[D].长安大学硕士学位论文,2008.
    [99]李巧燕.爆炸荷载作用下考虑损伤时的混凝土构件响应分析[D].长安大学硕士学位论文,2007.
    [100]蔡绍怀.我国钢管混凝土结构技术的最新进展[J].土木工程学报,1999(4):35-40.
    [101]钟善桐,徐国林.空心钢管混凝土轴心受压构件的工作性能和承载力[J].建筑钢结构进展,2006,8(4):1-11.
    [102]韩林海,游经团,杨有福,等.往复荷载作用下矩形钢管混凝土构件力学性能的研究[J].土木工程学报,2004(11):45-50.
    [103]韩林海,杨有福,霍静思.钢管混凝土柱火灾作用后剩余承载力的试验研究[J].工程力学,2001,18(6):100-109.
    [104] L. H. Han, Y. F. Yang. Influence of concrete compaction on the behavior of concrete filled steel tubeswith rectangular sections [J]. Advances in Structural Engineering,2001,4(2):93-100.
    [105] L. H. Han. Tests on stub columns of concrete-filled RHS sections [J]. Journal of Constructional SteelResearch,2002,58(3):353-372.
    [106] J. F. Wang, L. H. Han. Effects of high temperatures on the stiffness of concrete-filled steel tubularcolumn-to-steel beam connections[J]. Manchester, United kingdom,2007:571-579.
    [107]赵均海,顾强,马淑芳.基于双剪统一强度理论的轴心受压钢管混凝土承载力的研究[J].工程力学,2002,19(2):32-35.
    [108]王力尚,钱稼茹.钢管高强混凝土应力-应变全曲线试验研究[J].建筑结构,2004(1):60-65.
    [109]吕西林,余勇,陈以一, Tanak Kiyoshi, SasakiSatoshi.轴心受压方钢管混凝土短柱的性能研究:I试验[J].建筑结构,1999(10):25-30.
    [110]陈宝春,欧智菁.四肢钢管混凝土格构柱极限承载力试验研究[J].土木工程学报,2007(6):5-10.
    [111]张望喜,单建华.冲击荷载下钢管混凝土柱模型力学性能试验研究[J].振动与冲击,2006,25(5),96-101.
    [112] Priehard S.J., Perry S.H.. ImPact behaviors of sleeved concrete cylinders[J]. Structural Engineering.2000,78(17),23-27.
    [113]王蕊.钢管混凝土结构构件在侧向撞击下动力响应及其损伤破坏的研究[D].太原理工大学博士学位论文,2008.
    [114] M.R. Bambacha, H. Jama, X.L. Zhao, R.H. Grzebieta. Hollow and concrete filled steel hollowsections under transverse impact loads[J]. Engineering Structures,2008,30:2859-2870.
    [115]王蕊,李珠,任够平,等.侧向冲击载荷作用下钢管混凝土梁动力响应的试验和理论研究[J].工程力学,2008,25(6):75-80.
    [116]任够平,李珠,王蕊.低速侧向冲击下钢管混凝土柱挠度研究[J].工程力学,2008,25(5):170-175.
    [117]陈肇元,罗家谦,潘雪雯.钢管混凝土短柱作为防护结构构件的性能[R].清华大学抗震抗爆工程研究室主编.科学研究报告集第四集,钢筋混凝土结构构件在冲击荷载下的性能.北京:清华大学出版社,1986,45-52.
    [118]冯红波,赵均海,魏雪英,等.爆炸荷载作用下钢管混凝土柱的有限元分析[J].解放军理工大学学报(自然科学版),2007,8(6):680-684.
    [119] Shuichi Fujikura, Michel Bruneau, Diego Lopez-Garcia. Experimental Investigation ofMultihazard Resistant Bridge Piers Having Concrete-Filled Steel Tube under Blast Loading[J].Journal of Bridge Engineering,2008,13(6):586-594.
    [120]何斌.钢管混凝土结构构件康爆炸冲击荷载的特性研究[D].中北大学硕士学位论文,2012.
    [121]马云玲,谢冰,何大治,等.圆钢管混凝土爆炸响应的数值模拟[J].武汉理工大学学报,2010,32(14):120-126.
    [122]阎石,刘蕾,齐宝欣,等.爆炸荷载作用下方钢管混凝土柱的动力响应及破坏机理[J].防灾减灾工程学报,2011,31(5):477-482.
    [123]张守中.爆炸基本原理[M].北京:国防工业出版社,1988.
    [124]黄寅生.炸药理论[M].北京:兵器工业出版社,2009.
    [125]李翼祺,马素贞.爆炸力学[M].北京:科学出版社,1992.
    [126] Gilbert F K, Kenneth J G. Explosive Shocks in Air[M].2nd ed.Berlin: Springer2Verlag,1985.
    [127] Baker W A. Explosions in Air[M].Austin:University of Texas Press,1973.
    [128] Brode H L.Numerical Solution of Spherical Blast Waves[J]. J Appl Phys,1955,26(6):766-775.
    [129] LIN Dachao,BAI Chunhua,ZHANGQi,et al. Characterization Method of Explosion SeismicWave[J]. Journal of Beijing Institute of Technology,2000,9(3):249-254.
    [130]郭炜,俞统昌,金朋刚.三波点的测量与试验技术研究[J].火炸药学报,2007,30(4):55-61.
    [131]刘殿中,杨仕春.工程爆破实用手册[M].北京:冶金工业出版社,2004.
    [132]赵海鸥. LS-DYNA动力分析指南[M].上海:兵器工业出版社,2003
    [133]尚晓江,苏建宇,等.ANSYS/LS-DYNA动力分析方法与工程实例[M].北京:中国水利水电出版社,2005.
    [134]白金泽.LS-DYNA3D理论基础与实例分析[M].科学出版社,2005.
    [135] John0.hallquist.LS-DYNA THEORETICAL MANUAL. Livermore Software TechnologyCorporation,1998.
    [136] LS-DYNA. Keyword User's Manual. Livermore, California: Livermore Software TechnologyCoporation,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700