用户名: 密码: 验证码:
土石坝地震应变分析与坝料动力参数反演
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土石坝是当今坝工建设中使用最多的一种坝型。我国已建和在建的高土石坝大多位于地震高烈度区。随着西部大开发战略的实施和西电东送工程的推进,在我国西南和西北还将兴建一批高土石坝。但这些高土石坝所在的西南和西北地区的坝址区域地震强度高、活动频繁,地震设防动参数高,一旦因地震而失事,将造成灾难性的后果。
     目前土石坝的抗震研究还落后于工程实践。其抗震分析基本上还停留在20世纪70年代提出的等价线性化方法上,这种方法在非线性程度不高的情况下,对地震加速度和剪应力的预测能取得较好的效果。目前,由于实际遭受过地震作用的现代碾压土石坝很少,缺乏强震区高土石坝的地震反应记录和实际震害资料;再加上坝料大应变非线性动力本构模型及其求解方法的理论研究尚未成熟,使得目前通过理论分析和数值计算得到高土石坝地震动力破坏响应与破坏模式的难度很大,难以理清高土石坝的地震破坏过程与机理。从而无法对地震作用下高土石坝的抗震安全性进行准确评价,严重影响了高土石坝抗震设计的可靠性、经济性和科学性。
     针对以上土石坝抗震研究中亟待解决的关键问题,本文开展了心墙堆石坝振动台试验、紫坪铺面板堆石坝在汶川地震中的残余应变分析和土石坝坝料动力参数反演等研究工作。其主要研究内容和结论如下:
     (1)鉴于土石料等散粒体材料应变测量的困难性,尝试发展了数字图像应变测量技术。把有限元数据平滑方法引入到数字图像应变测量中,开发了一套适合于土工试验模型应变测量计算的程序,并通过数字散斑图和三点弯曲梁实验进行了验证,显示该方法显著提高了应变的计算精度。将其应用到心墙堆石坝振动台模型试验的应变测量中,获得了模型坝的位移场和应变场分布规律,探讨了模型坝的地震破坏机理,初步研究表明破坏过程大致分三个阶段,即整体变形阶段、坝坡滑移变形阶段和破坏阶段,其中第二个阶段的标志是坝体由整体运动转为沿上下游坝坡分别向两侧滑动。同时表明空库状态下的破坏模式是上、下游坝坡的浅层滑塌破坏,满库状态下是坝体上部上游侧的变形破坏。
     (2)应用有限元数据平滑方法,对紫坪铺面板堆石坝在汶川地震中的监测位移资料进行分析,得到了紫坪铺大坝在汶川地震中的残余应变分布规律,并据此解释了大坝的一些震害现象,为进一步分析土石坝的地震破坏机理奠定基础。分析结果显示,坝体最大震陷率发生在2/3坝高附近;大坝发生剪胀的范围为坝顶区域和从坝顶往下约30m的上下游坝坡处;堆石料地震残余剪应变过大并形成下滑趋势是造成面板水平施工缝错台的直接原因;沿坝轴向在两岸坝肩附近区域受拉,河谷中央部位受挤压,整个坝体向河谷收缩;坡面残余压应变集中是造成面板垂直挤压破坏的主要原因;左岸坝肩周边缝张开和坝面张裂缝是由于坡面残余拉应变过大造成的。
     (3)实际土石坝坝料的动力性质与室内试验得到的动力参数有一些差异。本文提出了两种根据实测土石坝地震加速度记录信息反演筑坝土石料的动力参数反演方法,以探讨目前室内外坝料动力参数确定方法的合理性。
     ①联合加速度峰值和反应谱为目标函数,研究了土石坝动力参数反演方法。结合鲤鱼潭心墙堆石坝在集集地震中的加速度响应,反演了该坝土石料的动力参数,并与室内外试验成果进行比较,表明筑坝土石料的室内动三轴试验得到的动剪模量系数K偏小。
     ②以小震时土石坝动力特性为目标函数,研究了土石坝动力参数反演方法。利用紫坪铺面板堆石坝在汶川地震余震中的加速度记录,反演了该坝堆石料的动力参数,并与室内试验成果进行比较,也表明坝料的室内动三轴试验得到的动剪模量系数K偏小。
Earth-rockfill dams are the most commonly constructed type of dams. Most of the high earth-rockfill dams existing or under construction in China are located in areas of high seismic intensity. With the implementation of West China Development strategy and the West-to-East Electricity Transmission project, a new patch of high earth-rockfill dams will be built in the high-intensity areas in Southwest and Northwest China. However, if these dams fail upon the occurrence of earthquakes, disastrous consequences will emerge.
     Currently, the research on seismic resistance of earth-rockfill dams is far lagged behind engineering practice. Anti-seismic analysis basically depends on the equivalent linearization method proposed in1970s, which is accurate in evaluating the distribution of seismic acceleration and shear stress only under low nonlinearity. The seismic deformation should still be estimated by using semiempirical methods. However, the seismic injury and damages of earth-rockfill dams can still not be reliably predicted. There is no reference for designing of earth-rockfill dams with a height over200m at home and abroad. Currently, because few modern compacted earth-rock dams have undergone earthquakes, there are few records of real seismic reactions or few seismic damage data from high earth-rock dams in high intensity regions. Moreover, because the nonlinear dynamic constitutive models for large-strain dam materials, and the theoretical research on solving methods are immature, it is difficult to obtain the dynamic damage response of high earth-rock dams by using theoretical analysis and numerical calculation, or to clarify their seismic damage mechanism. Therefore, it is hard to accurately evaluate their anti-seismic security under earthquakes. This severely affects the reliability, economy and science in anti-seismic design of high earth-rock dams, and restricts the development of their construction. Therefore, to meet the rapid development of high earth-rock dams in high-intensity regions in China, these key anti-seismic problems should be solved immediately.
     On account of some key problems in studies about earthquake resistance of earth-rockfill dams, earth core rockfill dam shaking table test, residual strain of Zipingpu Concrete Faced Rockfill Dam (CFRD) after Wenchuan earthquake, and back-analysis of earth-rockfill dam dynamic parameters were carried out. The contents and conclusions are as follows:
     (1) Based on the data smoothing method which combines the finite element method and general interaction validation, a set of programs suitable for strain measuring and calculation in geotechnical test models were developed. The three point bending beam experiment verifies the correctness and reliability of the programs. This method is applied to the strain measuring and calculation of the earth core rockfill dam shaking table model test, so the displacement field and strain field of model dam were obtained. Meanwhile, the earthquake damage mechanism of core rock-fill dam was discussed. The results show that the failure process can be roughly divided into three stages:overall deformation stage, dam-slope slipping deformation stage, and failure stage. The second stage starts when the overall movement turns to sliding along the upstream and downstream slopes. The failure pattern of the model dam is shallow damage along upstream and downstream slopes under empty reservoir, and is deformation failure along upper downstream slope under full reservoir.
     (2) Finite element smoothing was used to process the seismic residual deformation data from the Zipingpu CFRD and thereby to obtain permanent deformation displacement fields. Then, the seismic residual strain field was calculated, including vertical seismic residual strain, volumetric strain, shear strain of the dam body, and slope residual strain, which can be used to explain various seismic damages observed on the dam body. Therefore, the method in this study is reliable. The precision of the acquired residual strain satisfies engineering requirements.
     The results show that the maximum settlement rate on the dam body occurs at about2/3of the dam height, and dilatancy occurs approximately from the dam crest to30m in the upstream and downstream slopes, so this region should be reinforced by anti-seismic measures. The immediate cause of the dislocation of horizontal construction joint in face slabs is the excessive residual shear strain. The two bank abutments are under axial tension; the valley is extruded axially and the entire dam body shrinks to the valley.
     (3) Real earth-rockfill dam materials dynamic parameters different slightly from that obtain from indoor laboratory test.In order to probe the rationality of current detemination method of earth-rockfill dynamic parameters, two back-analysis methods of earth-rockfill dynamic parameters were presented according to observed seismic acceleration information.
     ①The back-analysis approach of earth-rockfill dynamic parameters based on response spectra and acceleration peak is presented. According to the acceleration response information of Liyutan Dam in the Chi-chi earthquake, the dynamic parameters were obtained by applying the back calculation approach. The results demonstrate that the dynamic shear modulus coefficient K of the dam materials obtained from laboratory dynamic triaxial test is smaller than the true value, suggesting that it should be adjusted.
     ②The back-analysis approach of earth-rockfill dynamic parameters based on earth-rockfill dam dynamic characteristics is presented. According to the acceleration response information of Zipingpu CFRD in the aftershock of Wenchuan earthquake, the dynamic parameters of dam materials were back-analyzed. The results indicate that K of the dam materials obtained from laboratory dynamic triaxial test is smaller than the true value, suggesting that it should be adjusted.
引文
[1]顾淦臣,沈长松,岑威钧.土石坝地震工程[M].北京:中国水利水电出版社,2009.12:389-392.
    [2]马宏生,周龙泉,邵志刚,等.全球及中国大陆周边强震活动状态研究[J].地震.2010,30(4):29-37.
    [3]马宏生,邵志刚,周龙泉,等.汶川8.0级地震后中国大陆强震活动状态研究[J].地震.2009,29(4):63-71.
    [4]孙加林,章瑞.中国大陆20世纪以来第五地震活跃期的复杂性及其本质问题[J].地震.2007,27(2):30-40.
    [5]庞琼,王士军,倪小荣.世界已建高坝大库统计分析[].水利水电科技进展,2012,32(6):34-37.
    [6]Finn W D L. State-of-the-art of geotechnical earthquake engineering practice[J]. Soil Dynamics and Earthquake Engineering,2000,20(1):1-15.
    [7]赵剑明,常亚屏,陈宁.加强高土石坝抗震研究的现实意义及工作展望[J].世界地震工程,2004,20(1):95-99.
    [8]赵剑明,汪闻韶.关于水利工程震害及抗震研究的几点思考[J].清华大学学报:自然科学版,2000,40(S1):91-95.
    [9]H. B. Seed, K. L. Lee, I. M. Idriss. Analysis of the Sheffield dam failare[C]. Engineering Geology and Soils Engineering Symposium, Proceedings of the 6th Annual.1968.
    [10]Luis Arrau, Ismael Ibarra, Guillermo Noguera. Performance of Cogoti Dam Under Seismic Loading[C]. Concrete face rockfill damsdesign, construction and performance. ASCE. New York: 1985.
    [11]汝乃华,牛运光.大坝事故与安全·土石坝[M].北京:中国水利水电出版社,2001.10.
    [12]王敦吉.唐山大地震时北京市的震害简况.国际地震动态,1996(9):35-36.
    [13]沈珠江,徐志英.1976年7月28日唐山地震时密云水库白河主坝有效应力动力分析.1981(3):46-63.
    [15]United States Committee on Large Dams, Observed Performance of Dam During Earthquakes[M], 1992.7.
    [16]Ahmed-W.M. Elgamal, Ramana V. Gunturi.Dynamic behaviour and seismic response of El Infiernillo dam[J].Earthquake Engineering and Structural Dynamics,1993,22:665-684.
    [17]Ahmed-W.M. Elgamal, Ronald F. Scott, Mohamed F. Succarieh,et al.La Villita dam response during five earthquakes including permanent deformation[J]. Journal of Geotechnical Engineering.1990, 116(10):1443-1462.
    [18]Resendiz D, Romo MP, Moreno E. El Infiernillo and La Villita dams:seismic behaviour[J]. Journal of Geotechnical Engineering.1982,108(GT 1):109-31.
    [19]Stefania Sica,Luca Pagano,Arezou Modaressi.Influence of past loading history on the seismic response of earth dams[J]. Computers and Geotechnics,2008,35:61-85.
    [20]Ahmed-W.M. Elgamal.Three-dimensional seismic analysis of La Villita dam[J]. Journal of Geotechnical Engineering.1992,118(12):1937-1958.
    [21]Stefania Sica, Filippo Santucci de Magistris and Filippo Vinale.Seismic behaviour of geotechnical structures[J]. Annals of Geophysics,2002,45(6):799-815.
    [22]Liping Yan.Seismic deformation analysis of earth dams:a simplified method[D]. Pasadena,California:California Institute of Technology,1992.
    [24]Isao Nagayama,Yoshikazu Yamaguchi,Takashi Sasaki.Damage to dam due to three large earthquake occurred in 2003,in Japan[R].US-Japan natural resources development program,2004.
    [25]Kenji Ishihara.Performances of rockfi 11 dams and deep-seated landslides during earthquakesGeotechnical, Geological and Earthquake Engineering[J],2012,16:273-314
    [26]Yoshikazu Yamaguchi, Tomoya Iwashita.Preliminary investigation of dams stricken by the iwate-miyagi nairiku earthquake in 2008 http://pwwebl.pwri.go.jp/eng/activity/pdf/reports/iwashita.081019.pdf
    [27]中国水电顾问集团西北勘测设计研究院.白龙江碧口水电站工程“5.12”汶川地震震损调查及初步分析报告[R].2008.
    [28]朱晟.土石坝震害与抗震安全[J].水力发电学报,2011,30(6):40-51.
    [29]中国水电顾问集团成都勘测设计研究院.四川华能水牛家水电站“5.12”震后检查和安全评估(监测资料记录)[R],2008.6.
    [30]曹荣.汶川地震对涪江火溪河流域水电工程的影响[G]//汶川大地震工程震害调查分析与研究.2009.4.
    [31]李永红,王平,曹荣.汶川地震中高土石坝震损初步分析[G]//汶川大地震工程震害调查分析与研究.2009.4.
    [32]李茂,张立勇,刘彦琦.水牛家堆石坝坝体变形对材料参数敏感性分析[J].人民长江,2011,42(增Ⅱ):160-162.
    [33]台湾省中区水资源局:鲤鱼潭水库九二一震后报告[R].台中:中区水资源局,1999.12.
    [34]台湾地震工程研究中心.九二一集集大地震全面勘灾精简报告[R].台北:台湾地震工程研究中心,1999.12.
    [35]经济部水利署中区水资源局:鲤鱼潭水库地震观测及维护服务报告[R],2000.
    [36]经济部水利署中区水资源局:鲤鱼潭水库定期监测分析总报告[R],2000.
    [37]孙一鸿,潘以文,叶纯松,等.鲤鱼潭大坝受集集强震影响之检讨[A].集集大地震周年纪念学术研讨会论文集,台南,2000.
    [38]韩国城,孔宪京.混凝土面板堆石坝抗震研究进展[J].大连理工大学学报,1996,36(6):708-720.
    [39]Boulanger R. W., Bray J. D., Merry S. M., et al. Three-Dimensional Dynamic Response Analysis of Cogswell Dam [J]. Canadian Geotechnical Journal,1995,32(3):452-464.
    [40]Boulanger R. W., Bray J. D., Merry S. M., et al. Dynamic Response Analyses of Cogswell Dam During the 1991 Sierra Madre and 1987 Whittier[C]. Proceedings of Seminar on seismological and engineering implications of recent strong-motion data. California:1993.
    [41]Mononobe H A. Seismic stability of the earth dam.//Proceedings of 2nd Congress of Large Dams. Washington D. C.1936.
    [42]Gazetas G.Longitudinal vibrations of embankment of dams. Journal of the Geotechnical Engineering Division, ASCE,1981,107(1):21-40.
    [43]Oner M. Shear vibration of inhomogeneous earth dams in rectangular canyons. Soil Dynamics and Earthquake Engineering,1984,3(1):19-26.
    [44]张克绪.土坝等价地震系数和水平剪应力最大幅值简化计算[J]水利学报,1985,16(9):35-42.
    [45]Dakoulas P., Gazetas G. A class of inhomogeneous shear models for seismic response for dam and embankments[J]. Soil Dynamics and Earthquake Engineering,1985,4(4):166-182.
    [46]Dakoulas P, Gazetas G.Seismic shear vibration of embankment dams in semi-cylindrieal valleys. Earthquake Engineering and Structural Dynamics,1986,14(1):19-40.
    [47]Gazetas G. Seismic response of earth dams:some recent developments. Soil Dynamics and Earthquake Engineering,1987,6(1):2-47.
    [48]Elgamal A. W. M., Abdel-Ghaffar A. M., Prevost J. H. Elasto-plastic earthquake shear response of one-dimensional earth dam models[J]. Earthquake Engineering and Struetural Dynamics,1985,13(5): 533-617.
    [49]Elgamal A. W. M.,Abdel-Ghaffar A. M.,Prevost J. H.2-D Elasto-plastic seismic shear response of earth dam:theory [J]. Journal of Engineering Meehanies,ASCE,1987,113(5):687-701.
    [50]Gazetas G, Hsu C. Lateral response of earth dams in semi-elliPtieal rigid canyon. Soil Dynamics and Earthquake Engineering,1993,12(8):497-507.
    [51]栾茂田.非均质堤坝振动特性简化分析[J].大连理工大学学报,1989,29(4):479-488.
    [52]栾茂田,金崇磐,林皋.非均质土石坝及地基竖向地震反应简化分析[J].水力发电学报,1990,9(1):48-62.
    [53]孔宪京,韩国城,张天明.土石坝与地基地震反应分析的波动-剪切梁法[J].大连理工人学学报,1994,34(2):173-179.
    [54]孔宪京,刘君,韩国城,等.混凝土面板堆石坝地震反应分析的剪切楔法.水利学报,2000(7):55-60.
    [55]沈振中,徐志英.V形河谷中土石坝纵向地震反应的简化解析解[J].水电能源科学,1999,1(4):9-12.
    [56]沈振中,徐志英.V形河谷中土石坝垂直振动的近似解析[J].河海大学学报,2002,30(2):85-89.
    [57]沈振中,徐志英.V形河谷中非均匀土石坝振动的简化分析[].水利学报,2002,(3):74-79.
    [58]Clough R. W., Chopra A. K. Earthquake Stress Analysis in Earth Dams[J]. Journal of the Engineering Mechanics Division,1966,92(2):197-212.
    [59]Hardin B O, Drnevich V P. Shear modulus and damping in soils:Design equations and curves. Journal of Soil Mechanics and Foundations Division,1972,98(7):667-692.
    [60]Hardin B O, Drnevich V P. Shear modulus and damping in soils:measurement and parameter effects. Journal of the Soil Mechanics and Foundation Engineering Division,1972,98(6):603-624.
    [61]Ramberg W, Osgood W R. Description of stress strain curves by three parameters, Technical note 902, National Advisory Committee for Aeronautics, Washington, D.C,1943.
    [62]孔亮,王燕昌,郑颖人.土体动本构模型研究评述[J].宁夏大学学报(自然科学版),2001,22(1):17-22.
    [63]刘汉龙,余湘娟.土动力学与岩土地震工程研究进展[J].河海大学学报(自然科学版),1999,27(1):6-15.
    [64]Mroz Z, Norris V A, Zienkiewicz O C. An anisotropic critical state model for soils subjected to cyclic loading. Geotechnique,1981,31 (4):451-470.
    [65]Zienkiewicz O C.广义塑性力学和地力学的一些模型.应用数学与力学,1982,3(2):267-280.
    [66]Provest J H. A simple plastic theory for frictional cohesionless soils. Soil Dynamics and Earthquake Engineering,1985,4(1):9-17.
    [67]Zienkiewicz O. C., Leung K. H., Pastor M. Simple model for transient soil loading in earthquake analysis.I:basic model and its application[J]. International Journal for Numerical and Analytical Methods in Geomechanics,1985,9(5):453-476.
    [68]Pastor M., Zienkiewicz O. C., Leung K. H. Simple model for transient soil loading in earthquake analysis. Ⅱ. Non-associative models for sands[J]. International Journal for Numerical and Analytical Methods in Geomechanics,1985,9(5):477-498.
    [69]Pastor M., Zienkiewicz O. C., Chen A. H. Generalized plasticity and the modeling of soil behavior[J]. International Journal for Numerical and Analytical Methods in Geomechanics,1990,14(3):151-190.
    [70]邹德高,徐斌,孔宪京等.基于广义塑性模型的高面板堆石坝静、动力分析.水力发电学报,2011,30(6):109-116.
    [71]孔宪京,邹德高,徐斌,等.紫坪铺面板堆石坝三维有限元弹塑性分析[J].水力发电学报,2013,32(2):213-222.
    [72]Degao Zou, Bin Xu, Xianjing Kong,et al.Numerical simulation of the seismic response of the Zipingpu concrete face rockfill dam during the Wenchuan earthquake based on a generalized plasticity model [J].Computers and Geotechnics,2013,49:111-122.
    [73]沈珠江.理论土力学[M].北京:中国水利水电出版社.1999.
    [74]谢定义,巫志辉,郭耀堂.极限平衡理论在饱和砂土动力失稳过程中的应用[J].土木工程学报,1981,14(4):17-28.
    [75]梁海波,李仲奎FLAC程序及其在我国水电工程中的应用[J].岩石力学与工程学报,1996,15(3):225-230.
    [76]朱建明,任天贵.FLAC有限差分程序及其在矿山工程中的应用[J].中国矿业,2000,9(4):78-81.
    [77]康红普.回采巷道锚杆支护影响因素的FLAC分析[J].岩石力学与工程学报,1999,18(5):534-537.
    [78]杨新安,黄宏伟FLAC程序及其在隧道工程中的应用[J].上海铁道大学学报,1996,17(4):39-44.
    [79]孔宪京,邹德高,邓学晶,等.高土石坝综合抗震措施及其效果的验算[J].水利学报,2006,37(12):1489-1495.
    [80]朱亚林,孔宪京,邹德高,等.高土石坝地震反应和破坏机理分析[J].岩土工程学报,2010,32(9):1362-1367.
    [81]朱亚林.地震时高土石坝的弹塑性分析和抗震措施研究[D].大连:大连理工大学,2011.10.
    [82]孔宪京,刘君,韩国城.面板堆石坝模型动力破坏试验与数值仿真分析[J].岩土工程学报,2003,25(1):26-30.
    [83]Liu F.H,Liu J,Kong X.J.PFC numerical simulation of particle breakage of clay-core rock-fill dam[C].10th International Conference on Anslysis of Discontinuous Deformation,2011.
    [84]Liu J,Liu F.,HKong X.J.PFC numerical simulation of particle breakage of rock-fill dam[C].Earth and Space 2010:Engineering,Science,Construction,and Operation in Challenging Environments,2010:2933-2940.
    [85]Clogh R.W,Pirtz D.Earthquake resistance of rockfill dams[J].Soil mechanics and foundations division,1956,82(2):1-26.
    [86]丹羽羲,等.地震和土石坝抗震[C].土木学会论文集,1958.
    [87]Seed H.B, Clogh R.W. Earthquake resistance of sloping core dams[J].Journal of soil mechanics and foundations division,1963,89(1):209-242.
    [88]西安交通大学水利系抗震研究组.堆石坝抗震试验研究(一)[R].1960.
    [89]久乐胜行,等.用大型振动台进行的模型堤坝的振动试验(第二部分).地震工程泽文集[M].北京:地震出版社,1978.
    [90]田村重四郎.模型坝振动破坏试验[J].1975.(出版社不详)
    [91]堤一,渡道启行.供填筑坝抗震设计用的动力试验.国外工程抗震[M].重庆:科学出版社重庆分社,1978.
    [92]Nose M,Baba K.Dynamic behaviour of rockfill dams:Dams and earthquake [M].London:Thomas Telford Limited,1981.
    [93]王克成,杨德健,刘恭忍,等.堆石坝散体动力性态的实验研究[J].水利学报,1986(10):26-34.
    [94]王克成,杨德健.堆石坝三维模型动力性态及抗震稳定性研究.水利学报,1987(10):60-65.
    [95]韩国城,孔宪京.混凝土面板堆石坝抗震研究进展[C].中国混凝土面板堆石坝十年学术研讨会论文集(1985-1995),1995.
    [96]Han Guocheng,Kong Xianjing,Li Junjie.Dynamic experiments and numerical simulations of model concrete face roccfill dams[]. Proceedings of ninth world conference on earthquake engineering.Tokyo-Tyoto,1988.
    [97]孔宪京,韩国城,李俊杰,等.防渗面板对堆石坝体自振特性的影响[J].大连理工大学学报,1989,29(5):583-588.
    [98]韩国城,孔宪京,王承伦,等.大生桥面板堆石坝三维整体模型动力试验研究[].第三届全国地震工程会议论文集(111).大连:1990.10:1373-1378.
    [99]韩国城,孔宪京,李俊杰.面板堆石坝动力破坏性态及抗震措施试验研究[J].水利学报,1990(3):61-67.
    [100]大连理工大学土木工程系.面板堆石坝坝体永久变形、面板应力及抗震措施研究[].“八五”国家科技攻关项目研究报告,1995.1.
    [101]孔宪京,刘君,韩国城.面板堆石坝模型动力破坏试验与数值仿真分析[J].岩土工程学报,2003,25(1):26-30.
    [102]沈凤生.混凝土面板的静、动稳定分析[D].河海大学,1990.
    [103]汤书明.钢筋混凝土面板堆石坝动力模型试验与有限元动力分析[D].河海大学,1990
    [104]姜朴,汤书明.土石坝模型动力试验与计算[J].水利学报,1992(2):53-57.
    [105]刘小生,王钟宁,汪小刚,等.面板坝大型振动台模型试验与动力分析[M].北京:中国水利水电出版社,知识产权出版社,2005.5.
    [106]刘小生,刘启旺,王钟宁,等.黑泉水库面板坝大型振动台模型试验[J].水利规划与设计,2007(5):30-33.
    [107]刘小生,于钟宁,赵剑明,等.而板堆石坝振动模型试验及动力分析研究[J].水利学报,2002(2):29-35.
    [108]杨正权,刘小生,刘启旺,等.猴子岩高面板堆石坝地震模拟振动台模型试验研究[J].地震工程与工程振动,2010,30(5):113-119.
    [109]刘小生,杨正权,刘启旺,等.猴子岩高面板坝振动台模型试验一大坝结构动力特性研究[J].世界地震工程,2010,26(4):121-127.
    [110]陈宁,杨正权,袁林娟,等.两河口水电站高土石坝地震反应地震模拟振动台模型试验研究.水利水电技术,2010,41(10):80-86.
    [111]杨正权,刘小生,刘启旺,等.两河口高土石坝动力特性振动台模型试验研究[J].水利学报,2011,42(10):1226-1233.
    [112]杨正权,刘小生,陈宁,等.地震作用下的两河口高土石坝地震残余变形和破坏振动台模型试验研究[J].水力发电学报,2011,30(3):152-157.
    [113]杨玉生,刘小生,刘启旺,等.双江口心墙堆石坝地震加速度反应的振动台模型试验研究[J].水力发电学报,2011,30(1):120-125.
    [114]刘启旺,刘小生,陈宁,等.双江口心墙堆石坝振动台模型试验研究[J].水力发电学报,2009,28(5):114-120.
    [115]刘启旺,刘小生,陈宁,等.高心墙堆石坝地震残余变形和破坏模式的试验研究[J].水力发电,2009,35(5):60-62.
    [116]袁林娟,刘小生,汪小刚,等.双江口心墙堆石坝三维动力分析及模型试验验证[J].水力发电学报,2012,31(5):198-202.
    [117]Seda SendirTorisu, Junichi Sato, IkuoTowhata.1-G model tests and hollow cylindrical torsional shear experiments on seismic residual displacements of fill dams from the viewpoint of seismic performance-based design[J].Soil Dynamics and Earthquake Engineering,2010,30(6):423-437.
    [118]刘君,刘福海,孔宪京,等.PIV技术在大型振动台模型试验中的应用[J].岩土工程学报,2010,32(3):368-374.
    [119]孔宪京,刘福海,刘君.地震作用下面板堆石坝面板错台模型试验研究[J].岩土工程学报,2012,34(2):258-266.
    [120]刘福海.土石坝振动台试验新技术及地震破坏机理研究[D]大连:大连理工大学,2012.9.
    [121]Law H K, Ko H Y, Scavuzzo R.1994. Simulation of O'Neill Forebay Dam,California,subjected to the 1989 Loma Prieta Earthquake. Centrifuge 94. Singapore:Leung, Lee m Tan(eds):245-250.
    [122]Astaneh S M F, Ko H Y, Sture S.1994. Assessment of earthquake effects on soil embankments. Centrifuge 94. Singapore:Leung.Lee m Tan(eds):221-226.
    [123]王年香,章为民.混凝土面板堆石坝地震反应离心模型试验[J].水利水运工程学报,2003(1):18-22.
    [124]王年香,章为民.混凝土面板堆石坝动态离心模型试验研究[J].岩土工程学报,2003,25(4):504-507.
    [125]王年香,章为民,顾行文.长河坝动力离心模型试验研究[J].水力发电,2009,35(5):67-70.
    [126]王年香,章为民,顾行文.高心墙堆石坝地震反应复合模型研究[J].岩土工程学报,2012,34(5):798-804.
    [127]Charles W.W Ng, X.S Li, Paul A. Van Laak, et al. Centrifuge modeling of loose fill embankment subjected to uni-axial and bi-axial earthquakes [J].Soil Dynamics and Earthquake Engineering, 2004,24(4):305-318.
    [128]Hideaki KAWASAKI, Kenji INAGAKI, Daisuke HIRAYAMA.混凝土面板堆石坝的动力反应特性[C].2004水力发电国际研讨会论文集(上册),湖北宜昌,2004.5.
    [129]Hideaki KAWASAKI, Kenji INAGAKI, Daisuke HIRAYAMA.Dynamic modification characteristics of the concrete surfacing rock-fill dam[C]. Proceedings of International Conference of Hydropower(Volume Ⅰ),2004.5.
    [130]M.K. Sharpa, K. Adalier.Seismic response of earth dam with varying depth of liquefiable foundation layer [J]. Soil Dynamics and Earthquake Engineering.2006,26(11):1028-1037.
    [131]Liping Wang, Ga Zhang, Jian-Min Zhang.Centrifuge model tests of geotextile-reinforced soil embankments during an earthquakeGeotextiles and Geomembranes.2011,29(3):222-232.
    [132]吴俊贤,倪至宽,高汉楼.土石坝的动态反应:离心机模型试验与数值模拟[J].岩石力学与工程学报,2007,26(1):1-14.
    [133]Iwashira T, Elasto-plastic effective stress analysis of centrifugal shaking tests of a rockfill dam [C], Proc. of the 14th World Conference on Earthquake Engineering, Oct.2008, Beijing, China.
    [134]程嵩.土石坝地震动输入机制与变形规律研究[D].北京:清华大学,2012.3.
    [135]程嵩,张建民.面板堆石坝的动力离心模型试验研究[J].地震工程与工程振动,2011,31(2):98-102.
    [136]程嵩,张建民.面板堆石坝震动响应及变形规律的试验研究[J].工程力学,2012,29(8):80-86.
    [137]Mu-Kwang Kim,Sei-Hyun Lee,Yun Wook Choo,et al. Seismic behaviors of earth-core and concrete-faced rock-fill dams by dynamic centrifuge tests[J].Soil Dynamics and Earthquake Engineering.2011,31 (11):1579-1593.
    [138]汪闻韶,金崇磐,王克成.土石坝的抗震计算和模型实验及原型观测[J].水利学报,1987,30(12):1-16.
    [139]沢田义博.剪切波速分布特性及堤坝振动特性[R].日本电力中央研究所,1977.
    [140]韩国城,孔宪京,田村重四郎,等.关门山面板堆石坝现场弹性波试验研究[J].大连理工大学学报,1990,30(5):559-568.
    [141]韩国城,孔宪京.关于土石坝动力模型试验问题[C].第二届全国青年岩土力学与工程会议论文集.1995:82-87.
    [142]沈珠江.鲁布革心墙堆石坝变形的反馈分析[J].岩土工程学报,1994,16(3):1-13.
    [143]郭雪莽,田明俊,秦理曼.土石坝位移反分析的遗传方法[J].华北水利水电学院学报,2001,22(3):94-98.
    [144]袁会娜,李全明,张丙印.公伯峡混凝土面板堆石坝位移反演分析[J].水利水电技术,2004,35(11):22-25.
    [145]张社荣,何辉.改进的遗传算法在堆石体参数反演中的应用[J].岩土力学,2005,26(2):182-186.
    [146]张丙印,袁会娜,孙逊.糯扎渡高心墙堆石坝心墙砾石土料变形参数反演分析[J].水利发电学报,2005,24(3):18-23.
    [147]张丙印,袁会娜,李全明.基于神经网络和演化算法的土石坝位移反演分析[J].岩土力学,2005,26(4):547-552.
    [148]田明俊,周晶.基于蚁群算法的土石坝土体参数反演[J].岩石力学与工程学报,2005,25(8):1411-1416.
    [149]田明俊,周晶.土石坝土体参数反演的一种新方法[J].土木工程学报,2005,38(8):118-122.
    [150]杜好.基于微粒群算法的堆石坝料参数反演分析[D].大连:大连理工大学,2006.12.
    [151]李金凤,杨启贵,徐卫亚.基于改进粒子群算法CHPSO-DS的面板坝堆石体力学参数反演[J].岩石力学与工程学报,2008,27(6):1229-1235.
    [152]朱晟,张美英,戴会超.土石坝沥青混凝土心墙力学参数反演分析[J].岩土力学,2009,30(3):635-639.
    [153]朱晟,梁现培,冯树荣.基于现场大型承载试验的原级配筑坝堆石料力学参数反演研究[J].岩土工程学报,2009,31(7):1138-1143.
    [154]朱晟.水布垭面板堆石坝施工与运行性状反演研究[J].岩石力学与工程学报,2011,30(s2):3689-3695.
    [155]江沛华,魏松,汪莲,等.改进复合形法及其在堆石坝参数反演中的应用[J].水利发电学报,2011,30(4):168-174.
    [156]吕松召,张墩,付志昆,吴长彬.基于遗传算法和遗传神经网络算法的堆石料参数反演分析研究[J].中国农村水利水电,2011,(6):113-116.
    [157]董威信,袁会娜,徐文杰,等.糯扎渡高心墙堆石坝模型参数动态反演分析[J].水力发电学报,2012,31(5):203-208.
    [158]马刚,常晓林,周伟,等.高堆石坝瞬变-流变参数三维全过程联合反演方法及变形预测[J].岩土力学,2012,33(6):1889-1895.
    [159]杨金强,程壮,肖蕾,马莉.基于BP神经网络的面板堆石坝参数反演分析[J].水电能源科学,2012,30(6):89-101.
    [160]程壮,陈星,董艳华,党莉.基于BP神经网络的堆石坝参数二次反演与变形预测[J].长江科学院院报,2012,29(8):112-117.
    [161]何敏,李宁,张西前,等.黑河黏土心墙土石坝分期位移反分析[J].岩土力学,2013,34(1):259-265.
    [162]Yuzhen Yu, Bingyin Zhang, Huina Yuan.An intelligent displacement back-analysis method for earth-rockfill dams[J]. Computers and Geotechnics,2007; 34(4):423-434.
    [163]Wei Zhou, Junjie Hua, Xiaolin Chang, Chuangbing Zhou.Settlement analysis of the Shuibuya concrete-face rockfill dam[J]. Computers and Geotechnics,2011; 38(2):269-280.
    [164]Integrated parameter inversion analysis method of a CFRD based on multi-output support vector machines and the clonal selection algorithm[J]. Computers and Geotechnics,2013; 47(1):68-77.
    [165]朱晟,杨鸽,周建平,等.“5·12”汶川地震紫坪铺面板堆石坝静动力初步反演研究[J].四川大学学报(工程科学版),2010,42(5):113-119.
    [166]田强.土石坝动力参数的反演算法研究[D].大连:大连理工大学,2012.6.
    [167]D.J. Segalman, D.B. Woyak, R.E. Rowlands, Smooth spline-like finite-element differentiation of full-field experimental data over arbitrary geometry [J]. Experimental Mechenics.1979,19(12): 429-437.
    [168]陆明万,罗学富.弹性理论基础[M].北京:清华大学出版社,2001,38-43.
    [169]孟利波.数字散斑相关方法的研究和应用[D].北京:清华大学,2005.10.
    [170]L.B. Meng, G.C. Jin, X.F. Yao.Application of iteration and finite element smoothing technique for displacement and strain measurement of digital speckle correlation[J] Optics and Lasers in Engineering,2007(45):57-63.
    [171]R.E.Rowlnads, K.D.Winters,J.A.Jensen. Full-field numerical differentiation.The Journal of Strain Analysis for Engineering.1978,13(3):177-183.
    [172]M.J.Engelstad. D.A. Chmabless, W.F. Swinson. etal.Hybrid stress analysis of vibrating plates using holographic interferometry and finite elements.Experimental Mechnaics.1987,27(1):23-30.
    [173]174Z.Feng,R.E.Rowlands.Continuous Full-field Representation and Differentiation of Three-Dimensional Experimental Vector Data.Computersand Structures.1987,26(6):979-990.
    [174]C. E. Freese,L. Gee.A Multilevel treatment of moire fringe data using finite elements. Experimental Mechnaics,1999,39(4):168-177.
    [175]M.A.Sutton, J.L.Turner, H.A.Burck,etal.Full-field repersentation of discretely smapled surface deformational for displacement and strain analysis..EXPerimentalMechnaics1991,31(2):168-177.
    [176]G.H. Golub, M. Heath, G. Wahba. Generalized cross validation as a method for choosing a good ridge parameter. Technometrics.1979,21(2):215-223.
    [177]P. Craven, G. Wahba.Smoothing noisy data with spline functions:estimating the correct degree of smoothing by the method of Generalized Cross-Validation. Numerische Mathematik.1979,31: 377-403.
    [178]D.M. Bates, M.J. Lindstrom, G. Wahba, B.S. Yandell. GCVPAK-routines for generalized cross validation. Communications in Statistics-Simulation and Computation.1987,16(1):263-297.
    [179]J. T. KENT, M. MOHAMMADZADEH. Global optimization of the generalized cross-validation criterion. Statistics and Computing,2000,10:231-236.
    [180]Peng Zhou, Kenneth E.Goodson. Subpixel displacement and deformation gradient measurement using digital image/speckle correlation(DISC).Optical Engineering.2001,40(8):1613-1620.
    [181]张怀清.数字散斑相关方法及其在混凝土损伤断裂方面的应用研究[D].淄博:山东理工大学,2009.5.
    [182]孙训方,方孝淑,关来泰.材料力学(上册,第五版).[M].北京:高等教育出版社,2009.7:120-125.
    [183]林皋,朱彤,林蓓.结构动力模型试验的相似技巧[J].大连理工大学学报,2000,40(1):1-8.
    [184]迟世春,林少书.结构动力模型试验相似理论及其验证[J].世界地震工程,2004,20(4):11-20.
    [185]S.Iai.Similitude for shaking table test on soil-structure-fluid modeling 1.0g gravitational field,Soil and Foundations,1989,29(1):105-108.
    [186]孔宪京.混凝土面板堆石坝抗震性能研究[D].大连:大连理工大学,1990.
    [187]SL237-1999.土工试验规程[S].
    [188]罗先启,葛修润.滑坡模型试验理论及其应用.[M].北京:中国水利水电出版社,2008.12.
    [189]Iwashira T, Elasto-plastic effective stress analysis of centrifugal shaking tests of a rockfill dam [C], Proc. of the 14th World Conference on Earthquake Engineering, Oct.2008, Beijing, China.
    [190]陈生水,霍家平,章为民.“5.12”汶川地震对紫坪铺混凝土面板坝的影响及原因分析[J].岩土工 程学报,2008,30(6):795-801.
    [191]陈生水,方绪顺,钱亚俊.高土石坝地震安全评价及抗震设计思考[J].水利水运工程学报,2011,(1):17-21.
    [192]宋胜武,蔡德文.汶川大地震紫坪铺混凝土面板堆石坝震害现象与变形监测分析[J].岩石力学与工程学报,2009,28(4):840-849.
    [193]193关志诚,宋彦刚,蔡德文.紫坪铺高面板坝“5.12”震害调查与安全状态评价[J].水利水电技术,2008,39(9):36-43.
    [194]关志诚.紫坪铺水利枢纽工程5.12震害调查与安全状态评述[J].中国科学正辑:技术科学),2009,39(7):1291-1303.
    [195]GUAN Zhi-cheng.Investigation of the 5.12 Wenchuan Earthquake damages to the Zipingpu Water Control Project and an assessment of its safety state[J]. Sci China Ser E-Tech Sci,2009,52(4):820-834.
    [196]孔宪京,邹德高,周扬,等.汶川地震中紫坪铺混凝土面板堆石坝震害分析[J].大连理工大学学报.2009,49(5):668-674.
    [197]赵剑明,刘小生,温彦锋,等.紫坪铺大坝汶川地震震害分析及高土石坝抗震减灾研究设想[J].水力发电,2009,35(5):11-14.
    [198]赵剑明,周国斌,关志诚,等.紫坪铺“5.12”震害对面板堆石坝抗震措施的若干启示[J].水电能源科学,2012,30(1):24-27.
    [199]杨泽艳,张建民,高希章.汶川地震中紫坪铺面板坝抗震特性初步分析[J].水力发电,2009,35(7):30-33.
    [200]林皋.汶川大地震中大坝震害与大坝抗震安全性分析[J].大连理工大学学报,2009,49(5):657-666.
    [201]Wieland,M. Conerete face rockflll dams in highly seismic regions[M]//JIA Jin-sheng.Modern rockfill dams-2009.Beijing:China water power press,2009:791-799.
    [202]孔宪京,周扬,邹德高,等.汶川地震余震记录及紫坪铺面板堆石坝余震反应研究[J].岩土工程学报,2011,33(5):673-678.
    [203]Kong Xianjing,Zhou Yang, Zou Degao, et al. Numerical Analysis of Dislocations of the Face Slabs of the Zipingpu Concrete Faced Rockfi 11 Dam During the Wenchuan Earthquake,Earthquake Engineering and Engineering Vibration,2011,10(4):581-589.
    [204]Degao Zou, Yang Zhou, Hoe I. Ling.Dislocation of face-slabs of zipingpu concrete face rockfill dam during wenchuan earthquake[J].Journal of Earthquake and Tsunami,2012,6(2):1-17.
    [205]周扬.汶川地震紫坪铺面板堆石坝震害分析及面板抗震对策研究[D].大连:大连理工大学,2011.12.
    [206]赵剑明,刘小生.刘启旺,等.先期震动对土石坝地震永久变形的影响研究[J],世界地震工程,2011,27(1):28-33.
    [207]赵剑明,贾金生,李洪,等.考虑前期震动影响的紫坪铺面板坝震后抗震安全评价[J].水力发电学报,2012,31(1):82-87.
    [208]孔宪京,刘福海,刘君.地震作用下面板堆石坝面板错台模型试验研究[J].岩土工程学报,2012,34(2):258-267.
    [209]章为民,陈生水.紫坪铺面板堆石坝汶川地震永久变形实测结果分析[J].水力发电,2010,36(8):51-53.
    [210]潘兵,谢惠民.数字图像相关中基于位移场局部最小二乘拟合的全场应变测量[J].光学学报,2007,27(11):1980-1986.
    [211]Bing Pan, Hui-min Xie, Zhi-qing Guo,etal. Full-field strain measurement using a two dimensional Savitzky-Golay digital differentiator in digital image correlation [J]. Optical Engineering,2007,46(3): 1-10.
    [212]中国水电工程顾问集团成都勘测设计研究院.四川省岷江紫坪铺水利枢纽混凝土面板堆石坝工程监测简报—5.12汶川8.0级地震[R].成都:中国水电工程顾问集团成都勘测设计研究院,2008.
    [213]周国斌,赵剑明,温彦锋,等.紫坪铺混凝土面板堆石坝地震剪胀特性探讨[J].水电能源科学,2012,30(10):76-79.
    [214]Seed.H.B.,Idriss.I.B.Influence of soil conditions on ground motions during earthquake,Proc.ASCE,1969,95(SM 1).
    [215]李东旭.高等结构动力学[M].北京:国防科技出版社,1997.
    [216]Holland J H. Adaptation in Natural and Artificial Systems [M]. MIT Press,1992.
    [217]周明,孙树栋.遗传算法原理及应用[M].北京:国防工业出版社,1999.
    [218]Galdberg D. Genetic algorithms in search,optimization and machine learning[M]. Addison-Wesley Publishing Company,1989.
    [219]李敏强,寇纪淞,林丹,等.遗传算法的基本理论与应用[M].北京:科学出版社,2002.
    [220]蔡自兴.人工智能及其应用[M].北京:清华大学出版社,2007.
    [221]刘勇.非数值并行算法——遗传算法[M].北京:科学出版社,2003.
    [222]王小平,曹立明.遗传算法—理论、应用与软件实现[M].西安:西安交通大学出版社,2002.
    [223]杨晓华,沈珍瑶.智能算法及其在资源环境系统建模中的应用[M].北京:北京师范大学出版社,2005.
    [224]王四春,张泰山,殷志云,等.GP算法中适应度函数的光滑拟合与调整参数方法研究[J].自动化学报,2006,32(3):393-399.
    [225]任庆生,叶中行,曾进,等.对常用选择算子的分析[J].上海交通大学学报,2000,34(4):564-566.
    [226]马登武,郭小威,吕晓峰.基于改进遗传算法的舰载机弹药调度[J].计算机工:程与应用:2012,48(8):246-248.
    [227]刘钊,谢颖立.用遗传算法改进模糊隶属度克里格插值的研究[J].测绘科学:2012,37(4):191-193.
    [228]李亚洲,郑晓军,张强,等.基于改进初始解的遗传算法的布局设计方法[J].计算机工程与应用,2013,49(8):245-248.
    [229]周聪,郑金华.一种改进的TSP启发交叉算子[J].计算机工程与应用,2008,44(9):37-39.
    [230]曲良东,何登旭.混合变异算子的人工鱼群算法[J].计算机工程与应用,2008,44(35):50-52.
    [231]李睿,毛莉,张九蕊.基于混沌免疫遗传优化的粒子滤波重采样[J].计算机工程与应用,2013,49(6):209-212.
    [232]Galan S F, Mengshoel O J, Pinter R. A novel mating approach for genetic algorithms[J]. Evolutionary Computation,2013,21(2):197-229.
    [233]陈崇茂.土石坝料的变参数R-O模型及其热力学解释[D].大连:大连理工大学,2011.6.
    [234]台湾省中区水资源局.鲤鱼潭水库施工中安全评估计划总报告书[R],1993.
    [235]Seed, H. B., and Idriss, I. M., "Soil moduli and damping factors for dynamic response analyses," Report EERC 70-10, Earthquake Engineering Research Center, University of California, Berkeley,1970.
    [236]林金成,蔡明欣,冀树勇.堆填坝体受震变形之总应力分析[C].台湾第十一届现代岩土工程大会,台湾省新北市,2005.8:1-8.
    [237]Seed,H.B.,Seed,R.B.等.混凝土面板坝的抗震设计.见:国外混凝土面板堆石坝,北京:水利电力出版社,1988:116-127.
    [238]Jin-Hung Hwang, Chia-Pin Wu, and Sheng-Chin Wang. Seismic record analysis of the Liyutan earth dam [J]. Canadian Geotechnical Journal,2007(44):1351-1377.
    [239]俞培基,郭锡荣.现场和室内测定粘性土的动剪模量[C]//全国土工建筑物及地基抗震学术讨论·会论文汇编,西安,1986.
    [240]蒋寿田,王幸辛.郑州地区地基原状土动模量和阻尼比[C]//第三届全国土动力学学术会议,1990:151-155.
    [241]Pitilakis K D,Anastassiadis A,Rapatakis D.Field and laboratory determination of dynamic properties of natural soil deposits[C]//Proceedings of the 10th WCEE.Balkema,Rotterdam,1992:1275-1280.
    [242]冯志仁,郭德存,刘红帅,等.最大剪切模量对土动力参数及地震反应的影响[J].自然灾害学报,2007,16(3):90-95.
    [243]高志兵,高玉峰,谭慧明.饱和黏性土最大动剪切模量的室内和原位试验对比研究[J].岩土工程学报,2010,32(5):731-735.
    [244]高志兵,谭慧明,陶小三.饱和砂土最大动剪切模量的不同试验对比研究[J].防灾减灾工程学报,2010,30(1):53-57.
    [245]孙静,金晓鸥,孙殿民,等.现场和室内测试最大动剪切模量的对比研究[J].黑龙江大学工程学报,2012,3(4):15-20.
    [246]孙静,袁晓铭,陶夏新.室内和现场测试最大动剪切模量差别的试验研究[J].土木工程学报,2012,45(S1):258-262.
    [247]张晋.采用MATLAB进行振动台试验数据的处理[J].工业建筑,2002,32(2):28-30.
    [248]傅志方,华宏星.模态分析理论与应用[M].上海:上海交通大学出版社,2000.
    [249]北京波普世纪科技发展有限公司Vib'sys振动信号采集、处理和分析软件使用手册[Z].2002.
    [250]四川省水利水电勘测设计研究院.紫坪铺水库工程混凝土面板堆石坝施工阶段设计图[R].2002.6.
    [251]高希章,杨志宏.紫坪铺水利枢纽工程混凝土面板堆石坝设计[J].水利水电技术,2002,33(11):14-17.
    [252]Tsai Chan-Feng,Yen B.C等.巴尔松梅多坝的设计和稳定分析.国外混凝土面板堆石坝,北京:水利电力出版社,1988:397-407.
    [253]Hardin B O, Kalinski M E. Estimating the shear modulus of gravelly soils[J].Journal of Geotechnical and Geoenvironmental Engineering.2005,131 (7):867-875.
    [254]杨贵,刘汉龙,陈育民,等.堆石料动力变形特性的尺寸效应研究[J].水力发电学报,2009,28(5):121-126.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700