用户名: 密码: 验证码:
地震激励下在役RC框架结构力学行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为建筑结构中的一种基本结构体系,RC框架结构以其结构形式简单、平面布置灵活、传力路径明确等优点在我国乃至世界土木工程建设中扮演着重要角色。相对于其他新型结构体系而言,大量的RC框架建筑已步入中、老龄甚至超龄阶段,加之近年来我国及周边邻国的大区域地震活动预示中国大陆今后几年发生7级左右地震的可能性较大,对地震激励下在役RC框架结构多尺度损伤行为进行研究并给出最优抗震设防建议迫在眉睫。
     论文以多龄期RC框架结构为研究对象,采用理论分析与数值模拟相结合的研究手段,探究了一般大气环境下主要建筑材料力学性能劣化机理与时变规律,揭示了多尺度地震损伤演化规律,定量评价了结构抗地震倒塌能力,最终获取了抗震投入和震害损失间的最佳平衡。主要研究工作和研究结论有:
     (1)对RC结构随内嵌钢筋锈蚀而出现性能劣化的4个重要阶段进行了界定,基于现场实测数据拟合得到了保护层混凝土碳化残量的建议计算模型,并运用弹性力学理论推导出保护层混凝土开裂时钢筋锈蚀率计算公式,揭示了混凝土抗拉强度、保护层厚度、纵筋直径、铁锈泊松比及锈胀率等主要因素的锈蚀敏感度,提出了内嵌钢筋未锈阶段服役时间和保护层混凝土锈胀开裂时结构服役时间的建议计算公式,最终给出了适用于多龄期RC框架结构的钢筋、混凝土及钢筋与混凝土间粘结滑移时变本构模型,为后续数值分析研究提供了基础理论支持。
     (2)基于ABAQUS软件平台,从单元选取与组合、混凝土破坏准则、材料时变本构关系及模型可靠性验证等方面探讨了适用于在役RC框架结构构件尺度的数值建模理论,并根据建议的RC框架结构诸类构件损伤表征量选取规则,给出了两类构件的损伤评价指标,通过在未锈RC梁构件抗弯刚度计算公式里引入粘结力修正函数以完成对受拉钢筋位置处混凝土平均拉应变的调整,进而提出了锈蚀RC梁抗弯刚度建议计算公式,计算分析了截面尺寸、混凝土强度等级、混凝土保护层厚度及配筋率等设计参数的损伤敏感度,揭示了主要设计参数对构件损伤演化的影响规律,为建立地震激励下在役RC框架结构损伤模型提供理论支撑。
     (3)基于OpenSees软件平台,重点探讨了RC构件力学性能在纤维层面上的描述方法,建立了适用于在役RC框架结构结构尺度的非线性有限元数值建模理论,并给出了RC框架结构宏观尺度损伤评价指标,揭示了构件类型和主要设计参数对楼层损伤的影响规律,提出了往复荷载作用下在役RC框架结构楼层损伤模型,进一步考察了损伤楼层位置、损伤楼层数量、楼层损伤程度及结构服役龄期对整体结构地震损伤的影响,最终建立了适用于在役RC框架结构的地震损伤模型。
     (4)通过对地震动记录和地震动强度指标选取准则的优劣性进行评价,给出了用于RC框架结构弹塑性地震响应数值分析的地震动记录和地震动强度控制指标,并就借助IDA方法实现对结构抗地震倒塌易损性分析所涉及的关键科学问题提供了解决方案,揭示了楼层高度、结构高宽比、框架柱轴压比及楼板约束强度等主要因素对典型锈蚀率下RC框架结构抗地震倒塌能力的影响规律,最终完成了在役RC框架结构抗地震倒塌能力的定量化评价。
     (5)采用分部优化法并借助复形法优化思想获取RC框架结构在弹性阶段的优化方案,通过控制优化结构的最大层间位移角以实现弹塑性阶段优化设计,从而得到了指定设防烈度下RC框架结构最小抗震投入的优化设计,并基于简化公式计算建筑结构遭受诸级破坏的失效概率,与单体建筑震害损失量化结果形成了共力,最终获得了指定设防烈度下框架结构的损失期望,随即将抗震投入最少和震害损失期望最小作为抗灾结构优化设计的两大优化目标,取目标函数值达到最小时的设防烈度作为结构最优设防烈度,进而搜索得到最优设防烈度下抗震投入与震害损失间的最佳平衡。
Taking the advantages of simple structural style, flexible layout and explicitforce-transmission path into account, RC frame structures play an important role in thecivil engineering construction in China even all over the world. Compared with other newstructure systems, a large number of RC frame structures have been entered the phases ofmiddle age, old age and even over age. Besides, large-scale seismic activities in Chinaand neighboring countries in lately years indicate that earthquakes with high intensity willhappen to China mainland probably in the next few years. Thus, it is necessary to studythe multi-scale damage behaviors of existing RC frame structure subjected to seismicexcitation, and then propose some suggestions for optimal seismic protection.
     Theoretical analysis and numerical simulation are adopted to study the mechanicalbehaviour of existing RC frame structure. The degradation mechanisms and time-varyinglaws of main building material mechanical properties in common atmosphereenvironment are explored and damage evolution laws between closely scales arerevealed, then structure seismic collapse resistant capacity is evaluated quantitatively andthe best balance between seismic investment and earthquake damage loss are obtainedfinally. The main research works and conclusions are shown as follows:
     1. Four stages of RC structure performance degradation due to the reinforcementcorrosion are defined and the calculating model for covered concrete carbonated residuecontent is proposed by the regression of field test data, and the calculating formulas ofreinforcement corrosion rate when protective layer of concrete cracks is deduced bydawing the support of elasticity theory, then the corrosion sensitivities of concretetensile strength, concrete cover depth, reinforcement diameter, rust poisson ratio andrust corrosion expansion rate are revealed subsequently. The formulas for calculatingthe service time of structure with no corrosion and with covered concrete cracking areproposed, and the time-varying constitutive models for reinforcement, concrete and thebond-slip between reinforcement and concrete of multi-age RC frame structure areselected to provide basic theory support for subsequent numerical analysis.
     2. The numerical modeling theory for existing RC frame structure in componentscale with ABAQUS program is put forward, and the ralated research works contain selection and combination of units, concrete failure criteria, materials time-varyingconstitutive model, model reliability verification and so on. According to the suggestedrules for selecting damage characterization of RC components, the damage evaluationindexes for RC beam and column are proposed. By introducing the cohesive forcecorrection function into calculation formula of RC beam component bending stiffnesswithout corrosion to adjust the average tensile strain of concrete rounded tensile steel bar,the formula for calculating corroded RC beam bending stiffness is estabilished. Thedamage sensitivity analyses for main factors which contain section dimension, concretestrength grade, concrete cover depth and reinforcement ratio are conducted, and then theinfluence laws of main design parameters on component damage evolution are revealed,which will provide theoretical support for establishing damage model of existing RCframe structure subjected to seismic excitation.
     3. The numerical modeling theory for existing RC frame structure in structure scalewith OpenSees program is established by studying the characterization of RCcomponent mechanical properties in the fiber level. Damage evaluation index for RCframe structure in macroscale is given out and the influence laws of main designparameters on storey damage evolution are revealed, then the storey damage model ofexisting RC frame structure subjected to cyclic loads is proposed. According to theabove achievements, the influences of damaged storey location, damaged storeyquantity, storey damage degree and structural service age on structural seismic damageare investigated, and then the seismic damage model for existing RC frame structure isestablished ultimately.
     4. By judging the advantages and disadvantages of existing rules, ground motionrecords and ground motion intensity index which are more suitable for the numericalanalysis of RC frame structure elastoplastic seismic response are provided and therelated problems involved in vulnerability analysis of seismic collapse resistant forstructure by means of IDA are solved in this paper. The influences of main factors suchas storey height, structure aspect ratio, column axial compression ratio and floorconstraint on seismic collapse resistant capacity of RC frame structure with typicalreinforcement corrosion ratio are revealed, and then the existing RC frame structureseismic collapse resistant capacity is evaluated quantitatively.
     5. Drawing support from the optimization thought of the Complex Method,optimization scheme of RC frame structure in the elastic stage is obtained with themethod of divisional optimization and the optimization design for elastic-plastic phase isrealized by limiting maximum interlayer displacement angle, and then the optimizationdesign for minimum seismic investment of RC frame structure under specifiedfortification intensity is achieved. Combined the calculating results of failure probability of structure in different damage degree with quantitative results of single buildingearthquake damage loss, the loss expectation of frame structure with specifiedfortification intensity is obtained finally. Taking the minimum of seismic investment andearthquake damage loss expectation as optimization targets, the fortification intensitycorresponding with minimum objective function value is considered as the optimal one,and then a perfect balance between seismic investment and earthquake damage lossunder optimal fortification intensity is sought finally.
引文
[1.1]高建国,姚清林,强祖基,等.印尼苏门答腊三次大地震与中国珠江洪水关系的研究[J].地球物理学进展,2007,22(4):1392-1399.
    [1.2]汶川地震建筑震害调查与灾后重建分析报告[R].北京:中国建筑工业出版社,2008.
    [1.3]杜修力,韩强,李忠献,等.512汶川地震中山区公路桥梁震害及启示[J].北京工业大学学报,2008,34(12):1270-1279.
    [1.4]林鹏,王仁坤,李庆斌.汶川8.0级地震对典型高坝结构安全的影响分析[J].岩石力学与工程学报,2009,28(6):1261-1269.
    [1.5] Okada Norio, Tao Ye, Yoshio Kajitani, Peijun Shi and Hirokazu Tatano. The2011easternJapan great earthquake disaster: overview and comments [J]. International Journal ofDisaster Risk Science,2011,2(1):34-42.
    [1.6]中国地震局.网址: http://www.cea.gov.cn/manage/html/8a8587881632fa5c0116674a018300cf/zqgz/index.html,2013.
    [1.7] TJ11-78,工业与民用建筑抗震设计规范[S].北京:中国建筑工业出版社,1979.
    [1.8] GBJ11-89,建筑抗震设计规范[S].北京:中国建筑工业出版社,1989.
    [1.9] GB50011-2001,建筑抗震设计规范[S].北京:中国建筑工业出版社,2001.
    [1.10] GB50011-2010,建筑抗震设计规范[S].北京:中国建筑工业出版社,2010.
    [1.11]清华大学、西南交通大学、北京交通大学土木工程结构专家组.汶川地震建筑震害分析[J].建筑结构学报,2008,29(4):1-9.
    [1.12]施炜,叶列平,陆新征.不同抗震设防RC框架结构抗倒塌能力的研究[J].工程力学,2011,28(3):41-48.
    [1.13]陈肇元.跋——汶川地震教训与震后建筑物重建、加固策略[C].汶川地震——建筑震害调查与灾后重建分析报告.北京:中国建筑工业出版社,2008.
    [1.14] S. S. Zheng, L. Zeng. Seismic Damage Model for Steel Reinforced High Strength and HighPerformance Concrete Frame Joints [J]. Fracture and Damage Mechanics,2007, Vols(348-349):837-840.
    [1.15]陶清林.地震激励下SRC框架-RC核心筒混合结构损伤模型研究[D].西安:西安建筑科技大学,2011.
    [1.16]袁迎曙,贾福萍,蔡跃.锈蚀钢筋混凝土梁的结构性能退化模型[J].土木工程学报,2001,34(3):47-52.
    [1.17] LUNDGEN K.. Modeling the effect of corrosion on bond in reinforced concrete [J].Magazine of Concrete Research,2002,54(3):165-173.
    [1.18]胡秉偃,邢锋,赵羽习,等.锈蚀钢筋与混凝土的环向粘结试验研究[J].工业建筑,2011,41(5):34-38.
    [1.19]徐善华,牛荻涛.锈蚀钢筋混凝土简支梁斜截面抗剪性能研究[J].建筑结构学报,2004,25(5):98-104.
    [1.20]金伟良,夏晋,蒋遨宇.锈蚀钢筋混凝土梁受弯承载力计算模型[J].土木工程学报,2009,42(11):64-70.
    [1.21]倪国荣,朱伟华,宋志刚,等..钢筋坑蚀对混凝土梁抗弯性能的影响[J].建筑结构,2008,38(7):78-81.
    [1.22] H. A. Razak and F. C. Choi. The effect of corrosion on the natural frequency and modaldamping of reinforced concrete beams[J]. Engineering Structures,2001,23(9):1126-1133.
    [1.23]陈晓晨,刘西拉.锈蚀钢筋混凝土柱承载力的计算模型[J].上海交通大学学报,2008,42(6):985-988.
    [1.24] El Maaddawy T., Soudki K.. Long-term performance of corrosion damaged reinforcedconcrete beams [J]. ACI Structural Journal,2005,102(5):649-656.
    [1.25]易伟建,雷国强.锈蚀钢筋混凝土偏心受压柱承载力试验研究[J].湖南大学学报(自然科学版),2008,35(3):6-10.
    [1.26]贡金鑫,李金波,赵国藩.受腐蚀钢筋混凝土构件的恢复力模型[J].土木工程学报,2005,38(11):38-44.
    [1.27]程玲,贡金鑫,李颖.基于Pushover方法分析的受腐蚀钢筋混凝土柱抗震性能评价[J].振动与冲击,2012,31(10):19-23.
    [1.28] Kamyab Zandi Hanjari. Structural Behavior of Deteriorated Concrete Structures [D].Chalmers University of Technology,2010.
    [1.29]尤杰.既有钢筋混凝土结构性能的数值模拟[D].大连:大连理工大学,2010.
    [1.30] H. Yalciner, S. Sensoy, and O. Eren. Time-dependent seismic performance assessment of asingle-degree-of-freedom frame subject to corrosion [J]. Engineering Failure Analysis,19(2012):109-122.
    [1.31] F. J. Vecchio and M. P. Collins. The modified compression-field theory for reinforcedconcrete elements subjected to shear [J]. ACI JOURNAL,1986,83:219-231.
    [1.32] J. Cairns, G. A. Plizzari. Mechanical Properties of Corrosion-Damaged Reinforcement [J].ACI MATERIALS JOURNAL,102(2005):256-264.
    [1.33] Han-Seung Lee. Evaluation of the bond properties between concrete and reinforcement as afunction of the degree of reinforcement corrosion [J]. Cement and Concrete Research,32(2002):1312-1318.
    [1.34] Schlune, H.. Bond of corroded reinforcement: Analytical description of the bond-slipresponse [D]. Chalmers University of Technology,2006.
    [1.35] J. Meloa, C. Fernandes. Numerical modelling of the cyclic behaviour of RC elements builtwith plain reinforcing bars [J]. Engineering Structures,33(2011):272-286.
    [1.36]曾华.多龄期钢筋混凝土构件力学性能的研究[D].哈尔滨:哈尔滨工业大学,2008.
    [1.37]赵羽习,金伟良.混凝土锈胀时刻钢筋锈蚀率的数值分析方法[J].浙江大学学报(工学版),2008,42(6):1080-1084.
    [1.38]孙彬,牛荻涛,王庆霖.锈蚀钢筋混凝土梁抗弯承载力计算方法[J].土木工程学报,2008,41(11):1-6.
    [1.39]牛荻涛,陈新孝.锈蚀钢筋混凝土压弯构件抗震性能试验研究[J].建筑结构,2004,34(10):36-45.
    [1.40]冯柳.锈蚀钢筋混凝土偏压柱承载力计算方法的研究[D].湖北:华中科技大学,2008.
    [1.41]杨满.在役多龄期钢筋混凝土柱抗震性能研究[D].哈尔滨:哈尔滨工业大学,2010.
    [1.42]李笑然,王元丰.含水率和腐蚀因素对钢筋混凝土柱抗震性能的影响[J].北京交通大学学报,2011,35(1):28-33.
    [1.43]马广强.强腐蚀与疲劳耦合作用下钢筋混凝土桥梁数值模拟方法研究[D].天津:天津大学,2010.
    [1.44] T. Shimomura, S. Saito. Modelling and nonlinear FE analysis of deteriorated existingconcrete structures based on inspection [J]. Modelling of corroding concrete structures,5(2011):259-272.
    [1.45] D. Coronelli and P. Gambarova. Structural Assessment of Corroded Reinforced ConcreteBeams: Modeling Guidelines [J]. Journal of Structural Engineering,130(2004):1214-1224.
    [1.46] Richard B., Ragueneau F. Isotropic damage continuum mechanics for concrete under cyclicloading: Stiffness recovery, inelastic strains and frictional sliding [J]. Engineering FractureMechanics,2010,77(8):1202-1223.
    [1.47] J. Ghosh, J. E. Padgett. Aging Considerations in the Development of Time-DependentSeismic Fragility Curves [J]. Journal of Structural Engineering,136(2010):1497-1511.
    [1.48] Sozen M A. Review of earthquake response of reinforced concrete buildings with a view todrift control [C]. State of the Art in Earthquake Engineering,7th World Conference onEarthquake Engineering,1981, Istanbul.
    [1.49] Ghobarah A. Abou-elfath H and Ashraf Biddah. Response-Based Damage Assessment ofStructures [J]. Earthquake Engineering&Structural Dynamics,28(1999):79-104.
    [1.50] Magdy S. L. Roufaiel, Christian Meyer. Analytical Modeling of Hysteretic Behavior of R/CFrames [J]. Journal of Structural Division, ASCE,113(1987):429-444.
    [1.51] Powell GH, Allahabadi R. Seismic damage prediction by deterministic method: concept andprocedures [J]. Earthquake Engineering and Structural Dynamics,16(1988):719-734.
    [1.52]刘伯权,白绍良,刘鸣.抗震结构的等效延性破坏准则及其子结构试验验证[J].地震工程与工程振动,1997,17(3):77-83.
    [1.53] Young-Ji Park, Alfredo H.-S.Ang. Mechanistic seismic damage model for reinforcedconcrete [J]. Journal of Structural Engineering,1985,111(4):722-739.
    [1.54]牛荻涛,任利杰.改进的钢筋混凝土结构双参数地震破坏模型[J].地震工程与工程振动,1996,16(4):44-53.
    [1.55]王东升,冯启民,王国新.考虑低周疲劳寿命的改进Park-Ang地震损伤模型[J].土木工程学报,2004,11(37):41-49.
    [1.56] H.Ug ur K&o&ylu&&og lu, Soren R K Nielsen, Jamison Abbott, et al. Local and modal damageindicators for RC frames subject to earthquake [J]. Journal of Engineering Mechanics, ASCE,1998,124(12):1371-1379.
    [1.57]张雷明,刘西拉.框架结构倒塌分析中的几个问题[J].上海交通大学学报,2001,35(10):1578-1582.
    [1.58] Quantification of Building Seismic Performance Factors (FEMA P-695)[S]. Applied TechnologyCouncil for the Federal Emergency Management Agency, Washington, D.C.,2009.
    [1.59] Draft prEN1991-1-7Euro code1-Actions on structures. Part1.7: General Actions-Accidental actions [S]. European Committee for Standardization,2005.
    [1.60]日本钢结构协会,美国高层建筑和城市住宅理事会.高冗余度钢结构倒塌控制设计指南[M].上海:同济大学出版社,2007.
    [1.61]师燕超,李忠献,郝洪.爆炸荷载作用下钢筋混凝土框架结构的连续倒塌分析[J].解放军理工大学学报:自然科学版,2007,8(6):652-658.
    [1.62]江晓峰,陈以一.建筑结构连续性倒塌及其控制设计的研究现状[J].土木工程学报,2008,41(6):1-8.
    [1.63]叶列平,陆新征,赵世春.框架结构抗地震倒塌能力的研究—汶川地震极震区几个框架结构震害案例分析[J].建筑结构学报,2009,30(6):67-76.
    [1.64]梁益,陆新征,李易.楼板对结构抗连续倒塌能力的影响[J].四川建筑科学研究,2010,36(2):5-10.
    [1.65] Nakamura, T.. Gravity Load Collapse of Reinforced Concrete Columns with Brittle FailureModes [J]. Journal of Asian Architecture and Building Engineering,2002,1(1):21-27.
    [1.66] Sezen, H..Evaluation and testing of existing reinforced concrete building columns [R].CE299Report,2002, University of California, Berkeley.
    [1.67] Sezen, H..Seismic tests of concrete columns with light transverses reinforcement [J].ACIstructural journal,2006,103(6):842-949.
    [1.68] Elwood, K. J..Shake table tests and analytical studies on the gravity load collapse of RCframe [D]. PhD dissertation,2002, University of California, Berkeley.
    [1.69] D.G. Lignos, H. Krawinkler and A.S. Whittaker. Shaking table collapse tests of two scalemodels of a4-storey moment resisting steel frame [C]. The14th World Conference onEarthquake Engineering, October12-17,2008, Beijing, China.
    [1.70]易伟建,何庆锋,肖岩.钢筋混凝土框架结构抗倒塌性能的试验研究[J].建筑结构学报,2007,28(5):104-109.
    [1.71]何庆锋,易伟建.考虑悬索作用钢筋混凝土梁柱子结构抗倒塌性能试验研究[J].土木工程学报,2011,44(4):52-59.
    [1.72] Kanvide, A. M..Methods to evaluate the dynamic stability of structure-shake table tests andnonlinear dynamic analysis [C]. EERI Paper Competition2003Winner, Proceedings ofEERI Meeting, Portland, FEB.,2003.
    [1.73] Mehanny, S. S. F. and Deierlein, G. G.. Modeling of Assessment of Seismic Performance ofComposite Frames with Reinforced Concrete Columns and Steel Beams [R]. John A. BlumeEarthquake Engineering Research Center Report NO.135, Department of Civil Engineering,Stanford University.
    [1.74] Lee, K. and Foutch, D. A..Performance Evaluation of New Steel Frame Buildings forSeismic Loads [J]. Earthquake Engineering and Structural Dynamics,2001,31:652-670.
    [1.75] Williamson, E.B..Evaluation of Damage and P-Delta Effects for Systems under EarthquakeExcitation [J]. Journal of Structural Engineering, ASCE,2003,129(8):1036-1046.
    [1.76] Miranda, E. and Sinan, D.A..Dynamic Instability of Simple Structural Systems [J]. Journalof Structural Engineering, ASCE,2003,129(12):1150-1159.
    [1.77]叶列平,马千里,缪志伟.结构抗震分析用地震动强度指标的研究[J].地震工程与工程振动,2009,29(4):9-22.
    [1.78]张富文,吕西林.框架结构不同倒塌模式的数值模拟与分析[J].建筑结构学报,2009,30(5):119-125.
    [1.79]胡晓斌,钱稼茹.结构连续倒塌分析与设计方法综述[J].建筑结构,2006,36(Sup.):79-83.
    [1.80] Hwang H.H.M. and Low Y.K. Seismic reliability analysis of plane frame structures [J].Probabilistic Engineering Mechanics,1989;4(2):74-84.
    [1.81] Gardoni P., Der Kiureghian A., and Mosalam K.M. Probabilistic capacity models andfragility estimates for reinforced concrete columns based on experimental observations [J].Journal of Engineering Mechanics, ASCE2002;128(10):1024-1038.
    [1.82] Faccioli E, Pessina V, CalviG M. A Study on damage scenarios for residential buildings inCatania City [J]. Journal of Seismology,1999,3(3):327-343.
    [1.83] Nasserasadi K, Ghafory-Ashtiany M, Eshghi S. Developing seismic fragility functions ofstructures by stochastic approach [J]. Asian Journal of engineering(building and housing),2009,10(2):182-200.
    [1.84]温增平,高孟潭,赵凤新,等.统一考虑地震环境和局部场地影响的建筑物易损性研究[J].地震学报,2006,28(3):277-283.
    [1.85]常泽民.钢筋混凝土结构非线性抗震可靠度及地震易损性分析[D].哈尔滨:哈尔滨工业大学,2006.
    [1.86] Kappos A J, Stylianidis K C, Pitilakis, K. Development of seismic risk scenarios based on ahybrid method of vulnerability assessment [J]. Natural Hazards,1998,17(2):177-192.
    [1.87] Tekie P.B., and Ellingwood B.R. Seismic fragility assessment of concrete gravity dams.Earthquake Engineering and Structural Dynamics [J],32(2003):2221-2240.
    [1.88]王光远,程耿东,邵卓民,等.抗震结构的最优设防烈度与可靠度[M].北京:科学出版社,1999.
    [1.89] Hirotaka Nakayama. Multi-objective optimization and its engineering applications [C]. Proc.of3rd China-Japan-Korea Joint Symposium on Optimization of Structural and MechanicalSystems, Kanazawa, Japan, Kanazawa University Press,2004(10):12-25.
    [1.90]张炳华.土建结构优化设计(第2版)[M].上海:同济大学出版社,1998.
    [1.91] Charles V. Camp, Shahram Pezeshk and H kan Hansson. Flexural design of reinforced concreteframes using a genetic algorithm [J]. Journal of Structure Engineering,2003,129(1):105-115.
    [1.92]王光远.工程结构与系统抗震优化设计的实用方法[M].北京:中国建筑工业出版社,1999.
    [1.93]王光远,顾平,吕大刚.基于规范和最优设防烈度的抗地震结构优化设计[J].土木工程学报,1999,32(2):41-46.
    [1.94]蔡新,李洪煊,武颖利,等.工程结构优化设计研究进展[J].河海大学学报(自然科学版),2011,39(3):269-276.
    [1.95] Xie Y. M., Yang X. Y., Liang Q. Q. Topology optimization of structures under dynamicresponse constraints [J]. Journal of sound and Vibration,2000,234(2):177-189.
    [1.96]荣见华.结构动力修改及优化设计[M].北京:人民交通出版社,2002.
    [1.97] Chun-Man Chan. Advances in Structural Optimization of Tall Buildings in Hong Kong [C].Proc. of3rd China-Japan-Korea Joint Symposium on Optimization of Structural andMechanical Systems, Japan, Kanazawa University Press,2004(10):49-57.
    [1.98] Liu M, Wen Y K, Burns SA. Life cycle cost oriented seismic design optimization of steelmoment frame structures with risk-taking preference [J]. Engineering Structures,2004,26(10):1407-1421.
    [1.99] Camal C. Sarma and Hojjat Adeli. Comparitive Study of Optimum Design of Steel Tall RiseBuilding Structures Using Allowable Stress Design and Load and Resistance Factor designCodes [J]. Practice Periodical on Structural Design and Construction,2005,10(1):12-17.
    [1.100]冯蔚,李卫平,赵荣国.2010年全球地震活动性和地震灾害概要[J].国际地震动态,2011,394(10):29-33.
    [1.101]叶列平,曲哲,陆新征.提高建筑结构抗地震倒塌能力的设计思想与方法[J].建筑结构学报,2008,29(4):42-50.
    [1.102]王学民.锈蚀钢筋混凝土构件抗震性能试验与恢复力模型研究[D].西安:西安建筑科技大学,2003.
    [1.103]黄庆华.地震作用下钢筋混凝土框架结构空间倒塌反应分析[D].上海:同济大学,2006.
    [1.104]林迟,侯爽,欧进萍.汶川地震中都江堰市多龄期建筑震害特征[J].大连理工大学学报,2009,49(5):748-753.
    [1.105]中华人民共和国主席令.中华人民共和国防震减灾法(修订稿)[Z].北京:人民出版社,2009.
    [2.1]徐亦冬,钱春香,孙家瑛.化学-力学耦合作用下混凝土内钢筋蚀坑的演化及分布规律[J].东南大学学报(自然科学版),2012,42(3):492-497.
    [2.2]阿列克谢耶夫著,黄可信、吴兴祖等译.钢筋混凝土结构中钢筋腐蚀与保护[M].北京:中国建筑工业出版社,1983.
    [2.3]岸谷孝一.铁筋コソクリートの耐久性[M].鹿島建設技術研究所出版部,1963.
    [2.4]张誉.混凝土结构耐久性概论[M].上海:上海科学技术出版社,2003.
    [2.5]牛荻涛.混凝土结构耐久性与寿命预测[M].北京:科学出版社,2003.
    [2.6] Fumiaki Matsushita, Yoshimichi Anon, Sumio Shibata. Carbonation degree of autoclavedaerated concrete [J]. Cement and Concrete Research,30(2000):1741-1745.
    [2.7]岸谷孝一.コンクリ-ト中の铁筋の腐食に关する研究[C].日本建筑学会论文报告集,283(1979):11-15.
    [2.8]徐善华.混凝土结构退化模型与耐久性评估[D].西安:西安建筑科技大学,2003.
    [2.9]董振平,牛荻涛,刘西芳,等.一般大气环境下钢筋开始锈蚀时间的计算方法[J].西安建筑科技大学学报(自然科学版),2006,38(2):204-209.
    [2.10]西安建筑科技大学检测鉴定组.攀钢集团攀枝花钢钒有限公司炼钢厂原料跨厂房结构可靠性检测鉴定与试验/化验报告[R],攀枝花内部管理资料,2012.
    [2.11] Vidal T., Castel A.. Analyzing crack width to predict corrosion in reinforced concrete [J].Cement and Concrete Research,2004,34(1):165-174.
    [2.12]徐芝纶.弹性力学简明教程(第三版)[M].北京:高等教育出版社,2002.
    [2.13]金伟良,赵羽习.混凝土结构耐久性[M].北京:科学出版社,2002.
    [2.14] Molina F. J., Alonso C., Andrade C.. Cover cracking as a function of bar corrosion: part2-Numberical model [J]. Materials and Structures,1993,26(163):535-548.
    [2.15]韩继云,蔡鲁生.钢筋混凝土构件中钢筋锈蚀实验研究[R].北京:中国建筑科学研究院,1991.
    [2.16]赵羽习,金伟良.混凝土锈胀时刻钢筋锈蚀率的数值分析方法[J].浙江大学学报(工学版),2008,42(6):1080-1084.
    [2.17] J. Rodriguez, et al. Corrosion of reinforcement and service life of concrete structures [M].Durability of Building Materials and Components, London,1996.
    [2.18]惠云玲.混凝土结构中钢筋锈蚀程度和预测试验研究[J].工业建筑,1997,27(6):6-9.
    [2.19]和泉意登志,押田文雄.经年建筑物にぉけゐコンクリ-トの中性化と铁筋の腐蚀[R].日本建筑学会构造系论文报告集,1989.
    [2.20]张平生,卢梅,等.锈损钢筋的力学性能[J].工业建筑,1995,25(9):41-44.
    [2.21]惠云玲,林志伸,李荣.锈蚀钢筋性能试验研究分析[J].工业建筑,1997,27(6):6-13.
    [2.22]张伟平,商登峰,顾祥林.锈蚀钢筋应力-应变关系研究[J].同济大学学报(自然科学版),2006,34(5):586-592.
    [2.23] Almusallam A A. Effect of corrosion on the properties of reinforceing steel bars [J].Construction and Building Materials,5(2001):361-368.
    [2.24]蒋凤昌,朱慈勉,薛剑胜,等.锈蚀钢筋压屈名义本构关系的试验研究及应用[J].东南大学学报(自然科学版),2010,40(4):816-821.
    [2.25] Sung jin B, Alexa M M, O guzhan B. Inelastic buckling of reinforcing bars [J]. Journal ofStructural Engineering,2005,131(2):314-321.
    [2.26]唐贵和,黄金林.锈蚀钢筋混凝土梁受力性能研究[J].建筑科学,2012,28(5):15-19.
    [2.27] GB50017-2003,钢结构设计规范[S].北京:中国建筑工业出版社,2003.
    [2.28]梁兴文,叶艳霞.混凝土结构非线性分析[M].北京:中国建筑工业出版社,2007.
    [2.29]俞茂宏.强度理论新体系[M].西安:西安交通大学出版社,1992.
    [2.30]过镇海,王传志.多轴应力下混凝土的强度和破坏准则研究[J].土木工程学报,1991,24(3):1-14.
    [2.31] N. S. Ottosen. A Failure Criterion for Concrete [J]. ASCE,1977,103(EM4):527-536.
    [2.32]过镇海.混凝土的强度和本构关系-原理与应用[M].北京:中国建筑工业出版社,2004.
    [2.33]中国建筑学会抗震防灾分会建筑结构抗倒塌专业委员会.网址: http://www.collapse-prevention.net,2011.
    [2.34]潘振华,牛荻涛,等.锈蚀率与极限粘结强度关系的试验研究[J].工业建筑,2000,(5):10-12.
    [2.35]王于晨.国内外钢筋混凝土组合梁桥研究概况[J].公路交通科技,1992,9(3):64-70.
    [2.36]高文生.考虑钢筋粘结滑移影响的钢筋混凝土框架地震反应分析[D].重庆:重庆大学,2008.
    [2.37] Saeed M. Mirza and Jules Houdle. Study of Bond Stress-Slip Relationships in ReinforcedConcrete [J]. ACI Journal Proceedings,1979,76(1):19-46.
    [2.38]宋玉普,赵国藩.钢筋与混凝土间的粘结滑移性能研究[J].大连工学院学报,1987,26(2):92-99.
    [2.39] Teng Zhiming, et al. Local bong stress-slip relationship for cyclic reversal loading [J]. Journalof Tsinghua University,1998.
    [2.40]赵羽习,金伟良.锈蚀钢筋与混凝土粘结性能的试验研究[J].浙江大学学报(工学版),2002(7):352-356.
    [3.1]陆新征,叶列平,缪志伟.建筑抗震弹塑性分析—原理、模型与在ABAQUS,MSC.MARC和SAP2000上的实践[M].北京:中国建筑工业出版社,2010.
    [3.2]王金昌,陈页开. ABAQUS在土木工程中的应用[M].浙江:浙江大学出版社,2006.
    [3.3]傅传国,等. ABAQUS结构工程分析及实例详解[M].北京:中国建筑工业出版社,2010.
    [3.4]王艳.基于ABAOUS的混凝土重力坝地震响应仿真分析[D].杨凌:西北农林科技大学,2010.
    [3.5]杨满.在役多龄期钢筋混凝土柱抗震性能研究[D].哈尔滨:哈尔滨工业大学,2010.
    [3.6] Lamya Amleh, Alaka Ghosh. Modeling the effect of corrosion on bond strength at thesteel-concrete interface with finite-element analysis [J]. Journal of Civil Engineering,2006,33(6):672-687.
    [3.7]梁兴文,叶艳霞.混凝土结构非线性分析[M].北京:中国建筑工业出版社,2007.
    [3.8]胡义,郑山锁,李志强,等.适用于轻度锈蚀RC构件的数值建模理论[J].工业建筑,2013.(录用)
    [3.9] GB50010-2010,混凝土结构设计规范[S].北京:中国建筑工业出版社,2011.
    [3.10]丁大钧.钢筋混凝土构件抗裂度、裂缝和刚度[M].南京:南京工学院出版社,1986.
    [3.11]惠云玲,林志伸,等.混凝土受弯构件腐蚀前后构件性能试验研究报告[R].冶金工业部建筑研究总院国家工业建筑诊断与改造工程技术研究中心,1995.
    [3.12]郭子雄,杨勇.恢复力模型研究现状及存在问题[J].世界地震工程,2004,20(4):47-51.
    [3.13]张国军,吕西林,刘伯权.高强混凝土框架柱的恢复力模型研究[J].工程力学,2007,24(3):82-90.
    [3.14]陶清林.地震激励下SRC框架-RC核心筒混合结构损伤模型研究[D].西安:西安建筑科技大学,2011.
    [3.15]陈新孝,牛荻涛,王学民.锈蚀钢筋混凝土压弯构件的恢复力模型[J].西安建筑科技大学学报(自然科学版),2005,37(2):155-159.
    [3.16]胡义,郑山锁,李志强,等. SRC柱诸主要设计参数的损伤敏感度分析[J],建筑结构,2012.(录用)
    [4.1]汶川地震建筑震害调查与灾后重建分析报告[R].北京:中国建筑工业出版社,2008.
    [4.2] Wang M L, Shah S P. Reinforced concrete hysteresis model based on the damage concept [J].Earthquake Engineering and Structural Dynamics,1987,15(8):992-1003.
    [4.3] Silvia Mazzoni, Frank McKenna, et al. OpenSees users manual [R]. PEER, UniversityofCalifornia, Berkeley,2004.
    [4.4] SCOTT M H, FENVES G L. Plastic Hinge Integration Methods for Force-BasedBeam-Column Elements [J]. Journal of Structural Engineering,2006,132(2):244-252.
    [4.5] E. Spacone, F.C. Filippou, et al. Fiber Beam-column Model for Non-linear Analysis of RCFrames [J]: Earthquake Engineering and Structural Dynamics,1996,25(7):711-725.
    [4.6] Lowes, L. and Altoontash, A. Modeling Reinforced Concrete Beam-column Joints Subjectedto Cyclic Loading [J]. ASCE, Journal of Structural Engineering,2003,129(12):1686-1697.
    [4.7] Ciampi V., Eligehausen R., et al. Analytical Model for Concrete Anchorages of ReinforcingBars under Generalized Excitations [R]. Report No. UCB/EERC82-83, University ofCalifornia, Berkeley,1982.
    [4.8] SCOTT M H, FENVES G L, et al. Software Patterns for Nonlinear Beam-Column Models [J].Journal of Structural Engineering,2008,134(4):562-571.
    [4.9]张传超.型钢混凝土组合结构的精细化建模理论及方法研究[D].西安:西安建筑科技大学,2011.
    [4.10]牛荻涛,陈新孝,王学民.锈蚀钢筋混凝土压弯构件抗震性能试验研究[J].建筑结构,2004,34(10):36-45.
    [4.11]高文生.考虑钢筋粘结滑移影响的钢筋混凝土框架地震反应分析[D].重庆:重庆大学,2008.
    [4.12] GB50010-2010,混凝土结构设计规范[S].北京:中国建筑工业出版社,2011.
    [4.13]胡义,郑山锁,李志强,等.基于OpenSees的轻度锈蚀RC框架结构建模理论[J].工业建筑,2013.(录用)
    [4.14] Ghobarah A, et al. Response-based damage assessment of structure [J]. EarthquakeEngineering Structural Dynamic,1999(28):79-104.
    [4.15]李磊.混合结构的数值建模理论及在地震工程中的应用[D].西安:西安建筑科技大学,2011.
    [4.16]王斌.型钢高强高性能混凝土构件及其框架结构的地震损伤研究[D].西安:西安建筑科技大学,2010.
    [4.17] Young-Ji Park, Alfredo H.-S.Ang. Mechanistic seismic damage model for reinforced concrete[J]. Journal of Structural Engineering,1985,111(4):722-739.
    [4.18] Young-Ji Park, Alfredo H.-S.Ang, Yi Kwen Wen,Seismic damage analysis of reinforcedconcrete buildings [J]. Journal of Structural Engineering,1985,111(4):740-757.
    [4.19]牛荻涛,任利杰.改进的钢筋混凝土结构双参数地震破坏模型[J].地震工程与工程振动,1996,16(4):44-53.
    [4.20]江近仁,孙景江.砖结构的地震破坏模型[J].地震工程与工程振动,1987,7(1):20-26.
    [4.21] GB50011-2011,建筑抗震设计规范[S].北京:中国建筑工业出版社,2010.
    [4.22] Wei-Xin Ren and Guido De Roeck. Structure damage identification using model data [J].ASCE,2002,128(1):87-103.
    [4.23] Quantification of Building Seismic Performance Factors (FEMA P-695)[S]. Applied TechnologyCouncil for the Federal Emergency Management Agency, Washington, D.C.,2009.
    [4.24]杜修力,欧进萍.建筑结构地震破坏评估模型[J].世界地震工程,1991,7(3):52-58.
    [4.25]王立明,顾祥林,等.钢筋混凝土结构的损伤累积模型[J].工程力学,1997(S):44-49.
    [4.26]张沛洲.多龄期钢筋混凝土结构抗震性能分析[D].大连:大连理工大学,2012.
    [4.27] Building code requirements for structural concrete (ACI318M-02) and commentary (ACI318RM-02)[S]. American Concrete Institute,2002.
    [4.28] Draft prEN1991Euro code1-Actions on structures. Part1.7: General Actions-Accidentalactions [S]. European Committee for Standardization,2005.
    [4.29]姚谦峰,苏三庆.地震工程[M].陕西:陕西科学技术出版社,2001.
    [4.30]刘哲锋.地震能量反应分析方法及其在高层混合结构抗震评估中的应用[D].湖南:湖南大学,2006.
    [4.31] PEER Strong Motion Database, Website: http://peer.berkeley.edu/smcat/
    [4.32] Paola Simioni. Seismic Response of Reinforced Concrete Structures Affected by ReinforcementCorrosion [D]. University of Braunschweig-Institute of Technology,2009, Italy.
    [4.33] Luis F. Ibarra and Helmut Krawinkler. Global collapse of frame structures under seismicexcitations [D]. Stanford university,2005.
    [5.1]叶列平,陆新征,赵世春.框架结构抗地震倒塌能力的研究—汶川地震极震区几个框架结构震害案例分析[J].建筑结构学报,2009,30(6):67-76.
    [5.2]张雷明,刘西拉.框架结构倒塌分析中的几个问题[J].上海交通大学学报,2001,35(10):1578-1582.
    [5.3]江晓峰,陈以一.建筑结构连续性倒塌及其控制设计的研究现状[J].土木工程学报,2008,41(06):1-8.
    [5.4]吕大刚,于晓辉,王光远.基于单地震动记录IDA方法的结构倒塌分析[J].地震工程与工程振动,2009,29(6):32-39.
    [5.5] GB50011-2010,建筑抗震设计规范[S].北京:中国建筑工业出版社,2010.
    [5.6] CECS160-2004.建筑工程抗震性态设计通则[S].北京:中国工程建设标准化协会,2004.
    [5.7]翟长海,谢礼立.抗震结构最不利设计地震动研究[J].土木工程学报,2005,38(12):51-58.
    [5.8]叶列平,马千里,缪志伟.结构抗震分析用地震动强度指标的研究[J].地震工程与工程振动,2009,29(4):9-22.
    [5.9]韩建平,周伟.基于汶川地震记录的地震动强度指标与SDOF体系响应的相关性[J].土木工程学报,2010,43(Sup.):10-15.
    [5.10]钟顺美.地震动强度指标与RC框架结构非线性响应的相关性分析[D].重庆:重庆大学,2010.
    [5.11]郝敏,谢礼立,徐龙军.关于地震烈度物理标准研究的若干思考[J].地震学报,2005,27(2):230-234.
    [5.12] Kramer S L. Geotechnical earthquake engineering [M]. U. S.: Prentice-Hall,1996.
    [5.13] Von Thun J. L., Rochim L. H., Scott G. A.. Earthquake ground motions for design andanalysis of dams [C]. New York: Geotechnical Special Publication,1988.
    [5.14] Quantification of Building Seismic Performance Factors (FEMA P-695)[S]. Applied TechnologyCouncil for the Federal Emergency Management Agency, Washington, D.C.,2009.
    [5.15] Dimitrios Vamvatsikos and C. Allin Cornell. Incremental dynamic analysis. EarthquakeEngineering and Structural Dynamics,2002,31:491-514.
    [5.16] GB/T24335-2009.建筑地震破坏等级划分标准[S].北京:中国建筑工业出版社,2009.
    [5.17] FEMA356. Prestandard and commentary for the seismic rehabilitation of builings [S].Washington D. C.,2000.
    [5.18]胡义,郑山锁,李志强,等.基于OpenSees的轻度锈蚀RC框架结构建模理论[J].工业建筑,2013.(录用)
    [5.19]陶清林.地震激励下SRC框架-RC核心筒混合结构损伤模型研究[D].西安:西安建筑科技大学,2011.
    [5.20] GB50010-2010,混凝土结构设计规范[S].北京:中国建筑工业出版社,2011.
    [5.21] ACI318M-05, Building Code Requirements for Structural Concrete and Commentary [S].America: American Concrete Institute,2005.
    [6.1]蔡新,郭兴文,张旭明.工程结构优化设计[M].北京:中国水利水电出版社,2003.
    [6.2]张炳华.土建结构优化设计[M].上海:同济大学出版社,1998.
    [6.3]陶清林,郑山锁,胡义,等.型钢混凝土柱多目标优化设计方法研究[J],工业建筑,2010,40(11):126-130.
    [6.4]王光远,程耿东,邵卓民,等.抗震结构的最优设防烈度与可靠度[M].北京:科学出版社,1999.
    [6.5]李国强.基于概率可靠度进行结构抗震设计的若干理论问题[J].建筑结构学报,2000,21(1):12-16.
    [6.6] GB50011-2010,建筑抗震设计规范[S].北京:中国建筑工业出版社,2010.
    [6.7]吴波,李艺华. RC框架结构薄弱层的层间位移可靠度水平考察[J].地震工程与工程振动,2003,23(6):102-108.
    [6.8]柳炳康,沈小璞.工程结构抗震设计[M].武汉:武汉理工大学出版社,2005.
    [6.9]张铮,杨文平. MATLAB程序设计与实例应用[M].中国铁道出版社,2003.
    [6.10] GB/T24335-2009.建筑地震破坏等级划分标准[S].北京:中国建筑工业出版社,2009.
    [6.11]金星.重大工程场地设计地震动与地震动场的研究[D].哈尔滨:国家地震局工程力学研究所,1992.
    [6.12]陶清林.型钢高强混凝土框架结构多尺度力学性能研究[D].西安:西安建筑科技大学,2013.
    [6.13]中国地震局.地震现场工作大纲和技术指南[M].北京:地震出版社,1998.
    [6.14]谢礼立,马玉宏,翟长海.基于性能的抗震设防与设计地震动[M].北京:科学出版社,2009.
    [6.15]尹之潜.地震灾害及损失预测方法[M].北京:地震出版社,1996.
    [6.16]王光远.抗灾结构的最优设防荷载与最优可靠度[J].土木工程学报,1997,30(6):12-19.
    [6.17]吕大刚,于晓辉,宋鹏彦,等.抗震结构最优设防水平决策与全寿命优化设计的简化易损性分析方法[J].地震工程与工程振动,2009,29(4):22-32.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700