用户名: 密码: 验证码:
保护性耕作农田碳循环规律和调控研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本试验于2010-2012年间以我国最具代表性的黄淮海平原小麦-玉米一年两熟农田为研究对象,以小麦、玉米两作一体化秸秆不同还田量和保护性耕作生产为技术主体,研究保护性耕作条件下的农田土壤碳循环时空变化规律,农田温室气体的时空排放规律,农作物秸秆还田量调节对农田碳循环的影响、作物生产动力消耗规律与生产投入经济适性;以期探寻在麦-玉两熟保护性耕作措施下的农田碳循环规律与调控研究,为麦-玉两熟保护性耕作技术体系推广应用提供依据。碳元素作为温室气体的主要组成元素,进一步研究农田碳元素的循环规律和调控,对实现低碳农业目标和农业可持续发展都具有重要意义。主要研究结果如下:
     1保护性耕作农田土壤固碳规律及调控
     秸秆全量还田下,保护性耕作农田土壤的有机碳、全氮含量增加,土壤容重降低。转变耕作方式后,土壤有机碳与原方式相比显著增加,其中免耕转变为深松后增幅达4.0%以上。随玉米秸秆还田量的增加,土壤有机碳和全氮提高的幅度越大。秸秆还田和转变耕作方式都能降低土壤容重,年均降低约0.5g· cm~(-3)。
     保护性耕作的农田,年度0-20cm土层碳氮比平均增幅为1.02,转变耕作方式后年均提高碳氮比1.26。增加秸秆还田量可以提高土壤的碳氮比。
     保护性耕作农田,深松耕作具有最强的固碳能力。转变耕作方式和增加秸秆还田量,都能增加土壤固碳量。免耕转深松后年固碳增加效果极显著。
     2保护性耕作农田作物的固碳规律及调控
     深松秸秆全量还田的产量最高,常规耕作只比免耕高1.03%。转变耕作方式后,作物增产幅度每年达2.9%。保护性耕作转为深松耕作,有利于提高作物产量。秸秆全量还田比部分还田增产显著。
     保护性耕作农田的作物固碳量高于常规耕作,深松耕作固碳量最高;转变耕作方式和秸秆还田都有利于提高农田作物固碳量。
     3保护性耕作农田的土壤呼吸规律及影响因素
     保护性耕作农田玉米季土壤呼吸速率比小麦季平均高5.8倍。麦季农田白天土壤呼吸速率为夜间的1.1-1.5倍,玉米季是夜间的1.93倍。常规耕作方式的土壤呼吸最高,而免耕土壤呼吸最低。转变耕作方式后,除免耕外,土壤呼吸表现出降低趋势。秸秆还田量与土壤呼吸呈显著地正相关关系。
     土壤呼吸与20cm土壤有机碳极显著相关;在一定的土壤水分范围内,土壤呼吸与土壤水分正相关。
     保护性耕作农田年度土壤呼吸排碳量平均比常规耕作低1.3t/hm~2,转变耕作方式后农田土壤呼吸与原方式相比增减范围在1.5%左右,秸秆还田增加土壤呼吸碳排量,常规全量还田是不还田的1.11倍。
     4保护性耕作下农田生产投入对碳循环的影响
     不同耕作方式的农田年度生产性碳投入相差较小,总量相差不到2.5%。在小麦生产中,除深松耕作外,常规耕作机械碳排放量最大。.玉米生产机械碳排量仅相当于小麦季的75.8%。麦-玉两季的生产资料的投入比较接近。化肥碳投入占总量的一半以上。
     不同处理的麦-玉两熟农田,玉米的生产利润平均是小麦的1.14倍。全年效益最高的耕作方式是深松耕作,达到20691.4元/hm~2,除免耕外,保护性耕作的经济效益要高于常规耕作。
     保护性耕作农田生产投入的碳排放与常规耕作相比,除机械碳排量有差异,总体并不显著,但经济效益相差显著。
     5保护性耕作农田温室气体的排放规律及影响因素
     5.1CH_4的排放规律及影响因素
     保护性耕作农田表现为大气CH_4的汇,夏季高,冬季低;玉米生长季CH_4吸收平均水平比麦季高4~5倍。保护性耕作农田CH_4吸收小于常规耕作。秸秆还田减少了甲烷吸收通量。转变耕作方式增加了CH_4吸收量,但增量不到2%。
     保护性耕作农田CH_4吸收主要与耕作方式、秸秆还田量等相关。常规耕作CH_4吸收通量比相应的免耕处理要高8.65%。CH_4的吸收通量与地表温度显著性正相关。CH_4的吸收通量与土壤水分负相关,与土壤有机碳呈显著的正相关性。
     常规耕作农田年度CH_4吸收量比保护性耕作平均高10.5%,保护性耕作方式转变对CH_4吸收量略有提高,年均4.34%。全量秸秆还田比不还田年度减少CH_4吸收量约12.7%。
     5.2N_2O的排放规律及影响因素
     保护性耕作农田N_2O排放具有明显的季节变化。N_2O日排放呈现昼高夜低的变化趋势。N_2O排放量随温度的变化升高。玉米季节N_2O排放通量高于麦季。
     常规耕作农田年度N_2O排放比保护性耕作平均低2.3%,保护性耕作方式转变对N_2O排放略有提高,年均2.27%。全量秸秆还田比不还田农田年度N_2O排放量高约8.1%。
     5.3CO_2的排放规律及影响因素
     保护性耕作农田CO_2排放玉米季比小麦季高2.1倍。耕作方式转变后,CO_2排放量较原耕作方式降低。随着秸秆还田量的增加,CO_2的排放量增加;CO_2的排放与大气温度呈显著的正相关性。
     常规耕作农田CO_2年度排放平均比保护性耕作高2.43tCO_2·hm~(-2)·a~(-1)。转变耕作方式后CO_2排放平均比对照降低0.93tCO_2·hm~(-2)·a~(-1),秸秆还田促进了农田的CO_2排放,全量还田比不还田高14.4%。
     保护性耕作农田全年的CO_2排放占总温室效应的97.4%,N_2O占2.88%,而CH_4的吸收只占0.27%。降低农田温室气体的温室效应,主要是降低农田CO_2的排放。适量的秸秆还田和耕作方式的转变都利于减少农田温室效应。
     6不同玉米秸秆还田方式的确定
     玉米秸秆的能量值底部最高,而主要营养成分顶部最高,从综合利用角度评价,留茬0.5m秸秆还田比较合理。
     7保护性耕作农田的碳循环规律和碳效率
     7.1保护性耕作农田生产的碳效率
     保护性耕作农田的深松耕作的碳效率最高,免耕处理的碳效率最低。转变耕作方式和秸秆还田显著提高农田的碳效率。玉米生产的碳效率高于小麦。
     7.2保护性耕作农田的碳循环规律
     保护性耕作农田生态系统中,深松耕作的年度净固碳量最大,达到5.801tCE/hm~2,最少的是常规耕作,比深松相差2.199tCE/hm~2。免耕转深松后,固碳量提高了22.96%。秸秆还田不能显著提高农田生态系统年度净固碳量,与还田量并不成线性关系。0.5米的玉米秸秆还田是较好的提高农田生态系统固碳量的途径。
     在整个农田生态系统的碳循环中,土壤呼吸排放碳量占年度总量的40.66%,生产投入占4.11%,农田CH_4吸收量占0.1%,作物固碳为55.13%,土壤固碳占4.97%。要减少农田碳排放,主要是减少土壤呼吸的量,增加作物固碳量。保护性耕作及转变耕作方式都能显著提高农田净固碳量。
     7.3保护性耕作农田的碳生态足迹
     深松耕作农田的碳生态盈余最高,常规耕作方式最低,仅占深松的55.8%。转变耕作方式显著地增加碳生态盈余:免耕变为深松后,碳生态盈余提高了16.6%。碳生态盈余与秸秆还田量并不呈比例关系,0.5米的秸秆还田方式碳生态盈余最大。
     综上所述,保护性耕作技术作为常规耕作的替代方式,无论是理论方面,还是生产实践技术方面都具有固碳减排的可行性。改变耕作方式和适量的秸秆还田都是较好的增加农田固碳、实现低碳生产的有效方法。
By the study object of the representative farmland doubled cropped with wheat andmaize in Huang Huai Hai Plain, and with the main technique subject of production underdifferent quantity of straw returned and conventional tillage, the experiment was carried outfrom2010-2012. To explore the rules and regulation of carbon cycle in conventional tillagefarmland that doubled cropped with wheat and maize, and provide the basis for conservationtillage technology popularization and application, the experiments studied the laws of soilspatio-temporal variation on soil carbon cycle, greenhouse gases emission, and the effects ofthe carbon cycle under different the amount of crop straw returned. As the main component ofgreenhouse gases, for realizing the goal of low carbon agriculture and agricultural sustainabledevelopment, it is important to research the rules of carbon cycle and regulation further. Themain results were as follows:
     1Rules of soil carbon sequestration and regulation under conservational tillagefarmland
     Under the whole straw returned, soil organic carbon, total nitrogen content increased andsoil bulk density decreased in conservational tillage farmland. Soil organic carbon increasedsignificantly compared with the original way in the transformed tillage farmland, and itincreased4.0%or more in the farmland changed from Zero tillage to subsoil tillage. Soilorganic carbon and total nitrogen increased higher with the increased quantity of corn strawreturned. Straw returned and the cultivation transformation can reduce soil bulk density, and itdecreased about0.5g· cm-3average one year.
     Under different conservational tillage, carbon nitrogen ratio in0-20cm soil layerincreased average1.02one year, and it increased1.26in tillage convension farmland. Thecarbon nitrogen ratio increased higher with the increased quantity of corn straw returned.
     Subsoil tillage has the strongest ability of carbon sequestration. The modes of tillagetransformed and the straw returned were all enhanced the amount of soil carbon sequestration.The annual average quantity of soil carbon sequestration increased significantly under themodes of zero tillage changed to subsoil tillage.
     2Rules and regulation of carbon sequestration on crop in conservational tillagefarmland
     Crop yield in subsoil tillage farmland was highest. The yield was increased1.03%higherin conventional tillage farmland than it in zero tillage. The crop yield was increased2.9%everyear after the tillage transformed. It was to be benefit of the crop yield by convension tillage.Under straw present farmland, the crop yield was increased significantly than straw returnedpartly.
     In conservation tillage farmland, the amount of crop carbon sequestration was higher thanconventional tillage, and it in the subsoil tillage was highest. The modes of tillage conversionand the quantity increased of straw returned were both benefit of crop carbon sequestration.
     3Rules and influence factors on soil respiration in conservational tillage farmland
     In conservational tillage farmland, the speed ratio of soil respiration in wheat growthseason was higher meanly5.8times than it in maize. In wheat period, during daytime, thespeed ratio of soil respiration was1.1-1.15times higher than it in night in wheat season, and itwas1.93times higher in maize season than it in wheat season. The soil respiration washighest in conventional tillage farmland, but it was lowest in zero. The trend of soilrespiration reduced after the tillage changed, except zero tillage.
     Soil respiration was significantly positive correlation with the quantity of straw returned,and it was the same correlation with soil organic carbon content. Soil respiration was positivecorrelation with soil moisture.
     In conservational tillage farmland, the annual amount of carbon emission on soilrespiration was lower mean1.3t/hm~2than conventional tillage. After transformation ofcultivation, the range of soil respiration increased or decreased about1.5%compared with theoriginal way. The pattern of straw returned could change the carbon emission of soilrespiration. Soil respiration in conventional tillage and straw present farmland was1.11timeshigher than straw absent.
     4Effects of carbon cycle on production inputs in conservational tillage farmland
     The annual production carbon inputs were smaller difference in different tillage farmland,it was less than2.5%difference in each tillage farmland. In wheat growth period, themachinery carbon emissions of conventional tillage were maximum, except subsoil tillage.The machinery carbon emissions in maize season were only account for75.8%in wheat. Thewheat inputs of production means was approach to maize.The fertilizer inputs was above thehalf of total inputs.
     The mean production profit of maize was1.14times than wheat. The benefit of subsoiltillage was20691.4Yuan/hm~2, and it was the highest benefit way in whole year. The benefit ofcrop production on conservational tillage was higher than it on conventional.
     Compared with conservational tillage, the production carbon inputs was non-significantdifference than conventional tillage, but carbon emission of machinery. The economicbenefits of conservational tillage was significant different from conventional tillage.
     5Rules and influence factors on emission of greenhouse gases in conservational tillagefarmland
     5.1Rules and influence factors on emission of CH_4
     In conservation tillage farmland, CH_4was absorbed from atmosphere, the uptake washigher in summer, and lower in winter; The CH_4absorption flux in maize growth season was4~5times higher than it in wheat season. CH_4absorption flux in conservation tillage farmlandwas smaller than it inconventional tillage. Straw returned could reduce the CH_4uptake flux.Tillage transformation increased CH_4absorption, but the increment of it was less than2%.
     The CH_4uptake flux was mainly related with farming modes, quantity of straw returned,etc. CH_4absorption fluxes in conventional tillage was8.65%higher than the correspondingzero tillage treatment. The absorption of CH_4flux was significant positive correlation with thesoil surface temperature, was negatively related to the soil moisture, and was significantlypositive correlation with soil organic carbon.
     5.2Rules and influence factors on N_2O emissions
     N_2O emission has obvious seasonal variation in conservation tillage farmland. N_2Oemissions, and it in daytime was high, the night was low. N_2O emissions rise along with theadd of temperature. N_2O emission flux in corn season was higher than wheat.
     The annual CH_4uptake flux in conventional tillage farmland was10.5%higher thanconservation tillage. CH_4uptake flux increased slightly under tillage mode shift, by anaverage of4.34%in one year. The annual CH_4uptake flux in straw present farmlanddecreased about12.7%than straw absent.
     The annual N_2O emissions flux in Conventional tillage farmland was2.3%lower thanconservation tillage. N_2O emissions flux increased an average of2.27%slightly under tillagemodes shift. The annual N_2O emission under straw present was higher8.1%than straw absent.
     5.3Rules and influence factors on CO_2emissions
     In conservation tillage farmland, CO_2emission in corn season was2.1times higher thanin wheat. Compared with original farming methods, the CO_2emissions reduced after farmingtransformation. With the amount of straw returned increased, the CO_2emissions increased;CO_2emission was significant correlation with atmospheric temperature.
     The average annual CO_2emissions under conventional tillage was higher2.43tCO_2·hm~(-2)· a~(-1)than conservation tillage. After Farming transformation, CO_2emissions reduce 0.93tCO_2·hm~(-2)·a~(-1)than original farming methods. Straw present increased farmland's CO_2emissions, and it was14.4%higher than straw absent.
     Throughout the year, in conservation tillage farmland, the total greenhouse effects ofCO_2accounted for97.4%of the total greenhouse effect, and N_2O occupied2.88%, and theabsorption of CH_4was only0.27.To reduce farmland greenhouse effect of greenhouse gases,we should primarily reduce CO_2emissions. The reasonable amount of straw returned and thetillage conversion can reduce the greenhouse effect in farmland.
     6Determination of the way on different height corn straw returned
     The energy value of Maize straw at the straw bottom is the highest, and the mainnutrients at the top is the highest. Evaluating from comprehensive utilization of maize straw,we think the way of0.5m stubble returned is reasonable.
     7The carbon cycle laws and carbon efficiency in Conservation tillage farmland
     7.1The carbon efficiency in Conservation tillage farmland
     The carbon efficiency in subsoil tillage farmland was highest, and the zero tillage waslowest. The modes of tillage transformed and the quantity of straw returned improved thecarbon efficiency Significantly. The carbon efficiency of maize was higher than wheat.
     7.2The carbon cycle laws in Conservation tillage farmland
     Among the conservation tillage farmland ecological system, the amount of annual netcarbon fixed in subsoil tillage farmland was5.801tCE/hm~2, and it was the maximum tillage.The lowest mode was conventional tillage, and it was less2.199tCE/hm~2than subsoil. Thefixed carbon content in zero tillage changed farmland was improved22.96%one year. Strawreturning not enhanced the net amount carbon fixed Significantly, and it was not a linearrelationship with quantity of straw returned. The way of0.5m straw returned is better toimprove carbon fixation.
     In the carbon cycle of farmland ecosystem, carbon emissions of soil respiration accountfor40.66%in annual total carbon emissions, production inputs was4.11%, CH_4uptake offarmland accounts for0.1%, crop fixed carbon was55.13%, and carbon sequestration in soilaccounting for4.97%. To reduce carbon emissions, we should reduce the amount of soilrespiration mainly, and increase crop carbon fixation. Conservation tillage and thetransformation of cultivation can improve net amount of carbon sequestration.
     7.3Carbon ecological footprint in conservation tillage farmland
     Carbon ecological surplus in subsoil farmland was the highest, and conventional was thelowest, it account for55.8%of subsoil. Transformation of cultivation significantly increasedcarbon ecological surplus: carbon ecological surplus increased by16.6%under zero tillage changed. Carbon ecological surplus is not a proportional relationship with the amount ofstraw returned. The carbon ecological surplus by0.5meters way of straw returned is thelargest.
     Above all, as an alternative to conventional tillage, both on theoretical aspect, and on theproduction practice technique, conservational tillage technology has feasibility of carbonemission reduction. Conversion tillage and appropriate amount of straw returned are effectiveway to increase carbon sequestration in farmland, and it will be realized low carbonproduction.
引文
阿斯嘎,高丽,朴顺姬,等.库布齐沙地土壤呼吸及其影响因素分析[J].草业科学,2009,26(9):99-104.
    鲍士旦.土壤农化分析[M].北京:中国农业出版社,2000.
    蔡祖聪,沈光裕,颜晓元.土壤质地、温度和Eh对稻田甲烷排放的影响[J].土壤学报,2008,35(2):145-152.
    蔡太义,贾志宽,孟蕾,等.渭北旱塬不同秸秆覆盖量对土壤水分和春玉米产量的影响[J].农业工程学报,2011,27(3):43-48.
    陈苇,卢婉芳.稻草还田对晚稻稻田甲烷排放的影响.土壤学报,2002,39(2):170~176.
    陈全胜,李凌浩,韩兴国,等.典型温带草原群落土壤呼吸温度敏感性与土壤水分的关系[J].生态学报,2004,24(4):831-836.
    陈卫洪.低碳农业发展影响因素的回归分析[J].农村经济,2010,2:19-24.
    陈中云,闵航,陈美慈等.不同水稻土甲烷氧化菌和产甲烷菌数量与甲烷排放量之间相关性的研究[J].生态学报,2001,21(9):1498-1505.
    戴万宏,王益权,黄耀,刘军,赵磊.农田生态系统土壤CO2释放研究[J].西北农林科技大学学报,2004,31(12):1-7.
    董玉红,欧阳竹.有机肥对农田土壤二氧化碳和甲烷通量的影响[J].应用生态学报,2005,16(7):1303-1307.
    段华平,张悦,赵建波,卞新民.中国农田生态系统的碳足迹分析[J].水土保持学报,2011,25(5):203-208.
    董红敏,李玉娥,陶秀萍,彭小培,李娜,朱志平.中国农业源温室气体排放与减排技术对策[J].农业工程学报,2008,24(10):269-273
    杜睿.内蒙古大针茅草原N2O和CH4通量变化特征[J].中国环境科学,2001,21(4):289~292.
    樊纲.走向低碳经济发展:中国与世界—中国经济学家建议[M].北京:中国经济出版社.2001: p94.
    范建.保护性耕作体系独特适用,农民一学就会[N].科技日报,2009-11-10.
    高飞,贾志宽,路文涛,韩清芳,杨宝平,侯贤清.秸秆不同还田量对宁南旱区土壤水分、玉米生长及光合特性的影响[J].生态学报,2011,31(3):0777-0783.
    高旺盛,陈源泉等.基于农业生态服务价值的农业绿色GDP核算指标体系初探[J].农业现代化研究,2005,(1):1-5.
    高旺盛,陈源泉,董文.发展循环农业是低碳经济的重要途径[J].中国生态农业学报2010,18(5):45-52
    高会议,郭胜利,刘文兆.黄土旱塬裸地土壤呼吸特征及其影响因子[J].生态学报,2011,31(18):5217-5224.
    宫亮,孙文涛,王聪翔,等.玉米秸秆还田对土壤肥力的影响[J].玉米科学,2008,16(2):122-124.
    付国占,李潮海,王俊忠等.残茬覆盖与耕作方式对夏玉米光合产物生产与分配的影响[J].华北农学报,2005,20(3):62-66.
    付清茂.收获时间\贮存时间及添加剂对玉米秸秆营养价值的影响[D].乌鲁木齐:新疆农业大学,2008.
    黄国宏,陈冠雄,吴杰.东北典型旱作农田N2O和CH4排放通量研究[J].应用生态学报,1995,6(4):383-386
    贺京,李涵茂,方丽,胡啸,孔维才.秸秆还田对中国农田土壤温室气体排放的影响[J].中国农学通报,2011,27(20):246-250.
    韩宾,孔凡磊,张海林,陈阜.耕作方式转变对小麦/玉米两熟农田土壤固碳能力的影响[J].应用生态学报.2010,21(1):91-98
    韩广轩,周广胜,许振柱.玉米农田生态系统土壤呼吸作用季节动态与碳收支初步估算[J].中国生态农业学报,2009,17(5):874-879.
    韩鲁佳,闫巧娟,刘向阳,胡金有.中国农作物秸秆资源及其利用现状[J].农业工程学报,2002,18(3):8791.
    韩宾,李增嘉,王芸,等.土壤耕作及秸秆还田对冬小麦生长状况及产量的影响[J].农业工程学报,2007,23(2):48-53.
    韩春梅.龙口市农业发展现状与保护性耕作研究[D].山东农业大学,2005.
    胡玉琼,王跃思,纪宝明,等.内蒙古草原温室气体排放日变化规律研究[J].南京气象学院学报,2003,26(1):29-37.
    黄国宏,陈冠雄,张志明,等.玉米N2O排放及减排措施研究[J].环境科学学报,1998,18(4):344-349.
    黄耀,焦燕,宗良纲,等.土壤理化特性对麦田N2O排放影响的研究[J].环境科学学报,2002,22(5):598-602.
    贾丙瑞,周广胜,王风玉,等.放牧与围栏羊草草原土壤呼吸作用及其影响因子[J].环境科学,2005,26(6):1-7.
    强学彩,袁红莉,高旺盛.秸秆还田量对土壤CO2释放和土壤微生物量的影响[J].应用生态学报,2004,15(3):469-472.
    江晓东,迟淑筠,王芸,等.少免耕对小麦/玉米农田玉米还田秸秆腐解的影响[J].农业工程学报,2009,25(10):247-251.
    蒋静艳,黄耀,宗良纲.环境因素和作物生长对稻田CH4和N2O排放的影响[J].农业环境科学学报,2003,22(6):711-714.
    蒋向,任洪志,贺德先.玉米秸秆还田对土壤理化性状与小麦生长发育和产量的影响研究进展.麦类作物学报,2011,31(3):569-574
    库丽霞,陈彦惠,岳建芝,张百良,吴连成.玉米秸秆能量指标的测定和利用研究[J].玉米科学,2004,12(1):114-118.
    劳秀荣,孙伟红,王真,等.秸秆还田与化肥配合施用对土壤肥力的影响[J].土壤学报,2003,40(4):618-623.
    卢宁,李晋川,郭春燕等.露天煤矿复垦地土壤呼吸的日变化研究—以平朔安太堡露天煤矿排土场为例[J].山西农业科学,2010,38(4):52-54,64.
    路文涛,贾志宽,等.秸秆还田对宁南旱作农田土壤活性有机碳及酶活性的影响[J].农业环境科学学报,2011,30(3):522-528
    罗其友,唐华俊,姜文来.农业水土资源高效持续配置战略[J].资源科学,2001,23(2):4245.
    骆世明.我国农业发展可用低碳农业代替高碳农业[J].生态学报,2009,34(2):0341-0348.
    李全起,陈雨海,于舜章,等.灌溉与秸秆覆盖条件下冬小麦农田小气候特征[J].作物学报,2006,32(2):302-309.
    李向东,陈尚洪,陈源泉等.四川盆地稻田多熟高效保护性耕作模式的生态系统服务价值评估[J].生态学报,2006,26(11):3782-3788
    李克让.土地利用变化和温室气体净排放与陆地生态系统碳循环[M].北京:气象出版社,2002.
    李少昆,王克如,冯聚凯,等.玉米秸秆还田与不同耕作方式下影响小麦出苗的因素[J].作物学报,2006,32(3):463-465.
    李京京,白金明.中国生物质能资源可获得性评价[M].北京:中国环境科学出版社,1998.
    李洁静,潘根兴,李恋卿,张旭辉.红壤丘陵双季稻稻田农田生态系统不同施肥下碳汇效应及收益评估.农业环境科学学报,2009(12):2520-2525.
    李明峰,董云社,齐玉春,等.极端干旱对温带草地生态系统CO2、CH4、N2O通量特征的影响.资源学,2004,26(3):89-95.
    李琳.保护性耕作对土壤有机碳库和温室气体排放的影响[D].北京:中国农业大学,2007.
    李琳,张海林,陈阜,等.不同耕作措施下冬小麦生长季农田二氧化碳排放通量及其与土壤温度的关系.应用生态学报,2007,18(12):2765-2770.
    刘德军,陶学宗,高连兴.牛饲料用干玉米秸秆营养分布规律及适口性研究[J].沈阳农业大学学报,2009,12,40(6):740-743
    刘武仁,郑金玉,罗洋,郑洪兵,李瑞平,李伟堂,等.玉米秸秆还田对土壤呼吸速率的影响.玉米科学,2011,19(2):108-113.
    刘巽浩,高旺盛,朱文珊.秸秆还田的机理与技术模式[M].北京:中国农业出版社,2001.
    刘建民,胡立峰,张爱军.保护性耕作对农田温室效应的影响研究进展[J].农艺科学,2006,22(8):246-249.
    刘建国,卞新民,李彦斌,张伟,李崧.长期连作和秸秆还田对棉田土壤生物活性的影响[J].应用生态学报,008,19(5):1027-1032.
    刘小燕,黄璜,杨治平,等.稻鸭鱼共栖生态系统CH4排放规律研究[J].生态环境,2006,15(2):265-269.
    刘阳,李吾强,温晓霞,等.玉米秸秆还田对接茬冬小麦旗叶光合特性的影响[J].西北农业学报,2008,17(2):80-85.
    柳敏,宇万太,姜子绍,等.土壤活性有机碳[J].生态学杂志,2006,25(11):1412-1417.
    罗吉文,许蕾.论低碳农业的产生、内涵与发展对策[J].农业现代化研究,2010,6(31):38-39.
    罗伟雄,董志灵.农村生态环境恶化的成因及战略对策[M].北京:社会科学文献出版社,2009, p255.
    马玉芳,蔡立群,等.不同耕作措施下土壤有机碳含量的模拟研究[J].自然资源学报,2011,26(9):1546-1554.
    马永良,师宏奎,张书奎.玉米秸秆整株全量还田土壤理化性状的变化及其对下茬小麦生长的影响[J].中国农业大学学报,2003,8(Zl):42-46.
    马静,徐华,蔡祖聪.焚烧麦秆对稻田CH4和N2O排放的影响[J].中国环境科学,2008,28(2):107-110.
    马友华,王桂苓,石润圭,黄文星,赵艳萍,孙兴旺,吴春蕾.低碳经济与农业可持续发展[J].生态经济,2009(6):116-118.
    孟祥利,陈世苹,魏龙,林光辉.库布齐沙漠油蒿灌丛土壤呼吸速率时空变异特征研究[J].环境科学,2009,0(4):1152-1158.
    孟凡乔,关桂红,张庆忠.华北高产农田长期不同耕作方式下土壤呼吸及其季节变化规律[J].环境科学学报,2006,26(6):992-999.
    牛新胜,马永良,牛灵安,等.玉米秸秆覆盖冬小麦免耕播种对土壤理化性状的影响[J].华北农学报,2007,22(S2):158-163.
    欧阳学军,周国逸,黄忠良,等.土壤酸化对温室气体排放影响的培育实验研究[J].中国环境科学,2005,25(4):465-470.
    潘红丽,赵秀兰,谢祖彬,等.大气CO2浓度升高对农田生态系统的影响[J].云南环境科学,2005,24(4):6-9.
    潘根兴,李恋卿,张旭辉,等.中国土壤有机碳库量与农业土壤碳固定动态的若干问题.地球科学进展,2003,18(4):609-618.
    逄蕾,黄高宝.不同耕作措施对旱地土壤有机碳转化的影响[J].水土保持学报,2006,20:705-713.
    齐玉春,董云社,章申.华北平原典型农业区土壤甲烷通量研究[J].农村生态环境,2002,18(3):56-58,66.
    秦小光,蔡炳贵,吴金水,等.土壤温室气体昼夜变化及其环境影响因素研究[J].第四纪研究,2005,25(3):376-388.
    任力.低碳经济与中国经济可持续发展[J].社会科学家,2009(2):47-50.
    宋长春,王毅勇,王跃思,等.季节性冻融期沼泽湿地CO2、CH4和N2O排放动态[J].环境科学,2005,26(4):7-12.
    宋长春,王毅勇,王跃思,等.人类活动影响下淡水沼泽湿地温室气体排放变化[J].地理科学,2006,26(1):82-86.
    孙星,刘勤,等.长期秸秆还田对土壤肥力质量的影响[J].土壤,2007,39(5):782-786.
    孙善彬.华北平原典型农田甲烷通量及其影响因子研究[D].学位论文,北京林业大学,2007年6月.
    谭周进,周卫军,张杨珠,等.不同施肥制度对稻田土壤微生物的影响研究[J].植物营养与肥料学报,2007,13(3):430-435.
    田保书.豫东潮土长期施钾和秸秆还田对冬小麦-夏玉米产量和土壤钾养分含量的影响[J].现代农业科技,2011,8:267-269
    田云,李波,张俊飚.我国农地利用碳排放的阶段特征及因素分解研究.中国地质大学学报,2011,11(1):59-63.
    田慎重,宁堂原,李增嘉,等.不同耕作措施对华北地区麦田CH4吸收通量的影响[J].生态学报,2010,30(2):0541-0548.
    王改玲,郝明德,陈德立.秸秆还田对灌溉玉米田土壤反硝化及N2O排放的影响[J].植物营养与肥料学报,2006,12(6):840-844.
    王昀.低碳农业经济略论[J].中国农业信息,2008(8):12-15.
    王改玲,陈德立,李勇.土壤温度、水分和NH4+-N浓度对土壤硝化反应速度及N2O排放的影响[J].中国生态农业学报,2010,18(1):1-6.
    王建林,赵风华,欧阳竹.灌溉量对灌浆期麦田土壤呼吸的影响[J].华北农学报,2010,25(3):186-189.
    王义祥,翁伯琦,黄毅斌.全球气候变化对农业生态系统的影响及研究对策[J].亚热带农业研究,2006,2(3):203-207.
    王淑平,周广胜,姜岩,等.添加玉米残体对土壤-植物系统中氮素转化的影响[J].应用生态学报,2004,15(3):449-452.
    王立刚,李虎,邱建军,唐华, Changsheng Li.田间管理措施对土壤有机碳含量影响的模拟研究[J].中国土壤与肥料,2010,(6):29-36.
    王艳芬,马秀枝,纪宝明.内蒙古草甸草原CH4和N2O排放通量的时间变异[J].植物生态学报,2008,27(6):792-796.
    王建林,赵风华,欧阳竹.灌溉量对灌浆期麦田土壤呼吸的影响[J].华北农学报,2010,25(3):186-189.
    王旭,周广胜,蒋延玲,等.长白山红松针阔混交林与开垦农田土壤呼吸作用比较[J].植物生态学报,2006,30(6):887-893.
    吴崇海,顾士领.高留麦茬的整体效应与配套技术研究[J].干旱地区农业研究,1996,14(1):43-48.
    伍芬琳,张海林,李琳,等.保护性耕作下双季稻农田甲烷排放特征及温室效应[J].中国农业科学,2008,41(9):2703-2709.
    肖嫩群,张杨珠,谭周进,等.稻草还田翻耕对水稻土微生物及酶的影响研究[J].世界科技研究与发展,2008,30(2):192-194.
    谢军飞,李玉娥.农田土壤温室气体排放机理与影响因素研究进展[J].中国农业气象,2002,23(4):47~52.
    徐国伟,谈桂露,王志琴,刘立军,杨建昌.秸秆还田与实地氮肥管理对直播水稻产量、品质及氮肥利用的影响[J].中国农业科学,2009,42(8):2736-2746.
    徐华,邢光熹,蔡祖聪,等.土壤质地对小麦和棉花田N2O排放的影响[J].农业环境保护,2000,19(1):1-3.
    徐文彬,刘维屏,刘广深.温度对旱田土壤N2O排放的影响研究[J].土壤学报,2002,39(1):1-8.
    肖小平,伍芬琳,黄风球.不同稻草还田方式对稻田温室气体排放影响研究[J].农业现代化研究,2007,28(5):629-632.
    姚润丰.农业机械化水平达38%[N].人民日报,2007-01-03(2).
    杨兰芳,蔡祖聪.施氮和玉米生长对土壤氧化亚氮排放的影响[J].应用生态学报,2005,16(1):100-104.
    杨兰芳,蔡祖聪.玉米生长中的土壤呼吸及其受氮肥施用的影响[J].土壤学报,2005,42(1):9-15.
    杨书运,严平,马友华.施肥对冬小麦土壤温室气体排放的影响[J].生态环境学报,2010,19(7):1642-1645
    杨思存,霍琳,王建成.秸秆还田的生化他感效应研究初报[J].西北农业学报,2005,l4(1):52-56.
    叶文培,王凯荣, J.S.E,等.添加玉米和水稻秸秆对淹水土壤pH,二氧化碳及交换态的影响[J].应用生态学报,2008,19(2):345-350.
    易志刚,蚁伟民,周国逸,等.鼎湖山三种主要植被类型土壤碳释放研究[J].生态学报,2003,23(8):1673~1678.
    岳进,黄国宏,梁巍,等.不同水分管理下稻田土壤CH4和N2O排放与微生物菌群的关系[J].应用生态学报,2003,14(12):2273~2277.
    赵荣钦,黄贤金,钟泰洋.中国不同产业空间的碳排放与碳足迹分析[J].地理学报,2010,65(9):1048-1057.
    赵鹏,陈阜.豫北秸秆还田配施氮肥对冬小麦氮利用及土壤硝态氮的短期效应[J].中国农业大学学报,2008,13(4):19-23.
    赵其国,黄国勤,钱海燕.低碳农业[J].土壤,2011,43(1):1-5
    赵荣钦,黄爱民,秦明周.农田生态系统服务功能及其评价方法研究[J].农业系统科学与综合研究,2003,19(4):267-270.
    张成玉.农业环境效益评价方法研究[J].中国人口·资源与环境.2010,20(3):361-364.
    张电学,韩志卿,李东坡,等.不同促腐条件下秸秆还田对土壤微生物量碳氮磷动态变化的影响[J].应用生态学报,2005,16(10):1903-1908.
    张智峰,张卫峰.我国化肥施用现状及趋势[J].磷肥与复肥,2008,23(6):9-12.
    郑伟,张静,刘阳,等.低施肥条件下秸秆还田对冬小麦旗叶衰老的影响[J].生态学报,2009,29(9):4967-4974.
    邹建文,黄耀,宗良纲,等.稻田灌溉和秸秆施用对后季麦田N2O排放的影响[J].中国农业科学,2003,36(4):409-414.
    周志田,成升魁,刘允芬,等.中国亚热带红壤丘陵区不同土地利用方式下土壤CO2排放规律初探[J].资源科学,2002,24(2):83-87.
    周兴祥,高焕文,刘晓峰.华北平原一年两熟保护性耕作体系试验研究[J].农业工程学报,2001,17(6),81-84.
    周存宇,周国逸,王迎红,等.鼎湖山针阔叶混交林土壤呼吸的研究[J].北京林业大学学报,2005,27(4):23-29.
    周萍,潘根兴,李恋卿,等.南方典型水稻土长期试验下有机碳积累机制[J].中国农业科学,2009,42(12):4260~4268.
    曾其良,王述洋,李二平,谭文英.玉米秸秆直接液化产物分析与热量衡算[J].新能源产业,2007,(05):26-30
    曾木祥,王蓉芳,彭世琪,等.我国主要农区秸秆还田试验总结[J],土壤通报,2002,33(5):336-339.
    钟杭,黄锦法.稻麦秸秆全量还田对作物产量和土壤的影响[J].浙江农业学报,2002,14(6):344-347.
    Andson I C, Pothma.Controls on fluxes of trace gases from Brazilaian Cerrado soils[J].Journal of Environmental Quality,1998,27:1117-1224.
    Arnold K Von,Weslien P, Nilsson M, et al.. Fluxes of CO2, CH4and N2O from drainedconiferous forests on organic soils. Forest Ecology and Management,2008,210(1-3):239-254
    Baggs E M, Blum H. CH4oxidation and emissions of CH4and N2O from Lolium perenneswards under elevated atmospheric CO2. Soil Biology&Biochemistry,2004,36(4):713~723.
    Bationo, A., Kihara, J., Vanlauwe, B.,Waswa, B. Soil organic carbon dynamies,functions andmanagement in west African agro-ecosystems.Agricultural Systems,2007,94:13-25.
    Bishal K S, Lars R B, Gunnar A. N-fertilization and soil acidification effects on N2O and CO2emission from temperate pine forest soil [J]. Soil Biology&Bio-chemistry,1995,27(11):1401-1408.
    Boucher O, Haigh J, Hauglustaine D, et al. Radiative forcing of climate.In: Climate Change,IPCC Scientific Assessment2001. Cambridge: Cambridge University Press.2001.388~389.
    Canadell J G, Le Quere C, Raupach M R, Field C B, Buitenhuis E T, Ciais P, Conway T J,Gillett N P, Houghton R A, Marland G.Contributions to accelerating atmospheric CO2growth from economic activity, carbon intensity, and efficiency of natural sinks. ProcNatl Acad Sci USA,2007,104:1886618870.
    Carpenter-Boggs L, Stahl P D, Lindstrom M J, Schumaehef T E. Soil Microbial ProPertiesunder Permanent grass, conventional tillage, and no-till Management in SouthDakota. Soil&Tillage Researeh,2003,71:15-23.
    Chimner R A, Cooper D J. Influence of water table levels on CO2emissions in a Coloradosubalpine fen: an in situ microcosm study. Soil Biology&Biochemistry,2003,35(3):345-351.
    Ciais P, Bousquet P, Freibauer A, Naegler T. Horizontal disPlacement of Carbon associatedwith agriculture and its imPacts on atmospheric CO2. Global Biogeochemieal Cycle,2007,21:1-12.
    Daniel R S, Ali M S, Gegory W M. Effect of soil water content on denitrification during covercrop decomposition [J]. Soil Science,2000,165(4):365-371.
    Daum D, Schenk M K. Influence of nutrient solution pH on N2O and N2emissions from asoilless culture system [J]. Plant Soil,1998,203:279-287.
    Dubey A, Lal R. Carbon footprint and sustainability of agricultural production systems inPunjab, India and Ohio, USA. J Crop Improvement,2009,23:332350
    Dunfield P, Knowles R. Methane production and consumption in temperate and subarctic peatsoils [J]. Soil Biology&Bio-chemistry,1993,25:321-326.
    Dunfield P, Knowles R, Dumont R, Moore T R. Methane production and consumption intemperate and subarctic peat soils: response to temperature and Ph[J]. Soil Biology andBiochemistry,2003,25(3):321-326.
    Fang J Y, Guo Z D, Pu S L, Chen A P.Terrestrial vegetation carbon sinks in China,1981–2000.Sci China (Ser D: Earth Sci),2007,50(9):13411350
    Frank A.B.,Liebig M.A.,Tanaka D.L. Management effeet on soil CO2effiux in northersemiarid grassland and cropland.Soil&Tillage Research,2006,89,78-85.
    Guo L P,Erda L. Carbon sink incropland soils and the emission of greenhouse gases frompaddy soils: are view of work in China.Chenosphere-Global Change Scienee,2001,3:413-418.
    Guo,L B.,Gifferd,R.M.Soil carbon stoeks and land use change:a meta analysis. GlobalChange Biology,2002,8:345-360.
    Grogan P, MIChelsen A, Ambus P, et al.. Freeze-thaw regime effects on carbon and nitrogendynamics in sub-arctic heath tundra mesocosms. Soil Biology&Biochemistry,2004,36(4):641~654.
    Hansen M N, Henriksen K, Sommer S G. Observations of production and emission ofgreenhouse gases and ammonia during storage of solids separated from pig slurry: Effectsof covering. Atmospheric Environment,2006,40:4172-4181.
    Hansen J E, Lacis A A. Sun and dust versus greenhouse gases: An assessment of theirrelative roles in global climate change [J]. Nature,1990,346:713-719.
    IPCC, Climate Change2001: The Scientific Basis, Houghton J T, Ding Y,(Eds.), CambridgeUniversity Press, Cambridge, UK,2001:38-41.
    IPCC, Climate Change1995, Summary for policymakers: the science of climate change,IPCC Second Assess Report,1995,21~24.
    Jones S K, Rees R M, Skiba U M, et al. Greenhouse gas emissions from managed grassland.Global and Planetary Change,2005,47(2-4):201~211.
    JIN Yue, YI Shi, WEI Liang, et al. Methane and Nitrous Oxide Emissions from Rice Field andRelated Microorganism in Black Soil, Northeastern China[J]. Nutrient Cycling inAgroecosystems,2005,73(2-3):293-301.
    Jenkison D S, Adams D E, Wild A. Model estimates of CO2emission from soil in response toglobal warming. Nature,1991,351:304-306.
    Khalil M A K, Shearer M J. Decreasing emissions of methane from rice agriculture.International Congress Series,2006, l293:33-41.
    Lal R, Griffin M, Apt J. Managing soil carbon. Science,2004a,304(4):393.
    Lal R. Soil carbon sequestration impacts on global climate change and food security.Science,2004b,304(11):1623~1627.
    Lal R.Soil carbon sequestration impacts on globale limate change and food security.Scienee,2004,304:1623-1627.
    Lal R.World soils and the greenhouse effeet. Global Change News Letter,1999,37:4-5.
    Lal R.Soils carbon dynamics in cropland and rangeland.Environmental pollution,2002,116:353-362.
    Lal R. Carbon emission from farm operations. Environ Int,2004,30:981990
    Lu F, Wang X K, Han B, Ou-yang Z Y, Duan X N, Zheng H. Assessment on the availability ofnitrogen fertilization in improving carbon seques-tration potential of China’s croplandsoil. Chin J App Ecol.,2008,19(10):22392250
    Martensd A. Plant residue biochemistry regulates soil carbon cycling and carbon sequestration[J]. Soil Biology&Bio-chemistry,2000,32:361-369.
    Mrini M, Senhaji F, Pimentel D. Energy analysis of sugar beet production under traditionaland intensive farming systems and impacts on sustainable agriculture in Morocco. JSustainable Agric,2002,20:528
    Muyty,D.,Kirsehbaurn,M.F.,Mcmurtrie,R.E.,Does conversion Of forest to agrieultural landchange soils carbon and nitrogen?A review of the literature.Global Change Biology,2002,
    Melillo J M, Steudler P A, Aber D, e.. Soil warming and carbon-cycle feedbacks to theclimate systems. Science,2002,298:2173-2176.
    Martensda. Plant residue biochemistry regulates soil carbon cycling and carbon sesquestration[J]. Soil Biology&Bio-chemistry,2000,32:361-369.
    Palcala S W. Consistent Land and atmosphere based U.S.carbon sink estimates. Science,2001,292:2316-2320.
    Paustian K, Andren O, Janzen H, et al.Agricultural soil as a C sink to offset CO2emissions.Soil Use and Management,1997,13:230~244.
    Porter G S, Bajita-locke J B, Hue NV, et al. Manganese solubility and phytotoxicity affectedby soil moisture, oxygen levels, and green manure additions.Communications in SoilScience and Plant Analysis,2004,35(1-2):99-116.
    Prieme A., Christensen S. Seasonal and variation of methane oxidation in a Danish spruceforest[J]. Soil Biology and Biochemistry,1997,29:1165-1172.
    Priha O, Smolander A. Fumigation-extration and substrate-induced respiration derivedmicrobial biomass C, and respiration rate in limed soil of Scot pine sapling stands [J].Biology and Fertility of Soils,1994,17:301-308.
    Raich J W, Schlesinger W H. The global carbon dioxide flux in soil respiration and itsrelationship to vegetation and climate.Tellus,1992,44:81-99
    Reth S, Reichstein M, Falge E.The effect of soil water content, soil temperature, soil pH-valueand the root mass on soil CO2flux modified modes. Plant and Soil,2005,268:21-23.
    Reicosky D C, Archer D W. Moldboard plow tillage depth and short-term carbon dioxiderelease. Soil&Tillage Research,2007,94(1):109~121.
    Richard D. Chronic nitrogen additions reduce total soil respiration and microbial respirationin temperate forest soils at the Harvard Forest Bowden. Forest Ecology and Management,2004,196:43~56.
    Ruo H, Ruan A D, Jiang C J, et al. Responses of oxidation rate and microbial communities tomethane in simulated landfill cover soil microcosms [J]. Bioresource Technology,2008,99(15):7192-7199
    Singh J S, Gupta S R. Plant decomposition and soil respiration interrestrial ecosystems [J].Botanical Review,1997,43:449-528.
    Sheppard S K, Lloyd D. Diurnal oscillations in gas production (O2, CO2, CH4and N2) in soilmonoliths. Biological Rhythm Research,2002,33(5):577-591.
    Subke J A, Reichstein M, Tenhunen J D. Explaining temporal variation in soil CO2efflux in amature spruce forest in Southern Germany.Soil Biology&Biochemistry,2003,8:105-123.
    SUSAN. Rapid exchange between soil carbon and atmospheric carbondioxide driven bytemperature change [J]. Science,1996,272(19):393-396.
    TATE K R, ROSS D J O, BRIEN B J, et al. Carbon storage and turnover, and respiratoryactivity, in the litter and soil of an old-growth southern beech (Nothofagus) forest [J]. SoilBiology&Bio-chemistry,1993,25:1601-16
    Takahashi S, Uenosono S, Ono S. Short and long-term effects of rice straw application onnitrogen uptake by crops and nitrogen mineralization under flooded andupland conditions [J]. Plant and Soil,2003,251(2):291-301.
    Tang H J.Qiu J J. Li, C S. Estimations of organic carbon Storage incropland of China basedon DNDC model. Geodema,2006,134:200-206.
    Tilman, D, Cassman, K.G., Matson, P A, Naylor R, Polasky S. Agricultral Sustainability andintensive Production Praetiees.Nature,2002,418:671-677.
    Ussiri DanD, Lal R, Jarecki M K. Nitrous oxide and methane emissions from long-termtillage under a continuous corn cropping system In Ohio [J]. Soil&Tillage Research,2009,03:1-9.
    Wang l, Qiu J J, Tang H J. Modelling soil organic Carbond dynamics in the major agriculturalregions of China.Geoderina,2008,147:44–55.
    Wang Z P, Delaune R D, Masscheleyn P H, et al. Soil redox and pH effects on methanereduction in a flood rice soil [J]. Soil Science Society of America Journal,1993,57:382-385.
    Wu H B, Guo Z T, Gao Q, Peng C H. Distribution of soil inorganic carbon Storage and itschanges due to agrieultural land use activity in China. Agriculture, Eeosystem sandEnvironrnent.2009,129:413-421.
    Weier K L, Doran J W, Power J F, et al.. Denitrification and the dinitrogen/nitrous oxide ratioas affected by soil water, available carbon, and nitrate [J]. Soil Science Society of AmericaJournal,1993,57:66-72.
    Weinberg Z G, Ashbell G, Chen Y. Stabilization of returned dairy products by ensiling withstraw and molasses for animal feeding[J],Journal of Dairy Science,2003,86(4):13-25.
    West T O, Marland G A. Synthesis of carbon sequestration, carbon emissions, and net carbonflux in agriculture: Comparing tillage practices in the United States. Agriculture,Ecosystems&Environment,2002,91(1/3):217-232.
    Xia D J, RenY F, Shi L F. Measurements of life-cycle carbon equivalent emissions of coal-energy chain. Stat Res,2010,27(8):8289
    Xie Z B.,Zhu J G, Liu G.,Cadisch G, Sun H F, Tang H Y. Soil organic carbon stocks in Chinaand changes from1980s to2000s. Global Change Biology,2007,13:1989-2007
    Yan D Z,Wang D J, Yang L Z. Long-term effect of chemical fertilizer, straw, and manure Onliable organic matter fractions in a Paddy soil. Biology and Fertility of Soils,2007,44:93-101.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700