用户名: 密码: 验证码:
三峡库区重庆段大气与降水组分分析及其时空特征研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
三峡工程是举世瞩目的特大型水利工程,工程生态环境影响是国内外关心的重大问题,其中三峡库区水质问题则是关注焦点。三峡水库作为我国的战略水资源库,其水质状况不仅影响到三峡库区居民的生活、生产用水安全,同时也对长江中下游地区居民生产生活、经济发展以及南水北调工程的成败产生十分重要的影响。目前随着三峡工程的竣工和运营,工程生态环境影响逐步突现。三峡工程的建成在产生防洪效益和利用水力发电的同时,也对生态环境产生了一些不利的影响。三峡水库建成蓄水之后,水流速度变慢,水体的自净能力降低,库区水体水质受到影响,特别是部分支流河段,水质恶化现象较为明显,水环境安全问题令人担忧。大气污染和降水污染是导致受纳水体水质恶化的重要原因之一,因此,尽快开展三峡库区大气污染和降水污染研究已刻不容缓。三峡库区重庆段作为三峡库区的重要组成部分,其面积占三峡库区总面积的85%,重庆段水环境的好坏不但直接对三峡库区的水质产生影响,而且会影响到长江中下游的用水安全。其中,三峡库区重庆段环境空气质量、降水成分及酸雨程度将直接对三峡库区的生态环境产生重要影响。由此,研究重庆市环境空气质量和降水组成及时空分布特征,提出适当可行的污染物控制措施对三峡库区水质保护十分重要,对三峡库区污染物总量控制和水质保护具有重要的理论价值和现实意义。鉴于此,本研究对重庆全市范围39个监测站的长期降水观测资料进行了趋势分析,并选取重庆三峡库区巴南、涪陵、万州3个区2000至2009年的观测站数据进行了详细分析比较,分析了三峡库区重庆段的降水化学组成及污染物浓度,研究了三个代表点大气氮、硫湿沉降通量,从产业结构、大气污染物和气候因素几方面探讨了降水污染状况不同的部分原因。与其它地区降水组成进行比较,分析污染物来源并提出污染物控制措施。继而从大气化学成分角度,分析了“十一五”期间整个重庆市39个区县大气主要污染物状况,总结变化规律、分析原因,然后与降水化学组分比较,探讨了大气与降水化学成份之间的某些联系。主要研究内容如下:
     1.对三峡库区重庆段主城9个区和30个郊区县城在“十一五”期间的降水情况进行分析,以重庆三峡库区巴南、涪陵、万州3个区为代表,对其pH、EC、F-、 Cl-、NO3-、SO42-、Na+、 NH4+、K+、Mg2+、Ca2+、降雨量等指标进行了连续10年的跟踪分析,对2000-2009年三峡库区重庆段巴南、涪陵和万州三个区降水的主要化学成分和时空变化特点进行了分析研究。研究结果表明:
     (1)酸控区(酸雨控制区,含主城9区和12个郊区县)降水pH均值在2007年最低(为4.58),随后有所上升,2010年达到最大值(为4.70):全市降水pH均值在2007年最低(为4.70),随后有所上升,2010年达到最大值(为4.87)。与2005年相比,2010年全市降水pH均值上升了0.04;酸控区降水pH均值与2005年持平。“十一五”期间酸控区和全市降水pH均值年际变化都呈先下降后上升的趋势。酸雨情况有所缓解,但形势依然严峻,污染严重。
     (2)“十一五”期间全市降水pH均值为4.79,酸雨频率为48.2%,降水中硫酸根和硝酸根的当量浓度比为6.3:1。“十一五”期间酸控区酸雨频率为57.0%,降水pH均值为4.70,降水中硫酸根和硝酸根的当量浓度比为5.3:1。“十一五”期间三峡库区重庆段酸控区降水中S042-和N03-离子当量浓度比年际变化总体呈下降趋势。2006年最高(为7.1:1),2009年最低(为4.8:1);全市降水中S042-和N03-离子当量浓度比年际变化为先下降后上升。从2006年逐渐下降到2009年(为5:1),2010年又上升为(6.6:1)。表明硫酸盐为全市降水中的主要致酸物质,同时硝酸根的贡献在逐渐增大。
     (3)2000~2009年间,三峡库区巴南区降水pH值范围为3.57-7.40,平均值为5.76,酸雨频率为37.9%;涪陵区降水pH值范围为4.13-7.98,平均值为6.03,酸雨频率为27.5%;万州区降水pH平均值为5.52,最小值为3.86,最大值为7.70,酸雨频率为49.1%。三个观测站所测电导率平均值分别为117.3μS/cm、72.μS/cm、63.1μS/cm,即其大小顺序为:巴南>涪陵>万州。与国内深圳、北京等城市相比,电导率平均值高出许多,并远远高于瓦里关山市降水背景值,表明所在区域的大气污染程度较为严重。降水中所含的污染成分浓度较高,会对库区造成一定的影响。
     (4)三个区域降水组成呈现出基本相似的特征,降水中SO42-为最丰富的离子,其占阴离子的比重达77%;阳离子中含量最高的离子为Ca2+和NH4+,二者所占阳离子的比重也在75%以上。且NO3-/SO42-均较低,表明当地的大气污染主要来自以燃煤为主的固定源,并占绝对的优势。三峡库区的降水组成还存在着明显的时空变化,时间方面,主要离子浓度表现为夏秋季节高、冬春季节低的特点,呈现明显的“V”型分布,这有可能与季节的变化和降水量有关;空间方面,污染程度总体表现为:巴南>涪陵>万州,存在空间的变化。一方面可能是因为夏秋季降雨频率高、降雨量大,对大气有较好的冲刷作用,从而导致了降雨中所含化学组分的相对减少;另一方面可能是因为秋冬季的温度低,气象条件不利于污染物的扩散和植被的吸收净化,从而引起降水中高含量的离子浓度。
     (5)巴南区降水中8042-和N03-相关性较高,这主要与它们的化学性质相似以及其前体物S02和NOx在大气中共排放有关。F-与SO42-和N03具有较好的相关性,分别为0.783(P<0.01)和0.825(P<0.01),说明三者具有同源性,且主要来自燃煤排放;Cl-和Na+的相关性较差,这可能受人为影响较为严重;作为陆地来源的Ca2+和Mg2+,也显示了较好的相关性,表明两者均来自地表土壤;K+和Cl-的相关性显著,说明二者有相似的来源。此外,碱性阳离子NH4+、Ca2+、Mg2+和酸根离子SO42-、NO3具有较好的相关性,表明降水中的这些离子主要以(NH4)2SO4, NH4HSO4, CaSO4, MgSO4, NH4NO3等形式存在。降水中这些碱性离子的存在对减轻酸雨的危害,降低酸雨的发生频率起着至关重要的作用。
     (6)三个观测点降水中年均氮湿沉降通量为:巴南区209.2kg·hm-2,涪陵区348.15kg·hm-2,万州区316kg·hm-2;年均硫湿沉降通量为:巴南区236.4kg·hm-2,涪陵区296.8kg·hm-2,万州区237.4kg·hm-2;其中在总无机氮湿沉降中,NH4+-N占到90%以上,是无机氮湿沉降的主要形式。
     (7)原因解析:由于“十一五”期间重庆市加大脱硫设施的改造和淘汰落后产能的力度,深入实施燃煤设施清洁能源改造工程,这一系列二氧化硫减排措施使得全市二氧化硫排放量总体逐年降低,但是该时期重庆市尚未对氮氧化物排放进行总量控制,电厂烟气脱氮工作也尚未开展,导致“十一五”期间降水中S042-与N03-的比值变化总体呈下降趋势,氮氧化物对降水酸性的贡献作用不断加强。因此,应继续推进二氧化硫减排工作,开展氮氧化物减排工作,建立区域污染联防联控的协调机制,加强对机动车尾气污染控制,合理规划布局促进城市交通绿色发展。
     2.全面详细分析“十一五”期间三峡库区重庆段环境空气质量,对重庆主城9个区和30个郊区县城环境空气中主要污染物SO2、NO2、可吸入颗粒物和降尘进行分析并对分析结果进行比较和评价,对2005~2010年三峡库区重庆段环境空气全面分析数据时空特征进行详细分析,总结变化规律并提出适当建议。研究结果表明:
     (1)“十一五”期间重庆主城空气质量明显改善,2010年满足良好天数的比例较2005年上升12.3个百分点,二氧化硫、二氧化氮和可吸入颗粒物浓度较2005年分别下降34.2%、18.8%和15.0%,空气综合污染指数下降23.5%。主城空气质量虽改善明显,但形势仍然较为严峻。可吸入颗粒物浓度虽有下降但仍没有达标;且可吸入颗粒物所占负荷比呈逐年上升趋势,对主城区空气质量影响作用越来越大。主城各区中,二氧化硫年日均值在大渡口区、巴南区、江北区和九龙坡区出现超标,可吸入颗粒物年日均值除北碚区、渝北区和南岸区达标外,其余各区均超标。
     (2)“十一五”期间重庆郊区县空气质量总体较好。2008年二氧化硫、二氧化氮和可吸入颗粒物浓度较2005年分别下降23.4%、8.0%和21.0%,空气综合污染指数下降18.0%。虽然郊区县空气质量总体较好,但部分区县二氧化硫仍污染严重,且2010年二氧化硫所占负荷比上升明显,与可吸入颗粒物一起成为郊区县环境空气中的首要污染物。各区县城镇中,南川区、万盛区等9个区县二氧化硫年日均值出现超标,开县等5个区县可吸入颗粒物年日均值出现超标。
     (3)“十一五”期间重庆市环境空气质量变化主要原因有:a.二氧化硫总量减排的实施是二氧化硫浓度明显下降的直接原因。b.机动车保有量的增加是影响二氧化氮浓度的主要原因。c.一系列尘污染控制措施的开展使可吸入颗粒物浓度逐年降低。d.地形和周边污染源对二氧化硫浓度有一定影响。此外,以万盛、南川为首的部分郊区县二氧化硫污染较为严重,这主要与社会经济发展与产业布局有关。该区域是我市主要能源、建材基地,电厂和水泥厂等二氧化硫排放大户分布较为集中,导致这两个地区二氧化硫浓度在“十一五”期间一直处于全市最高值。
     (4)根据研究结果提出:应进一步深化“蓝天行动”,全面提升环境空气质量。加强部门联动,进一步控制扬尘污染。重点加强綦江-万盛-南川片区二氧化硫污染控制。加强对氮氧化物的大气污染控制:a.推进重庆发电厂、九龙电厂进行环保搬迁。b.进一步加强机动车氮氧化物污染控制。此外,还应进一步完善大气污染预警和应急机制,建立区域大气联防联控体系。
Three Gorges Project is a remarkable large hydraulic engineering, environmental engineering impact is major concern at home and abroad, including the Three Gorges Reservoir water quality problems are the focus. As China's Three Gorges reservoir water resource library strategy, which not only affect the water quality of life of residents of the Three Gorges reservoir area, the production of water safety, but also on the production and life of residents in the Yangtze River region, economic development and water diversion projects have an important impact on the success or failure. Now with the completion of the Three Gorges Project and operations, engineering gradual emergence ecological impact. The completion of the Three Gorges Project in flood control benefits and use of hydroelectric power generation, but also on the ecological environment has produced a number of adverse effects. After the completion of the Three Gorges reservoir water storage, water slows down, lower self-purification capacity of water bodies, reservoir water quality is affected, especially in some tributary river, water quality deterioration phenomenon is more obvious, water safety is a concern. Atmospheric pollution and precipitation pollution is deteriorating water quality of receiving water bodies is one of the important reasons, therefore, the Three Gorges reservoir area as soon as possible contamination of air pollution and precipitation has become essential. Three Gorges in Chongqing Three Gorges reservoir area as an important component of its total area of the Three Gorges Reservoir area accounted for85%of the water environment in Chongqing section of the Three Gorges Reservoir quality not only directly affects the water quality, but will affect the Yangtze downstream water security. Among them. the Three Gorges in Chongqing ambient air quality, acid rain precipitation composition and extent of the Three Gorges Reservoir will directly have an important impact on the ecological environment. Thus, the study of Chongqing ambient air quality and composition and spatial and temporal distribution of precipitation, propose appropriate measures feasible pollutant control Three Gorges Reservoir water quality protection is very important to the Three Gorges total pollutant control and water quality protection has important theoretical value and practical significance. In view of this, the scope of this study,39stations in Chongqing city's long-term precipitation data for trend analysis, and select the Three Gorges reservoir area in Chongqing Banan, Fuling, Wanzhou three zones2000-2009observation station data were analyzed in detail comparison and analysis of the Three Gorges in Chongqing chemical composition of precipitation and pollutant concentration, from the industrial structure, atmospheric pollutants and climatic factors discussed several aspects of precipitation pollution partly different. Precipitation composed with other regions to compare, analyze and propose pollutant pollutant source control measures. Three points also studied atmospheric Nitrogen, sulfur wet deposition of long-term trends, and atmospheric nitrogen, sulfur wet deposition temporal and spatial. Then from the perspective of atmospheric chemical composition analysis of the "Eleventh Five-Year" period throughout the39counties of Chongqing main pollutant atmospheric conditions, variation summarize, analyze the causes, and then compared with the chemical composition of precipitation explore the chemical composition of the atmosphere and precipitation some linkages. The main contents are as follows:
     1. Chongqing section of the Three Gorges Reservoir area and the main city of nine30suburban county in the "Eleventh Five-Year" period of precipitation were analyzed, Banan Chongqing Three Gorges reservoir area, Fuling, Wanzhou District, represented by three of its pH, EC, F-, Cl-,NO3-,SO42-,Na+, NH4,K+, Mg2+, Ca2+, rainfall and other indicators of a consecutive10-year follow-up analysis, from2000to2009Three Gorges in Chongqing Pakistan South, Fuling and Wanzhou three main areas of precipitation chemical composition and temporal and spatial variation characteristics were analyzed. The study results showed that:
     (1) Acid-controlled areas (acid rain control zones, including the main city of nine areas and12suburban counties) precipitation pH mean the lowest in2007(4.58), then increased in2010to reach the maximum value (4.70); city average precipitation pH lowest in2007(4.70), followed by an increase in2010, reached the maximum (4.87). Compared with2005, in2010the city's average precipitation pH rose by0.04; acid precipitation pH-controlled areas mean and2005unchanged."Eleventh Five-Year" period of acid precipitation pH-controlled areas and the city's average annual variation were tested first decreased and then increased.
     (2) the "Eleventh Five-Year" during the city's average rainfall of4.79pH, acid rain frequency was48.2%in precipitation sulfate and nitrate equivalent concentration ratio of6.3:1."Eleventh Five-Year" period of acid rain frequency-controlled areas was57.0%average precipitation pH was4.70, precipitation sulfate and nitrate equivalent concentration ratio of5.3:1."Eleventh Five-Year" period of the Three Gorges Reservoir in Chongqing acid precipitation SO42-controlled areas and the concentration of NO3-ion equivalent annualized interannual variability of the overall downward trend.2006maximum (as7.1:1), in2009the lowest (to4.8:1); city precipitation SO42-and NO3-ion equivalent concentration interannual variability over year for the first decreased and then increased. Gradual decline from2006to2009(5:1), in2010it rose to (6.6:1). Show sulfate precipitation for the city's main cause acid substances, while the contribution of nitrate increases.
     (3) from2000to2009, the Three Gorges reservoir area Banan District precipitation pH range of3.57~7.40, with an average of5.76, rain frequency was37.9%; Fuling District precipitation pH range of4.13~7.98. with an average of6.03, acid rain frequency was27.5%; Wanzhou District, the average precipitation pH was5.52, the minimum value of3.86and a maximum of7.70, rain frequency was49.1%. Three stations were measured average conductivity117.3μS/cm,72.3μS/cm,63.1μS/cm, that is, its size order:Banan> Fuling> Wanzhou. With domestic Shenzhen, Beijing and other cities, the average is much higher conductivity, and far higher than the market at Mt precipitation background value, indicating that the area of atmospheric pollution is more serious. Precipitation tainted ingredient contained higher concentrations, would have been affected by the reservoir area.
     (4) three regional precipitation composition exhibits similar characteristics, precipitation SO42-is the most abundant ions, which accounts for77%of the proportion of the anion; cation of the highest concentrations of ions Ca+and NH4+, the two cations share the proportion is75%. And NO3-/SO42-were low, indicating that the local atmospheric pollution comes mainly from coal-based stationary sources, and accounted for an absolute advantage. Three Gorges reservoir area, there are still significant precipitation consisting of temporal and spatial variation, the time, the main ion concentration showed high summer and autumn, winter and spring and low, showing a clear "V" type distribution, which may change with the seasons and precipitation is about; space, the overall performance of the degree of pollution:Banan> Fuling> Wanzhou, there exists in space. On the one hand may be due to the high frequency of rainfall in summer and autumn, rainfall, atmospheric better scouring action, resulting in the chemical composition of rainfall relative reduction; autumn and winter, on the other hand is probably because the temperature is low, weather conditions are not conducive to the spread of pollutants and vegetation absorb purification, causing high levels of precipitation ion concentration.
     (5) Banan District precipitation SO42-and NO3-related higher, mainly with their similar chemical properties as well as its precursors SO2and NOx emissions in the atmosphere. F-and SO42-and NO3-has a good correlation was0.783(P<0.01) and0.825(P<0.01), described three homology, and mainly from coal combustion; Cl'and Na+poor correlation, which may be affected by human impact is more serious; as land-based sources of Ca2+and Mg2+, also shows a good correlation, suggesting both from surface soil; K+and Cl-significant correlation, indicating that two who have similar sources. In addition, the alkaline cation NH4+, Ca2+, Mg2+and ions SO42-、NO3-has a good correlation, suggesting that these ions in precipitation mainly in (NH4)2SO4, NH4HSO4, CaSO4, MgSO4, NH4NO3and other forms exist. Precipitation in these alkaline ions, to reduce acid rain damage, reduce the frequency of occurrence of acid rain plays a vital role.
     (6) the average annual precipitation at three observation points nitrogen wet deposition flux:Banan District209.2kg·hm-2, Fuling District,348.15kg·hm-2, Wanzhou District316kg·hm-2; annual wet sulfur deposition flux is:Banan District236.4kg·hm-2, Fuling District296.8kg·hm-2, Wanzhou District237.4kg·hm-2; wherein the total wet deposition of inorganic nitrogen, NH4+-N accounted for more than90%, is the main wet deposition of inorganic nitrogen forms.
     (7) Reasons:As the "Eleventh Five-Year" period, Chongqing increase desulfurization facilities renovation and efforts to eliminate backward production capacity, in-depth implementation of clean energy coal-fired facilities renovation project, this series of measures to make the city's sulfur dioxide emissions of sulfur dioxide emissions overall gradually reduced, but the time has not yet Chongqing total control NOx emissions, power plant flue gas denitrification work has not yet carried out, resulting in the "Eleventh five-Year" period of precipitation SO42-and NO3-ratio change the overall downward trend, nitrogen oxides contribute to acid precipitation increasing role. Therefore, we should continue to promote the work of sulfur dioxide emissions, nitrogen oxide emissions to carry out the work, the establishment of regional joint prevention and control pollution of the coordination mechanism to strengthen motor vehicle exhaust pollution control, reasonable layout to promote green urban transport development.
     2. comprehensive and detailed analysis of the "Eleventh Five-Year" period of the Three Gorges Reservoir in Chongqing ambient air quality of the main city of Chongqing nine areas and30rural counties major pollutants in ambient air SO2, NO2, participate matter and dust analysis and analysis results were compared and evaluated from2005to2010Three Gorges in Chongqing comprehensive analysis of ambient air to conduct a detailed analysis of spatial and temporal characteristics of data, summarize variation and to make appropriate recommendations. The study results showed that:
     (1)'Eleventh Five-Year" period of Chongqing city air quality improved significantly, in2010the ratio of the number of days to meet good compared to2005increased by12.3percent, sulfur dioxide, nitrogen dioxide and respirable particulate matter concentrations, respectively, compared to2005decreased by34.2%,18.8%and15.0%, the air pollution index dropped23.5%. Although the main city air quality improved significantly, but the situation is still more severe. Respirable particulate matter concentration has decreased but still no standard; and respirable particulate matter load ratio share increased year by year, the main urban air quality impact of the growing role. The main city of the district, the daily average sulfur dioxide in the big crossing area, Banan District. Jiangbei District and Jiulongpo appear excessive, respirable particulate matter in addition to the daily average Beibei District, Yubei District and south zones compliance, the remaining districts were exceeded.
     (2) the "Eleventh Five-Year" period, Chongqing suburban counties overall air quality is better.2008sulfur dioxide, nitrogen dioxide and respirable particulate matter concentrations, respectively, compared to2005decreased by23.4%,8.0%and21.0%, the air pollution index dropped18.0percent. Although air quality is generally good suburban counties, but some counties are still polluting sulfur dioxide, sulfur dioxide, and in2010the share load ratio increased significantly, and respirable particulate matter in ambient air along a suburban county in the primary pollutant. The county town, Nanchuan District. Wansheng District and other nine counties appear daily average sulfur dioxide exceeded, Kaixian five counties inhalable particles appear excessive annual daily average.
     (3)"Eleventh Five-Year" period changes in ambient air quality in Chongqing main reasons are:a. Total emissions of sulfur dioxide, sulfur dioxide concentrations were significantly decreased implement the direct cause, b. increase in vehicle ownership is the main reason affecting the concentration of nitrogen dioxide, c. a series of dust pollution control measures undertaken so that the concentration of respirable particulate matter reduced year by year. d. terrain and peripheral sources have a certain influence on the concentration of sulfur dioxide. In addition, Wansheng, Nanchuan led some suburban counties sulfur dioxide pollution is more serious, mainly with the social and economic development and the industrial layout related. This area is the city's main source of energy, building materials base, sulfur dioxide emissions from power plants and cement plants and other large distribution is more concentrated, resulting in these two regions concentration of sulfur dioxide in the "Eleventh Five-Year" period has been in the city's highest value.
     (4) According to the findings raised:should further deepen the "Action Blue Sky" to raise the overall ambient air quality. Strengthen departmental interaction, further control dust pollution. Focus on strengthening the Qijiang-Wansheng-nanchuan Area sulfur dioxide pollution control. Strengthen the nitrogen oxide air pollution control:a. Promote Chongqing power plants, power plants, Kowloon environmental relocation, b. further enhance vehicle nitrogen oxide pollution control. Furthermore, it should further improve air pollution warning and response mechanism, establish a regional joint prevention and control system of the atmosphere.
引文
[1]倪哲明,洪水皆,金祖亮.环境分析化学发展战略研究.环境化学.1992,11(5):2-20.
    [2]黄志桂,解怀宁.环境化学原理(第一版).重庆:西南师范大学出版社.1988:6-7.
    [3]吴鹏鸣,姚荣奎,鲍子平.环境监测原理与应用(第一版).北京:化学工业出版社,2000:14-17.
    [4]国家环境保护总局编.环境监测(第一版).北京:中国环境科学出版社.1997:1-12.
    [5]中国大百科全书编辑委员会.中国大百科全书环境科学.北京:中国大百科全书出版社.1983:173-184.
    [6]宇振东,曾北危.我国环境分析研究概况与展望.环境科学丛刊.1984,6(3):8-12.
    [7]王志刚.环境分析化学研究领域的新动态.山西煤炭管理干部学院学报.2004,3:126-127.
    [8]李英.发展中的环境分析化学研究.科技情报开发与经济.2004,10:25-28.
    [9]刘天齐.环境保护.北京;化学工业出版社.2000:7-11.
    [10]徐衍忠,秦绪娜,刘祥红,张乃香,周英莲.铬污染及其生态效应.环境科学与技术.2002.25(12):8-9,28.
    [11]胡晓镭.饮用水源地水质应急监测技术探析.华北水利水电学院学报.2009,1:56-60
    [12]郑芳.奶牛场恶臭污染物扩散规律研究.农业环境科学学报.2010,29(9):76-81.
    [13]曹彦龙,李崇明.重庆三峡库区面源污染源评价与聚类分析,农业环境科学学报,2007,26(3):857-862.
    [14]邵兵,胡建英,杨敏.重庆流域嘉陵江和长江水环境中壬基酚污染状况调查,环境科学学报,2001,22(1):12-16.
    [15]孙黎.重庆一小时经济圈水资源和水环境的保护利用,科技资讯,2009(3): 148-149.
    [16]Luo Yong-ju. Water environment problems and counter measures in the Three Gorges reservoir area, Advances In Water Science,2004,6(24):46-53.
    [17]崔文华.蓄水175米,三峡工程的成人礼——细数三峡工程综合效益.中国三峡.2010.5:36-42.
    [18]马建华.三峡工程综合效益巨大.中国水利.2011.12:65-67.
    [19]印士勇,娄保锋,刘辉,兰静,袁琳,张琦,臧小平.三峡工程蓄水运用期库区干流水质分析.长江流域资源与环境.2011,20(3):305-310.
    [20]QiangHe, Shujuan Peng, JunZhai, HaiwenXiao, Developmentand application of awaterpollutionemergencyresponsesystem forthe ThreeGorgesReservoirin the YangtzeRiver,China. JournalofEnvironmentalSciences 2011,23(4):595-600.
    [21]刘昭伟,陈永灿,申满斌.三峡水库水质模型的选取和系统集成.长江流域资源与环境.2004.13(2):128-132.
    [22]YaowuTian, ZhilinHuang, WenfaXiao. Reductions in non-point source pollution through different management practices for an agricultural watershed in the Three Gorges Reservoir Area. Journal of Environmental Sciences.2010,22(2):184-191.
    [23]Xiao Ma,YeLi, Meng Zhang, Fangzhao Zheng, Shuang Du. Assessment and analysis of non-point source nitrogen and phosphorus loads in the Three Gorges Reservoir Area of Hubei Province, China. Science of the Total Environment. 412-413(2011):154-161.
    [24]Rujie SHI. Ecological Environment Problems of the Three Gorges Reservoir Area and counter measures. Procedia Environmental Sciences.10 (2011):1431-1434.
    [25]成筠,张俊耀.基于GIS的三峡水库水环境管理系统.人民长江.2007.38(8):28-29,50.
    [26]刘俊,汪洋.三峡库区重庆段二期蓄水前后生活饮用水水质变化.遵义医学院学报.2008.31(2):113-115.
    [27]金蕾,徐谦,林安国.2006.北京市近二十年(1987~2004)湿沉降特征变化趋势分析[J].环境科学学报,26(7):1195-1202.
    [28]Nagase Y, Silva E C D.2007. Acid rain in China and Japan:a game-theoretic analysis [J], Regional science & urban economics,37:100-120.
    [29]王文兴,许鹏举.2009.中国大气降水化学研究进展[J].化学进展,21(2/3):266-281.
    [30]汤洁,徐晓斌,巴金,等.2010.1992~2006年中国降水酸度的变化趋势[J].科学通报,55(8):705-712.
    [31]吴刚,章景阳,王星.1994.酸沉降对重庆南岸马尾松针叶林年生物生产量的影响及其经济损失的估算[J].环境科学学报,14(4):461-465.
    [32]Larssen T, Seip H M. Semb A, et al.1999. Acid deposition and its effects in China: an overview [J]. Environmental science & policy,2:9-24.
    [33]Rastogi N, Sarin M M.2005. Chemical characteristics of individual rain events from a semi-arid region in India:Three-year study [J]. Atmospheric Environment, 39:3313-3323.
    [34]Izquierdo R, Avila A, Alarcon M.2012. Trajectory ststistical analysis of atmospheric transport patterns and trends in precipitation chemistry of a rural site in NE Spain in 1984-2009 [J]. Atmospheric Environment,61:400-408
    [35]Zhao D W, Sun B Z.1986. Air pollution and acid in China [J]. Ambio,15 (1):2-5.
    [36]Zhao D W, Xiong J L, Xu Y, et al.1988. Acid rain in southwestern China [J]. Atmospheric Environment,22 (2):349-358.
    [37]Wang W X, Wang T.1996. On acid rain formation in China [J]. Atmospheric Environment,30 (23):4091-4093.
    [38]李金惠.1998.中国降水酸沉降通量的空间特征[J].环境科学研究,11(2):18-20.
    [39]Zhao D W, Seip H M. Zhao D W, et al.1994. Pattern and cause of acidic deposition in the Chongqing region, Sichuan province, China[J]. Water, Air, and Soil Pollution, 77(1-2):27-48.
    [40]魏虹,王建力,李建龙.重庆缙云山降水pH位和化学组成特征分析[J],农业环境科学学报,2005,24(2):344-348.
    [41]陈盛樑,喻等荣,顾恒岳.调整能源结构是控制重庆城区大气污染的根本途径[J].三峡环境与生态,2000,22(3):7-8.
    [42]张勇.重庆市“十五”期间酸雨污染特征及成因分析[J].西南大学学报(自然科 学版),2007,29(4):164-168.
    [43]Sammara C, Tsitouridou R.2000. Fine and coarse ionic aerosol domposition in relation to wet and dry deposition [J]. Water, Air and Soil Pollution,120 (1/2):71-88.
    [44]胡敏,张静,吴志军.北京降水化学组成特征及其对大气颗粒物的去除作用[J].中国科学B辑化学,2005,35(2):169-176.
    [45]Kristin Aunan, Xiao-Chuan Pan. Exposure-response functions for health effects of ambient air pollution applicable for China-a meta-analysis. Science of the Total Environment.329 2004:3-16.
    [46]张莉,王五一,廖永丰.城市空气质量健康风险评估研究进展.地理科学进展.2006,25(3):39-47.
    [47]Pavlos S. Kanaroglou, Michael Jerrett, Jason Morrison, Bernardo Beckerman, M. Altaf Arain, Nicolas L. Gilbert, Jeffrey R. Brook. Establishing an air pollution monitoring network for intra-urban population exposure assessment:A location-allocation approach. Atmospheric Environment.39 (2005) 2399-2409.
    [48]Clow D.W., Mast M.A. Long-term trends in stream water and precipitation chemistry at five headwater basins in the northeastern United State [J] Water Resources Research,1999,35(2):541-554.
    [49]Likens G.E?, Bormann F.H., Pierce R.S., et al. Long-term trends in precipitation chemistry at Hubbard Brook [J]. New Hampshire. Atmospheric Environment, 1984,18(12):2641-2647.
    [50]Driscoll C.T?, Poster K.M., Kretser W., et al. Long-term trends in the chemistry of precipitation and lake water in the Adirondack Region of New York, USA [J]. Water, Air and Soil Pollution,1995,85(2):583-588.
    [51]Takahashi A., Fujita S. Long-term trends in nitrate to non-seasalt sulfate ratio in precipitation collected in western Japan [J] Atmospheric Environment,2000, 34(26):45514555.
    [52]Okuda T?, Iwase T., Ueda H., et al. Long-term trend of chemical constituents in precipitation in Tokyo metropolitan area, Japan, from 1990 to 2002 [J]. Science of the Total Environment,2005,339:127-141.
    [53]Puxbaum H., Simeonov V, Kalina M., et al. Long-term assessment of the wet precipitation chemistry in Austria (1984-1999) [J]. Chemosphere.2002. 48:733-747.
    [54]Galy-Lacaux C., Laouali D., Descroix L., et al. Long term precipitation chemistry and wet deposition in a remote dry savanna site in Africa (Niger) [J], Atmospheric Chemistry and Physics,2009,9:1579-1595.
    [55]Buishand T.A., Kempen G.T., Frantzen A.J. Trend and seasonal variation of precipitation chemistry data in the Netherlands [J]. Atmospheric Environment, 1988,22(2):339-348.
    [56]Baez A.P., Belmont R.D., Garcia R.M., et al. Trends in Chemical Composition of Wet Precipitation in Mexico City Mexico:1992-2007 [J], The Open Atmospheric Science Journal,2009.3:187-195.
    [57]Sicard P., Coddeville P., Sauvage S?, et al. Trends in Chemical Composition of Wet-only Precipitation at Rural French Monitoring Stations Over the 1990-2003 Period [J]. Water, Air,& Soil Pollution,2007,7:48-58.
    [58]Canic'K.S.; Vidic S.; Klaic'Z.B. Precipitation chemistry in Croatia during the period 1981-2006 [J]. Environmental Monitoring,2009,11(4):839-851.
    [59]Laouali D., Galy-Lacaux C., Diop B., et al. Long term monitoring of the chemical composition of precipitation and wet deposition fluxes over three Sahelian savannas [J]. Atmospheric Environment,2012,50:314-327.
    [60]汤洁,徐晓斌,巴金等.1992-2006年中国降水酸度的变化趋势[J].科学通报,2010,55(8):705-712.
    [61]黄银芝,张明旭,郑晓红.上海市近16年湿沉降化学特征分析[J].城市环境与城市生态,2008,21(6):1-3.
    [62]Huang Y.L., Wang Y.L., Zhang L.P. Long-term trend of chemical composition of wet atmospheric precipitation during 1986-2006 at Shenzhen City, China [J]. Atmospheric Environment,2008,42(16):3740-3750.
    [63]吴晓燕,张胜东,王海等.湛江市酸雨变化趋势及防治对策[J].太原师范学院学报(自然科学版),2010.9(1):139-141.
    [64]张群,郁晶,喻义勇.南京市酸雨特征及变化趋势分析[J].环境科学与管理,2009, 34(12):108-126.
    [65]石春娥,邱明燕,张爱民等.安徽省酸雨分布特征和发展趋势及其影响因子[J].环境科学,2010,31(6):1675-1681.
    [66]赵卫红.福建省城市酸性降水特征及变化趋势m.环境科学与技术,2006,29(9):41-44.
    [67]徐梅,祝青林,王丽娜等.京津地区酸雨变化特征及趋势分析[J].气象,2009,35(11):78-83.
    [68]Gene E., Likens F., Bormann H. Acid Rain:A Serious Regional Environmental Problem [J], Science,1974,184:1176-1179.
    [69]Levis W.M., Michael J.R., Grant C. Acid Precipitation in the Western United States [J]. Science,1980,207:176-177.
    [70]Sanusi A., Wortham H. Millet M. Chemical Composition of rainwater in Easter France [J]. Atmospheric Environment,1996,30(1):59-71.
    [71]Fujita S., Takahashi A., Weng J.H.. et al. Precipitation chemistry in East Asia[J]. Atmospheric Environment,2000,34:525-537.
    [72]王文兴,丁国安.中国降水酸度和离子浓度的时空变化[J].环境科学研究,1997,10(2):1-7.
    [73]胡敏,张静,吴志军.北京降水化学组成特征及其对大气颗粒物的去除作用[J].中国科学B辑:化学,2005,35(2):169-176.
    [74]Xu M., Lu A.H., Xu F., et al. Seasonal chemical composition variations of wet deposition in Urumchi, Northwestern China [J], Atmospheric Environment.2008, 42(5):1042-1048.
    [75]Huang D.Y_, Xu Y.G., Peng P., et al. Chemical composition and seasonal variation of acid deposition in Guangzhou, South China:Comparison with precipitation in other major Chinese cities [J]. Environmental Pollution,2009,157; 35-41.
    [76]王文兴,许鹏举.中国大气降水化学研究进展[J].化学进展,2009,21(2-3):266-281.
    [77]Aas W., Shao M., Jin L., et al. Air concentrations and wet deposition of major inorganic ions at five non-urban sites in China,2001-2003 [J]. Atmospheric Environment,2007,41:1706-1716.
    [78]Zhang G.S., Zhang J., Liu S.M. Chemical composition of atmospheric wet depositions from the Yellow Sea and East China Sea [J]. Atmospheric Research, 2007,85:84-97.
    [79]曹长珍,王少毅,张干等.广州市白云山降水的化学特征及源解析[J].环境监测管理与技术,2009,21(6):20-23.
    [80]王艳,葛福玲,刘晓环等.泰山降水化学及大气传输的研究[J].环境科学学报,2006,26(7):1]87-1194.
    [81]Li Y., Tang J., Yu X, et al. Characteristics of precipitation chemistry at Lushan Mountain, East China:1992-2009 [J]. Environmental Science and pollution research,2012, DOI:10.1007/sl 1356-012-0742-2
    [82]马琳,杜建飞,闰丽丽等.崇明东滩湿地降水化学特征及来源解析[J].中国环境科学,2011,31(11):1768-1775.
    [83]Baez A., Belmont R., Garcia R_, et al. Chemical composition of rainwater collected at a southwest site of Mexico City, Mexico [J]. Atmospheric Research, 2007,86(1):61-75.
    [84]Song R, Gao Y. Chemical characteristics of precipitation at metropolitan Newark in the US East Coast [J]. Atmospheric Environment,2009,43(32):49034913.
    [85]Herrera J., Rodriguez S., Baez A.P. Chemical composition of bulk precipitation in the metropolitan area of Costa Rica, Central America [J]. Atmospheric Research, 2009'94(2):151-160.
    [86]Sauret N., Wortham H., Strekowski R., et al. Comparison of annual dry and wet deposition fluxes of selected pesticides in Strasbourg. France [J]. Environmental Pollution.2009,157(1):303-312.
    [87]Willem A.H. Asman, Jergensen A., Bossi R., et al. Wet deposition of pesticides and nitrophenols at two sites in Denmark:measurements and contributions from regional sources [J]. Chemosphere,2005,59(7); 1023-1031.
    [88]Francisco C.B.. Kleist E., Prast H., et al. Description and evaluation of a sampling system for long-time monitoring of PAHs wet deposition [J].Chemosphere,2002, 49(3):331-340.
    [89]Lee B.K., Lee C.B. Development of an improved dry and wet deposition collector and the atmospheric deposition of PAHs onto Ulsan Bay, Korea [J].Atmospheric Environment,2004,38(6):863-871.
    [90]Lim L., Wurl 0., Karuppiah S., et al. Atmospheric wet deposition of PAHs to the sea-surface microlayer [J]. Marine Pollution Bulletin,2007,54(8):1212-1219.
    [91]王玮,汤大钢,张孟衡.大气气溶胶酸度和酸化缓冲能力的分析[J].1993,9(3):7-8.
    [92]曾凡刚,王玮,杨忠芳等.大气气溶胶酸度和酸化缓冲能力研究[J].中国环境监测,2001,17(4):13-17.
    [93]王讳,王英,苏红梅等.北京市沙尘暴天气大气气溶胶酸度和酸化缓冲能力[J]环境科学,2001,22(5):25-28.
    [94]谢鹏,霍铭群,孙倩等.大气颗粒物酸性研究[J].环境化学,2009,20(5):626-629.
    [95]黄世鸿,储惠签,部万年.南京市大气颗粒物缓冲作用和雨水酸度[J].气象科学,1992,12(3):445-451.
    [96]张征,沈珍瑶,韩海荣等,环境评价学,北京:高等教育出版社,2004.
    [97]Michelle Waycott, Ben J. Longstaff, Jane Mellors, Seagrass population dynamics and water quality in the Great Barrier Reef region:A review and future research directions. Marine Pollution Bulletin.51 (2005):343-350.
    [98]Rebecca Bartley, William J. Speirs, Tim W. Ellis, David K. Waters, A review of sediment and nutrient concentration data from Australia for use in catchment water quality models. Marine Pollution Bulletin.65 (2012):101-116.
    [99]Eva Agus, Nikolay Voutchkov, David L. Sedlak. Disinfection by-products and their potential impact on the quality of water produced by desalination systems:A literature review. Desalination.237 (2009):214-237.
    [100]Yan Bangyou,Xing Jiusheng,Tan Huiru,Deng Shaoping,Tan Yinning. Analysis on Water Environment Capacity of the Poyang Lake. Procedia Environmental Sciences.10 (2011):2754-2759.
    [101]Paul Bierman, Megan Lewis, Bertram Ostendorf, Jason Tanner, A review of methods for analysing spatial and temporal patterns in coastal water quality. Ecological Indicators.11 (2011):103-114.
    [102]R.R. Cave, J.E. Andrews, T. Jickells, E.G. Coombes. A review of sediment contamination by trace metals in the Humber catchment and estuary, and the implications for future estuary water quality. Estuarine, Coastal and Shelf Science. 62 (2005):547-557.
    [103]I.D.James. Modelling pollution dispersion, the ecosystem and water quality in coastal waters:a review. Environmental Modelling & Software.17 (2002): 363-385.
    [104]Sinya Seto, Mayumi Oohara, Yukoh Ikeda. Analysis of precipitation chemistry at a rural site in Hiroshima Prefecture, Japan. Atmospheric Environment.34 (2000): 621-628.
    [105]Sagar V. Krupa. Sampling and physico-chemical analysis of precipitation:a review. Environmental Pollution.120 (2002):565-594.
    [106]Robert O. Strobl, Paul D. Robillard. Network design for water quality monitoring of surface freshwaters:A review. Journal of Environmental Management.87 (2008):639-648.
    [107]K.L. Sahrawat, S.P. Wani, P. Pathak, T.J. Rego. Managing natural resources of watersheds in the semi-arid tropics for improved soil and water quality:A review. Agricultural Water Management.97 (2010):375-381.
    [108]Justyna Czemiel Berndtsson. Green roof performance towards management of runoff water quantity and quality:A review. Ecological Engineering.36 (2010): 351-360.
    [109]Margaret Kadiri, Reza Ahmadian, Bettina Bockelmann-Evans, William Rauen, Roger Falconer. A review of the potential water quality impacts of tidal renewable energy systems. Renewable and Sustainable Energy Reviews.16 (2012):329-341.
    [110]余秋梅.印士勇,周良伟.巢湖水环境质量现状分析.人民长江.2001.32(7):29-30.
    [111]王丽娟.景耀全.水环境监测现状及发展方向.环境科学动态.2005.3:46-47.
    [112]刘颖.刘丹.中国流域水环境监测现状分析.环境科学与管理.2008.33(3):127-131.151.
    [113]LI Yanjun, HE Peng, XIAO Weihua, LIU Bo. The Research of Water Environment Cumulative Impacts of Delivery Canal on East Route of South-to-North Water Transfer Project, procedia Engineering.28(2012) 287-291.
    [114]Cong Fangjie, Diao Yanfang. Sustainable Evaluation of Urban Water Resources and Environment Complex System in North Coastal Cities, procedia Environmental Sciences.11(2011) 798-802.
    [115]P.S.Hooda, A.C.Edwards, H.A.Anderson, A. Miller. A review of water quality concerns in livestock farming areas. The Science of the Total Environment.250, 2000:143-167.
    [116]Juha I. Uitto. Multi-country cooperation around shared waters:role of monitoring and evaluation. Global Environmental Change.14 (2004) 5-14.
    [117]W.C. Ip, B.Q. Hu, H. Wong, J. Xia. Applications of grey relational method to river environment quality evaluation in China. Journal of Hydrology.379 (2009) 284-290.
    [118]Roger L. Olsen, Rick W. Chappell, Jim C. Loftis. Water quality sample collection, data treatment and results presentation for principal components analysis e literature review and Illinois River watershed case study, water research.46 (2012): 3110-3122.
    [119]冯佳,沈红梅,谢树莲.汾河太原段浮游藻类群落结构特征及水质分析.资源科学.2011,33(6):1111-1117.
    [120]Y. Song, D. Li, Y. Wang, R.D. Wang, H. Xu. Chemical Characteristics and Cause Analysis of Precipitation in the South of Liaodong Peninsula. Procedia Engineering.2011.18:220-225.
    [121]王斌,李坤,张迪.浅议松花江流域水环境监测网络体系的构建与完善.环境研究与监测.2007.20(1):59-60.
    [122]岳成鲲,阎永新,郝喜旺,赵洪福,李永军.黄河口湿地水环境监测项目分析.水资源与水工程学报.2009.20(4):161-163.
    [123]王亚红.江省水环境监测发展方向浅析.水文。2007.1:51.
    [124]张丛,环境评价教程,北京:中国环境科学出版社,2002,1-16.
    [125]叶文虎,栾胜基,环境质量评价学,北京:高等教育出版社,1994.
    [126]Asia Development Bank, Development of Environment Statistics in Developing Asia and Pacific Countries,1999.
    [127]WHO.Guidelines/or Drinking-Water Quality,Volume 2.Health Criteria and other Supporting Information. World Health Organization,Geneva,1984.
    [128]刘国东,丁晶,水环境中不确定性方法的研究现状与展望,环境科学进展,1996,4(4)46-51.
    [129]张雅波,张跃龙,王坻修,模糊系统综合评价模型,松辽学刊(自然科学版)1999,11.
    [130]Deng Julong, Essential models for grey forecasting control,The Journal of Grey System,1990,2(l):1-10.
    [131]林衍,顾恒岳,韩勇,物元分析在水环境质量评价中的应用,重庆环境科学,1996,18(5):14-17.
    [132]王栋,曹升乐,人工神经网络在水文水资源水环境系统中的应用研究进展,1999,30(12):4-7.
    [133]Pawlak Z.Rough Sets,International Journal of Computer and Information Sciences,1982,11(5):341-356.
    [134]孙峻高,柯崇宜,刘丽海,污水水质的模糊综合评价法,给水排水,1999,25(10):22-25.
    [135]翟由涛,模糊综合评价法在水质变化和水体管理中的应用,环境保护科学,1995,21(2):41-46.
    [136]李进,陈益滨,师伟等,模糊综合评价法在地下水水质评价中的应用,地下水,2006,28(2):4-5,22.
    [137]冯玉国,水环境质量评价的灰色局势决策法,环境科学学报,1994,14(4):426-430.
    [138]沈清,胡德文等,神经网络应用技术,合肥:国防科技大学出版社,1993.
    [139]郭劲松,龙腾锐,霍国友,四种水质综合评价方法的比较,重庆建筑大学学报,2000,22(4):6-12.
    [140]刘国东,黄川友,丁晶,水质综合评价的人工神经网络模型,中国环境科学,1998,18(6):514-517.
    [141]游秀花,杨其霞,江茂生,水质污染综合评价方法的研究,农业系统科学与综合研究,2002,18(2):119-121.
    [142]蔡文,可拓学概述,系统工程理论与实践,1998,(1):76-84.
    [143]赵克勤,集对分析对不确定性的描述和处理,信息与控制,1995,(3)163-168.
    [144]尹聪,朱彬,曹云昌,苏继锋,王晓英,王洪.秸秆焚烧影响南京空气质量的成因探讨.中国环境科学.2011,31(2):207-213.
    [145]Christophe Maris, Myeong Y. Chung, Richard Lueb, Udo Krischke, Richard Meller, Matthew J. Fox, Suzanne E. Paulson. Development of instrumentation for simultaneous analysis of total non-methane organic carbon and volatile organic compounds in ambient air. Atmospheric Environment 37 Supplement No.2 (2003) S149-S158.
    [146]Ehsanul Kabir, Ki-Hyun Kim. An on-line analysis of 7 odorous volatile organic compounds in the ambient air surrounding a large industrial complex. Atmospheric Environment.2010.44:3492-3502.
    [147]David D. Parrish, Hanwant B. Singh, Luisa Molina, Sasha Madronich, Air quality progress in North American megacities:A review. Atmospheric Environment.45 (2011):7015-7025.
    [148]Yinping Zhang, Jinhan Mo, Yuguo Li, Jan Sundell, Pawel Wargocki, Jensen Zhang, John C. Little, Richard Corsi, Qihong Deng, Michael H.K. Leung, Lei Fang, Wenhao Chen, Jinguang Li, Yuexia Sun, Can commonly-used fan-driven air cleaning technologies improve indoor air quality? A literature review. Atmospheric Environment.45 (2011):4329-4343.
    [149]Eichelle L. Bell, Luis A. Cifuentes, Devra L. Davis, Erin Cushing, Adriana Gusman Telles, Nelson Gouveia. Environmental health indicators and a case study of air pollution in Latin American cities. Environmental Research.111 (2011): 57-66.
    [150]李艳云.灰色聚类——模糊综合评价在空气质量分析中的应用.环境保护科学.2007.33(5):61-63.
    [151]B.R. Gurjar, T.M. Butler, M.G. Lawrence, J. Lelieveld. Evaluation of emissions and air quality in megacities. Atmospheric Environment 42 (2008) 1593-1606.
    [152]Guleda Onkal-Engin, Ibrahim Demir, Halil Hiz. Assessment of urban air qualityin Istanbul using fuzzy synthetic evaluation. Atmospheric Environment.38 (2004) 3809-3815.
    [153]Qianrui Wang, Daekeun Kim, Dionysios D. Dionysiou. George A. Sorial, Dennis Timberlake. Sources and remediation for mercury contamination in aquatic systems:literature review. Environmental Pollution.131 (2004):323-336.
    [154]赵冰,汤敏,闻学政,等.三峡库区富营养化现状及其控制探讨[J].安徽农业科学,2011,39(7):4127-4128,4131.
    [155]刘春霞,李月臣,杨华,等.三峡库区重庆段生态与环境敏感性综合评价[J].地理学报,2011,66(5):631-642.
    [156]李月臣,刘春霞,赵纯勇,等.三峡库区(重庆段)土壤侵蚀敏感性评价及其空间分异特征[J].生态学报,2009,29(2):788-796.
    [157]魏兴萍.基于灰色关联分析三峡库区重庆段生态安全[J].水土保持研究,2010,17(8):124-128,133.
    [158]张晟,李崇明,郑丙辉.三峡库区次级河流营养状态及营养盐输出影响[J].环境科学,2007,28(3):500-505.
    [159]杨娟,冯大兰,刘芸.三峡库区次级河流污染现状与对策研究[J].中国农学通报,2009,25(01):206-210.
    [160]李建国,刘金萍,刘丽丽等.基于灰色极大熵原理的三峡库区(重庆段)生态系统健康评价[J].环境科学学报,2010,30(11):2344-2352.
    [161]吕怡兵,宫正宇,连军,等.长江三峡库区蓄水后水质状况分析[J].环境科学研究,2007,20(1):1-6.
    [162]Zhao Dawei, Hans M.Seip, Zhao Dianwu, et al. Pattern and cause of acidic deposition in the Chongqing region, Sichuan Province, China[J].Water, Air, and Soil Pollution,1994,11,27-48.
    [163]魏虹,王建力,李建龙.2005a.重庆缙云山降水pH值和化学组成特征分析[J].农业环境科学学报,24(2):344-348.
    [164]李宗省.何元庆,贾文雄,等.2009.丽江市夏季降水化学组成分析[J].环境科学,30(2):362-367.
    [165]Han G L, Tang Y, Wu Q X, et al.2010. Chemical and strontium isotope characterization of rainwater in karst virgin forest. Southwest China [J]. Atmosphric Environment,44:174-181.
    [166]吴起鑫,韩贵琳,陶发祥,等.2011.西南喀斯特农村降水化学研究:以贵州普定为例[J].环境科学,32(1):26-32.
    [167]Zhang N N, He Y Q, Cao J J, et al.2012. Long-term trends in chemical composition of precipitation at Lijiang, southeast Tibetan Plateau, southwestern China [J]. Atmospheric Research,106:50-60.
    [168]Wu Q X, Han G L, Tao F X, et al.2012. Chemical composition of rainwater in a karstic agricultural area, southwest China:the impact of urbanization [J].Atmospheric Research,111:71-78.
    [169]魏虹,王建力,李旭光.2005b.重庆缙云山降水化学组成的季节变化特征分析[J].西南师范大学学报(自然科学版),30(4):725-729.
    [170]肖红伟,肖化云,王燕丽.2010.贵阳大气降水化学特征及其来源分析[J].中国环境科学,30(12):1590-1596.
    [171]吴起鑫,韩贵琳.2012.三峡水库库首地区大气降水化学特征[J].中国环境科学,32(3):385-390.
    [172]汤洁,薛虎圣,于晓岚,等.瓦里关山降水化学特征的初步分析[J].环境科学学报,2000,20(4):420-425.
    [173]Jun Tu, Hesheng Wang, Zifan Zhang, et al. Trends in chemical composition of precipitation in Nanjing, China, during 1992-2003[J].Atmospheric Research, 2005,73:283-298.
    [174]D. Migliavacca, E.C. Teixeira, F. Wiegand, et al. Atmospheric precipitation and chemical composition of an urban site, Guaiba hydrographic basin, Brazil [J]. Atmospheric Environment,2005,39:1829-1844.
    [175]Yilong Huang, Yanglin Wang, Liping Zhang.Long-term trend of chemical composition of wet atmospheric precipitation during 1986-2006 at Shenzhen City, China[J].Atmospheric Environment,2008,42:3740-3750.
    [176]杨复沫,贺克斌,雷宇,等.2001-2003年间北京大气降水的化学特征[J],中国环境科学,2004,24(5):538-541.
    [177]Tomoaki Okuda, Tamamilwase, Hideko Ueda, et al. Long-term trend of chemical constituents in precipitation in Tokyo metropolitan area, Japan, from 1990 to 2002[J].Sciense of the Total Environment,2005,339:127-141.
    [178]Mari Ito, Myron J. Mitchell, Charles T. Driscoll. Spatial patterns of precipitation quantity and chemistry and air temperature in the Adirondack region of New York[J]. Atmospheric Environment,2002,36:1051-1062.
    [179]于晓岚,汤洁,师昱锋,等.中国南极长城站1998年大气降水化学特征的初步研究[J].气象学报,2002,60(4):494-501.
    [180]程新金,黄美元.降水化学特性的一种分类分析方法[J].气候与环境研究,1998,3(1):82-88.
    [181]G. B. Raga, D. Baumgardner, T. Castro, A. Martinez-Arroyo, Navarro-Gonzalez, Mexico City air quality:a qualitative review of gas and aerosol measurements (1960-2000). Atmospheric Environment.35 (2001):4041-4058.
    [182]Sotiris Vardoulakis, Bernard E.A. Fisher, Koulis Pericleous, Norbert Gonzalez-Flesca, Modelling air qualityin street canyons:a review. Atmospheric Environment.37 (2003):155-182.
    [183]Marcia C. Dodge, Chemical oxidant mechanisms for air qualitymodeling:critical review. Atmospheric Environment.34 (2000) 2103-2130.
    [184]聂邦胜.国内外常用的空气质量模式介绍.海洋技术.2008.27(1):118-121.
    [185]彭俊,王汝凉.基于竞争型神经网络的城市空气质量分析.广西师范学院学报:自然科学版.2012.29(1):86-91.
    [186]钟流举,郑君瑜,雷国强,陈晶,车汶蔚.空气质量监测网络发展现状与趋势分析.中国环境监测.2007.23(2).
    [187]刘方,王瑞斌,李钢.中国环境空气质量监测现状与发展.中国环境监测.2004.20(6):8-10.
    [188]Yu-Li Huang, Stuart Batterman. Selection and evaluation of air pollution exposure indicators based on geographic areas. The Science of the Total Environment.2000. 253:127-144.
    [189]Bernard E.A. Fisher. Fuzzy approaches to environmental decisions:application to air quality, environmental science & policy.9 (2006):22-31.
    [190]K. Wyat Appel, Robert C. Gilliam, Neil Davis, Alexis Zubrow. Steven C. Howard. Overview of the atmospheric model evaluation tool (AMET) vl.1 for evaluating meteorological and air quality models. Environmental Modelling & Software.26 (2011):434-443.
    [191]Mercedes A. Bravo, Montserrat Fuentes, Yang Zhang, Michael J. Burr, Michelle L. Bell. Comparison of exposure estimation methods for air pollutants: Ambient monitoring data and regional air quality simulation. Environmental Research.116(2012)1-10.
    [192]谢美华.丰泽区环境空气质量分析及污染防治对策.化学工程与装备.2008,10:160-164.
    [193]郭立水.2005年承德城市环境空气质量分析与评价.承德石油高等专科学校学报.2006.8(2):25-28.
    [194]张菊,苗鸿,欧阳志云,王效科.近20年北京市城近郊区环境空气质量变化及其影响因素分析.环境科学学报.2006.11:1886-1892.
    [195]Huixiong Lu, Quan-Ying Cai, Sheng Wen, Yuguang Chi, Songjun Guo, Guoying Sheng, Jiamo Fu, Blanca Antizar-Ladislao. Carbonyl compounds in the ambient air of hazy days and clear days in Guangzhou, China. Atmospheric Research.94 (2009) 363-372.
    [196]Annika Jahnke, Jonathan L. Barber, Kevin C. Jones, Christian Temme. Quantitative trace analysis of polyfluorinated alkyl substances (PFAS) in ambient air samples from Mace Head (Ireland):A method intercomparison. Atmospheric Environment.43 (2009):844-850.
    [197]Ranjeet S. Sokhi, Hongjun Mao, Srinivas T.G. Srimath, Shiyuan Fan, Nutthida Kitwiroon, Lakhumal Luhana, Jaakko Kukkonen, Mervi Haakana, Ari Karppinen, K. Dick van den Hout, Paul Boulter, Ian S. McCrae, Steinar Larssen, Karl I. Gjerstad, Roberto San Jose', John Bartzis, Panagiotis Neofytou, Peter van den, Breemer, Steve Neville, Anu Kousa, Blanca M. Cortes, Ingrid Myrtveit. An integrated multi-model approach for air quality assessment:Development and evaluation of the OSCAR Air Quality Assessment System. Environmental Modelling & Software.23 (2008):268-281.
    [198]Iva Hunova. Ambient air quality for the territory of the Czech Republic in 1996-1999 expressed by three essential factors. The Science of the Total Environment.2003.303:245-251.
    [199]Terry F. Bidleman. Sylvia Cussion, Liisa M. Jantunen. Interlaboratory study of toxaphene analysis in ambient air. Atmospheric Environment.38 (2004) 3713-3722.
    [200]周文华.王如松,张克锋.人类活动对北京空气质量影响的综合生态评价.生态学报.2005.9:2214-2220.
    [201]范丽雅,刘树华,刘辉志,桑建国.绿化带对城市大气环境及空气质量的影响.气候与环境研究.2006.11(1):85-93.
    [202]Ki-Hyun Kim, Eui-Chan Jeon, Youn-Seo Koo, Moon-Soon Im, Yong-Hoon Youn. An on-line analysis of reduced sulfur gases in the ambient air surrounding a large industrial complex. Atmospheric Environment.2007.41:3829-3840.
    [203]Y.H.Lee, I.Wangberg, J.Munthe. Sampling and analysis of gas-phase methylmercury in ambient air. The Science of the Total Environment.2003.304: 107-113.
    [204]V. Yusa, C. Coscolla, W. Mellouki,A.Pastor, M. de la Guardia. Sampling and analysis of pesticides in ambient air. Journal of Chromatography A.1216 (2009): 2972-2983.
    [205]Steven M. Bortnick, Shannon L. Stetzer. Sources of variabilityin ambient air toxics monitoring data. Atmospheric Environment.36 (2002):1783-1791.
    [206]Christophe Maris, Myeong Y. Chung, Richard Lueb, Udo Krischke, Richard Meller, Matthew J. Fox, Suzanne E. Paulson. Development of instrumentation for simultaneous analysis of total non-methane organic carbon and volatile organic compounds in ambient air. Atmospheric Environment.37 Supplement No.2 (2003) S149-S158.
    [207]Xianglu Han, Luke P. Naeher. A review of traffic-related air pollution exposure assessmeni studies in the developing world. Environment International.32 (2006) 106-120.
    [208]Janice Susaya, Ki-Hyun Kim. Nhu-Thuc Phan, Jo-Chun Kim. Assessment of reduced sulfur compounds in ambient air as malodor components in an urban area. Atmospheric Environment.45 (2011) 3381-3390.
    [209]刘水祺,李大鹏,倪长健.重庆市大气污染特征及其影响因素分析.四川环 境.2008.28(3):28-32.
    [210]陈克军,陈刚才,王定勇,孟小星,陶俊,姜文华.重庆市大气TSP特征分析.2003.25(4):43-45,62.
    [211]陶俊,陈刚才,赵琦,康清容,徐渝,陈克军.重庆市大气TSP中重金属分布特征.重庆环境科学.2003.25(12):15-16,19.
    [212]陈刚才,陶俊,赵琦,陈克军,杨三明,张卫东,孟小星,陈军,徐渝.重庆主城区大气总悬浮颗粒中有机碳和元素碳污染特征分析.重庆环境科学.2003.25(10):1-2,6.
    [213]周国兵,王式功.重庆市主城区空气污染天气特征研究.长江流域资源与环境.2010.19(11):1345-1349.
    [214]张灿,周志恩,张丹,郑建军,孟小星,张关丽.重庆市主城降尘监测研究.三峡环境与生态.2010.32(5):18-21.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700