用户名: 密码: 验证码:
真空紫外耦合高频超声对水中全氟辛基磺酸钾(PFOS)的脱氟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用真空紫外线(VUV,λ=185nm)和高频超声(US,f=600kHz)构建耦合体系在空气氛围下对水中的全氟辛基磺酸钾(PFOS)进行脱氟。考察了反应时间、溶液pH值、反应温度和PFOS初始浓度等因素对VUV、US、VUV-US体系对PFOS脱氟的影响;采用响应曲面法(RSM)分析了影响因子排序并确定了运行调控策略;采用ESI/MS与HPLC/MS/MS等分析了各体系的中间产物,以揭示VUV-US对PFOS的脱氟途径及VUV对US的强化机制;选用半经验分子轨道程序(MOPAC)计算了PFOS与全氟羧酸(PFCAs,C_nF_(2n+1)COOH)分子结构参数、前线电子密度与前线轨道能量;最后考察了外加氧化剂K_2S_2O_8对PFOS在VUV-US中脱氟的影响效果。
     结果表明,当PFOS浓度为10mg/L,反应温度为283K,反应氛围为空气,pH未调的情况下,反应240min,VUV、US和VUV-US对PFOS的脱氟率分别为5.74%、76.46%和88.47%,VUV-US耦合体系脱氟率比单独的VUV和US处理分别提高82.73%、12.01%,VUV对US的强化程度随反应条件不同而不同。当溶液pH在5-7时,VUV-US比US对PFOS的脱氟率平均提高了11.54%,温度为283-298K时,平均提高了13.03%,PFOS初始浓度为10-30mg/L时,平均提高了11.65%。证实了VUV与US具有明显协同作用,VUV引入强化了US体系在空气氛围下对PFOS的深度脱氟,VUV的引入拓宽了US运行条件的适应范围。
     响应面分析的结果表明回归方程拟合程度高,VUV-US对PFOS脱氟的影响因子作用大小的排序为:PFOS初始浓度>反应温度>初始pH值。在初始pH值在4-5的范围与PFOS脱氟率表现出弱正相关性,在5-6的范围表现出弱负相关关系;在设计的范围内,反应温度(283-293K)与PFOS初始浓度(10-20mg/L)则对PFOS脱氟呈显著的负相关性。VUV-US体系的调控策略是:当PFOS初始浓度较高且难以调控时,可降低反应温度或调节pH约为4.5-5.0之间保持体系较高的脱氟率;若当反应温度较高且难以调控时,降低PFOS的初始浓度是关键的调控策略;当pH恒定或难以调控时,则可降低其中PFOS初始浓度或者反应温度,或同时降低两个因素来保持体系脱氟率。
     PFOS在VUV、US与VUV-US过程中的主要中间产物均为短链的全氟羧酸(PFCAs)、全氟磺酸盐、全氟烷烃等。全氟羧酸类中间产物在VUV-US体系中存在浓度比US体系更低。动力学拟合结果表明PFCAs在VUV-US体系中反应速率更快且到达最高浓度时间更短。氟元素物料衡算的结果表明,其他中间产物在VUV-US体系中存在浓度也较US更低,VUV不仅促进了PFOS的脱氟也提高了其中间产物的分解效率。空化热解是PFOS在VUV-US中的主要反应机制,而紫外光解与水解是次要反应机制。
     MOPAC计算结果表明离子态的PFOS及PFCAs能量高于对应的分子态,因此C_8F_(17)SO_3~-、 C_nF_(2n+1)COO-比C_8F_(17)SO_3H、C_nF_(2n+1)COOH更易于降解;PFOS在分子态与离子态断键位置相同,首先断裂C-S键后进一步分解;而PFCAs分子态与离子态首先断键的位置不同,由于PFCAs具有较低电离常数,主要存在形态为离子态,因此PFCAs光解或热解反应以脱羧反应为主。由于短链PFCAs具有更高的电子跃迁能,比长链PFCAs稳定性更高。因此,短链PFCAs除了较强亲水性外,高分子稳定性也是致使其在US体系降解速率下降的原因之一。
     K_2S_2O_8难以有效氧化降解PFOS,UV/K_2S_2O_8能氧化分解PFOS,PFOS脱氟率随着K_2S_2O_8投加量的增加而增大,硫酸自由基(SO_4~-)的氧化是PFOS在UV/K_2S_2O_8体系中的主要脱氟途径;K_2S_2O_8引入VUV-US体系虽带来了SO_4~-,增加了反应的途径,但K_2S_2O_8与生成SO_4~(2-)均不利PFOS的超声热解,由于SO_4~-与PFOS的氧化还原反应速率较低,SO_4~-的引入不能弥补K_2S_2O_8的负面效果,K_2S_2O_8未能促进PFOS在VUV-US体系中的脱氟。
This study represents the first use of ultraviolet (VUV, λ=185nm)-assisted ultrasound(US, f=600kHz) irradiation to defluorinate aqueous perfluorooctane sulfonate (PFOS) underair atmosphere. The effects of reaction time, pH, temperature and initial PFOS concentrationon the defluorination performance of VUV, US and VUV-assisted US systems were compared.The importance order of influence factors and control strategies were determined throughresponse surface method (RSM). The intermediates formed during PFOS defluorination ineach system were detected using ESI/MS and LC/MS/MS. The possible defluorinationpathway and mechanism of synergism between VUV and US and was proposed. Thestructural parameters, electron density and frontier orbital energy of PFOS and PFCAsmolecules were calculated using semi-empirical molecular orbital software (MOPAC). Finally,the effect and mechanism of potassium persulfate (K_2S_2O_8) on the sonochemical andphoto-sonochemical defluorination of aqueous PFOS under air atmosphere were alsoinvestigated.
     The results showed that the defluorination efficiency of PFOS (10mg/L) reached up to88.47%at PFOS initial concentration was10mg/L after240min at283K under VUV-assistedUS irradiation, which is82.73%and12.01%higher than that achieved under VUV (5.74%)and US (76.46%) irradiation alone, respectively. Introduction of VUV enhanced the ultrasonicdefluorination of PFOS and the enhanced extents were largely dependent on particularreaction conditions. Compared with that achieved by US irradiation alone, the defluorinationefficiency of PFOS (10mg/L) increased by an average of11.54%at initial pH of5-7,13.03%at283-298K and11.65%at initial PFOS concentrations of10-30mg/L using theVUV-assisted US system. Thus, enhanced defluorination of PFOS by VUV-assisted US wasdemonstrated. Introduction of VUV could enhance ultrasonic defluorination of PFOS andextend the application range of US under air atmosphere.
     Response surface analysis showed that the experimental findings were in closeagreement with the model prediction. The initial concentration of PFOS was the mostimportant factor affecting the defluorination of PFOS in the VUV-US system followed byreaction temperature and initial pH. Initial pH had weak positive correlation with defluorination efficiency of PFOS at initial pH of4-5and a weak negative correlation atinitial pH of5-6. It was apparent that the defluorination efficiency of PFOS was decreasedwith the increase of temperature (283-293K) and initial concentration of PFOS (10-20mg/L)within the range of trial design. The control strategies for performance improvements ofVUV-US system were proposed. The system could not be easily adjusted at high PFOS initialconcentration or high reaction temperature. For the case of high PFOS initial concentration,the high defluorination efficiency of PFOS could be maintained by reducing the temperatureor adjusting pH to4.5-5.0. For the case of high reaction temperature, the high defluorinationefficiency of PFOS could be maintained by lowering the initial concentration of PFOS, whichwas more effective than adjusting pH. When reaction temperature was constant and could notbe easily adjusted, it could reduce temperature or PFOS initial concentration or both tomaintain a high defluorination efficiency.
     Low levels of short-chain perfluorinated carboxylic acids (PFCAs), perfluorinatedsulfonic and polyfluorinated alkenes were detected as the main intermediates in VUV, US andVUV-US systems, and the concentrations of PFCAs in VUV-assisted US system were lowerthan that in US alone system. Dynamic analysis showed that PFCAs have a faster degradationrate under VUV-US irradiation than that under US irradiation alone. In addition, the time toachieve the highest concentration of the PFCAs was shortened under VUV-US irradiationcompared to that under US alone. The results of mass balance of fluorine element indicatedthe existence of low concentration of other form of intermediates in the VUV-US system.Thus, the introduction of VUV radiation could not only improve the defluorination of PFOSbut also the further degradation of its intermediates. Pyrolysis of cavitation played a primaryrole while photolysis and hydrolysis were secondary mechanisms in PFOS defluorination inthe VUV-US system.
     The calculated results of MOPAC showed that ionic form of PFOS and PFCAs hadhigher energy than their corresponding molecular, therefore, C_8F_(17)SO_3~-, C_nF_(2n+1)COO-wereeasy to be decomposed as compared with C_8F_(17)SO_3H, C_nF_(2n+1)COOH. Molecular and ionicform of PFOS could break bond at the same position. C-S bond was prior to other bonds tocleave in both C_8F_(17)SO_3~-and C_8F_(17)SO_3H due to longer bond length and lower dissociationenergy. Molecular and ionic form of PFCAs could break bond at different positions. Most of
     PFCAs occurred in C_nF_(2n+1)COO-because of low ionization constants, therefore,decarboxylation reaction was the main sonolysis and photolysis mechanisms of PFCAs.Short-chain PFCAs had higher electronic transition energies, and were more stable thanlong-chain PFCAs, therefore, besides better hydrophilicity, the higher molecular stability ofshort-chain PFCAs could resist ultrasonic decomposition.
     K_2S_2O_8was not an efficient oxidant for degradation of PFOS, but PFOS could be slowlydefluorinated in UV/K_2S_2O_8system and the defluorination efficiency increased when theinitial amount of K_2S_2O_8was increased. The SO_4~-oxidation was mainly responsible for thedefluorination of PFOS in UV/K_2S_2O_8oxidation. Introduction of K_2S_2O_8into VUV-US couldproduce SO_4~-and increase the degradation pathways of PFOS, but the presence of the S_2O_8~(2-)and formation of SO_4~(2-)were unfavorable for sonolysis of PFOS due to the slow redoxreactions between SO_4~-and PFOS. The negative effects of K_2S_2O_8could not be offseted byadditional SO_4~-and thus introduction of K_2S_2O_8could not enhance photo-sonochemicaldefluorination of PFOS.
引文
[1] Calafat A M, Needham L L, Kuklenyik Z, et al. Perfluorinated chemicals in selected residents of theAmerican continent [J]. Chemosphere,2006,63(4):490-496.
    [2] Nakayama S, Strynar M J, Helfant L, et al. Perfluorinated Compounds in the Cape Fear Drainage Basinin North Carolina [J]. Environmental Science&Technology,2007,5(4):129-136.
    [3] Yamashita N, Kannan K, Taniyasu S, et al. A global survey of perfluorinated acids in oceans [J].Marine Pollution Bulletin,2005,51(8/12):658-668.
    [4] Saito N, Harada K, Inoue K, et al. Perfluorooctanoate and perfluorooctane sulfonate concentrations insurface water in Japan [J]. Journal of Occupational Health,2004,46(1):49-59.
    [5] Emmett E A, Shofer F S, Zhang H, et al. Community exposure to perfluorooctanoate: Relationshipsbetween serum concentrations and exposure sources [J]. Journal of Occupational Environmental Medicine,2006,48(8):759-770.
    [6] Ju X, Jin Y, Sasaki K, Saito N. Perfluorinated surfactants in surface, subsurface water and micro layerfrom Dalian Coastal waters in China [J]. Environmental Science&Technology,2008,42(10):3538-3542.
    [7] Liu W, Jin Y, Quan X, et al. Investigation of PFOS and PFOA pollution in snow in Shenyang, China [J].Environmental Science,2007,28(9):2068-2073.
    [8] Jin Y, Ding M, Zhai C, et al. Aninvestigation of the PFOS and PFOA pollution in Three GorgesReservoir areas of the Yangtze River and surface water of Wuhan areas [J]. Ecology and Environment,2006,15(3):486-489.
    [9] Som K, Miyake Y, Yeung W Y, et al. Perfluorinated compounds in the Pearl River and Yangtze River ofChina [J]. Chemosphere,2007,68(11):2085-2095.
    [10] Barton C, Butler L E, Zarzecki C J, et al. Characterizing perfluorooctanoate in ambient air n ear thefence line of a manufactu ring facility: Comparing modeled and monitored values [J]. Journal of Air WasteManagement Association,2006,56(1):48-55.
    [11] Harada K, Nakasanishi S, Sasaki K, et al. Particle sized istribution and respiratory deposition estimatesof airborne perfluorooctanoate and perfluooctan esulfonate in Kyoto area, Japan [J]. Bulletin ofEnvironmental Contamination Toxicology,2006,76(2):306-310.
    [12] Kim S K, Kannan K. Perfluorinated acids in air, rain, snow, surface runoff and lakes: Relativeimportance of pathways to contamination of urban lakes [J]. Environmental Science&Technology,2007,41(2):8328-8334.
    [13] Higgins C P, Field JA, Criddle C S, et al. Quantitative determination of perfluorochemicals insediments and domestic sludge [J]. Environmental Science&Technology,2005,39(11):3946-3956.
    [14] Young C J, Furdui V I, Franklin J, et al. Perfluorin ated acids in Arctic snow: New evidence foratmospheric formation [J]. Environmental Science&Technology,2007,41(10):3455-3461.
    [15] Moriwaki H, Takatah Y, Arakawa R. Concentration s of perfluorooctane sulfonate(PFOS) andperfluorooctanoic acid(PFOA) in vacuum cleaner dust collected in Japanese homes [J]. Journal ofEnvironmental Monitoring,2003,5(5):753-757.
    [16] Shoeib M, Harner T, Wilford B H, et al. Perfluorinated sulfonamid es in indoor and outdoor air andindoor dust: Occurrence, partitioning, and human exposure [J]. Environmental Science&Technology,2005,39(17):6599-6606.
    [17] Oakes K D, Sibley P K, Solomon K R, et al. Impact of perfluorooctanoic acid on fathead minnow(Pimephales promelas) fattyacyl acyl-CoA oxidase activity, circulating steroids, and reproduction inoutdoor microcosms [J]. Environmental Toxicology Chemistry,2004,23(8):1912-1919.
    [18] Tomy G T, Budakowski W, Halldorson T, et al. Fluorinated organic compounds in an eastern Arcticmarine food web [J]. Environmental Science&Technology,2004,38(24):6475-6481.
    [19] Giesy J P, Kannan K. Global distribution of perfluorooctane sulfonate in wild life [J]. EnvironmentalScience&Technology,2001,35(7):1339-1342.
    [20] Kannan K, Corsolini S, Falandysz J, et al. Perfluorooctane sulfonate and related fluorinatedhydrocarbons in marine mammals, fishes, and birds from coasts of the Baltic and the Mediterranean Seas[J]. Environmental Science&Technology,2002,36(15):3210-3216.
    [21] De SilvaA O, Mabury S A. Isolating isomers of perfluorocarboxylates in polar bears (Ursusmaritimus)from two geographical locations [J]. Environmental Science&Technology,2004,38(24):6538-6545.
    [22] Dai J, Li M, Jin Y, et al. Perfluorooctane sulfonate and perfluorooctanoate in red panda and giantpanda from China [J]. Environmental Science&Technology,2006,40(18):5647-5652.
    [23] Li X, Yeung LW, Taniyasu S, et al. Accumu lat ion of perfluorinated compounds in captive Bengaltigers and A frican lions in China [J]. Chemosphere,2008,73(10):1649-1653.
    [24] Li X, Yin Yeung LW, Xu M, et a l. Perfluorooctane sulfonate(PFOS) and other fluorochemicals in fishblood collected near the outfall of waste water treatment plant (WWTP) in Beijing [J]. EnvironmentalPollutution,2008,156(3):1298-1303.
    [25] Taves D R. Evidence that there are two forms of fluoride in human serum [J]. Nature,1968,217(5133):1050-1051.
    [26] Calafat A M, Kuklenyik Z, Caudill S P, et al. Perfluorochemicals in pooled serum samples fromUnited States residents in2001and2002[J]. Environmental Science&Technology,2006,40(7):2128-2134.
    [27] Calafat A M, Kuklenyik Z, Reidy J A, et al. Serum concentrations of11polyfluoroalkyl compounds inthe US population: Data from the national health and nutrition examination survey (NHANES)[J].Environmental Science&Technology,2007,41(7):2237-2242.
    [28] Som K, Yamashita N, Taniyasu S, et a l. Health risks in infants associated with exposure toperfluorinated compounds in human breastmilk from Zhoushan, China [J]. Environmental Science&Technology,2006,40(9):2924-2929.
    [29] Olsen G W, Hansen K J, Stevenson L A, et al. Human donorliver and serum concentrations ofperfluorooctanesulfonate and other perfluorochemicals [J]. Environmental Science&Technology,2003,37(5):888-891.
    [30] Midasch O, Drexler H, Hart N, et al. Transplacental exposure of neonates to perfluorooctanesulfonateand perfluorooctanoate: A pilot study [J]. International Archives of Occupational and Environmental Health,2007,80(7):643-648.
    [31] Kannan K, Corsolini S, Falandysz J, et al. Perfluorooctanesufonate and related fluorochemicals inhuman blood from several countries [J]. Environmental Science&Technology,2004,38(17):4489-4495.
    [32] Midasch O, Schettgen T, Angerer J. Pilot study on the perfluorooctanesu lfonate andperfluorooctanoate exposure of the German general population [J].International Journal of Hygiene andEnvironmental Health,2006,209(6):489-496.
    [33] Calafat A M, Needham L L, Kuklenyik Z, et al. Perfluorinated chemicals in selected residents of theAmerican continent [J].Chemosphere,2006,63(3):490-496.
    [34] Berthiaume J, Wallace K B. Perfluorooctanoate, perflourooctane sulfonate, and Nethyl perfluorooctanesulfonamide ethanol; peroxisome proliferation and mitochondrial biogenesis [J].Toxicology Letters,2002,129(1/2):23-32.
    [35] Zhang H, Shi Z, Liu Y, et al. Lipid homeostasis and oxidative stress in the liver of male rats exposed toperfluorododecanoic acid [J]. Toxicology Applied Pharmacology,2008,227(1):16225.
    [36] Austinm E, Kasturib S, Barber M, et al. Neuroendocrine effects of perfluorooctane sulfonate in rats [J].Environmental Health Perspectives,2003,111(12):1485-1489.
    [37] Kou J H, Xu F, Kyoichi O, et al. Effects of PFOS and PFOA on type Ca2+currents in guinea pigventricular myocytes [J].Biochemical and Biophysical Research Communications,2005,329(1):487-494.
    [38] Wei Y, Chan L L, Wang D, et al. Proteomic analysis of hepatic protein profiles in rare minnow(Gobiocypris rarus) exposed to perfluorooctanoic acid [J] Journal of Proteome Research,2008,7(4):1729-1739.
    [39]范轶欧,金一和,麻懿馨等.全氟辛烷磺酸对雄性大鼠生精功能的影响[J].卫生研究,2005,34(1):37-39.
    [40] OECD. Cooperation on existing chemicals hazard assessment of perfluorooctane sulfonate(PFOS) andits salts [R/OL].2002211221[2007205205207]. http://www. oecd. org/dataoecd/23/18/2382880. pdf.
    [41]Dzhekova S S, Bogdansha J, Stojkova Z. Peroxisome proliferators: their biological and toxicologicaleffects [J].Clinical Chemistry Laboratory medicine,2001,39(6):468-474.
    [42] Theoharis P, Irinag S, Dan G, et al. Reactive oxygen species and mitochondriamediat e the induction ofapoptosis inhuman hepatoma HepG cell s by the rod entperoxisome proliferator and hepatocarcinogen,perfluorooctanoic acid [J]. Toxicology and Applied Pharmacology,2001,173(1):56-64.
    [43] Abdellat G, Preat V. Peroxisome proliferation and modu lat ion of rat liver carcinogenesis by2,4dichlorophenoxyacetic acid,2,4,5trichloroph enoxyacetic acid, perfluorooctanoic acid andnafenopin[J].Carcinogenesis,1990,11(11):1899-1902.
    [44] Abdellat G, Preat V. The mdulation of rat liver carcinogenesis by perfluorooctanoic acid, a peroxisomeproliferators [J].Toxicology and Applied Pharmacology,1999,111(3):530-537.
    [45] Yang Q, Xie Y, Depierred J W. Effect s of peroxisome proliferators on the thymus and s pleen ofmice[J].Clinical and Experimental Immunology,2000,122(2):219-226.
    [46] Yang Q, Abedvalugerdi M, Xie Y, et al. Potent suppression of the adaptive immune response in miceupon dietary exposure to the potent peroxisome proliferator, perfluorooctanoic acid[J]. OccupationalImmunology,2002,223(2):389-397
    [47] Dong G H, ZhangY H, Zheng L, et al. Chronic effects of perfluorooctanesulfonate exposure onimmunotoxicity in adult male C57BL/6mice [J].Archives of Toxicology,2009,83(9):805-815.
    [48] FangX, Zhang L, FengY, et al. Immunotoxic effects of perfluorononanoic acid on BALB/c mice[J].Toxicological Sciences,2008,105(2):312-321.
    [49] Johansson N, Fredriksson A, Eriksson P. Neonatal exposure to perfluorooctane sulfonate (PFOS) andperfluorooctanoic acid (PFOA) causes neurobehavioural defects in adult mice [J]. Neurotoxicology,2008,29(1):160-169.
    [50] Johansson N, Eriksson P, Viberg H. Neonatal exposure to PFOS and PFOA in mice results in changesin proteins which are important for neuronal growth and synaptogenesis in the developing brain[J].Toxicological Sciences,2009,108(2):412-418.
    [51] Liao C Y, Li X Y, Wu B, et al. A cute enhancement of synaptic transmission and chronic inhibition ofsynaptogenes is induced by perfluorooctane sulfonate through mediation ofvoltage dependent calciumchannel [J]. Environmental Science&Technology,2008,42(14):5335-5341.
    [52] Key B, Howell R D, Criddle C S. Defluorination of organofluorine sulfur compounds by PseudomonasSp. Strain D2[J]. Environmental Science&Technology,1998,32(15):2283-2287.
    [53]薛学佳,吴敏,周钮明等。含氟有机化合物优势降解菌的筛选[J].江苏环境科技,2003,16(1):30-32.
    [54] Buxton G V, Greenstock C L, Helman W P, Ross A B. Critical review of rate constants for reactions ofhydrated electrons, hydrogen-atoms and hydroxyl radicals (·OH/·O-) in aqueous solution [J]. Journal ofPhysical and Chemical Reference Data,1988,17(2):513-886
    [55] Schroder H F, Meesters R W. Stability of fluorinated surfactants in advanced oxidation processes-Afollow up of degradation products using flow injection-mass spectrometry, liquid chromatography-massspectrometry and liquid chromatography-multiple stage mass spectrometry [J]. Journal of ChromatographyA,2005,1082(1):110-119.
    [56] Yuan Q, Ravikrishna R, Valsaraj K T. Reusable adsorbents for dilute solution separation.5.Photodegradation of organic compounds on surfactant-modified titania [J]. Separation and PurificationTechnology,2001,24(1-2):309-318.
    [57] Huang Q, Hong C S. TiO2photocatalytic degradation of PCBs in soil-water systems containing fluorosurfactant [J]. Chemosphere,2000,41(6):871-879.
    [58] Lin A Y, Panchangam S C, Chang C, et al. Removal of perfluorooctanoic acid and perfluorooctanesulfonate via ozonation under alkaline condition [J]. Journal of Hazardous Materials,2012,243:272-277.
    [59] Liu C S, Shih K, Wang F. Oxidative decomposition of perfluorooctanesulfonate in water bypermanganate [J]. Separation and Purification Technology,2012,87:95-100.
    [60]陈静,张彭义,刘剑.全氟羧酸在185nm真空紫外光下的降解研究.环境科学,2007,8:772-776.
    [61] Cao M H, Wang B B, Yu H S, et al. Photochemical decomposition of perfluorooctanoic acid inaqueous periodate with VUV and UV light irradiation [J]. Journal of Hazardous Materials,2010,179:1143-1146.
    [62] Wang Y, Zhang P Y, Pan G, Chen H. Ferric ion mediated photochemical decomposition ofperfluorooctanoic acid (PFOA) by254nm UV light [J]. Journal of Hazardous Materials,2008,60:181-186.
    [63] Hori H, Hayakawa E, Einaga H, et al. Decomposition of environmentally persistent perfluorooctanoicacid in water by photochemical approaches [J]. Environmental Science&Technology,2004,38(22):6118-6124.
    [64] Yamamoto T, Noma Y, Sakai S, et al. Photo degradation of perfluorooctanesulfonate by UV irradiationin Water and Alkaline2-Propanol [J]. Environmental Science&Technology,2007,41(16):5660-5665.
    [65] Hori H, Takano Y, Koike K, et al. Decomposition of environmentally persistent trifluoroacetic acid tofluoride ions by a homogeneous photocatalyst in water [J]. Environmental Science&Technology,2003,37(2):418-422.
    [66] Hori H, Takano Y, Koike K, et al. Photochemical decomposition of pentafluoropropionic acid tofluoride ions with a water-soluble heteropolyacid photocatalyst [J]. Applied Catalysis B: Environmental,2003,46(2):333-340.
    [67] Hori H, Hayakawa E, Koike K, et al. Decomposition of nonafluoropentanoic acid by heteropolyacidphotocatalyst H3PW12O40in aqueous solution [J]. Journal of Molecular Catalysis A: Chemical,2004,211(1-2):35-41.
    [68] Wang Y, Zhang P Y, Pan G, et al. Ferric ion mediated photochemical decomposition ofperfluorooctanoic acid (PFOA) by254nm UV light [J]. Journal of Hazardous Materials,2008,160(1):181-186.
    [69] Panchangam S C, Lin Y C, Shaik K L, et al. Decomposition of perfluorocarboxylic acids (PFCAs) byheterogeneous photocatalysis in acidic aqueous medium [J]. Chemosphere,2009,77:242-248.
    [70] Hoffmann M R, Martin S T, Choi W Y, et al. Environmental applications of semiconductorphotocatalysis [J]. Chemical Reviews,1995,95(1):69-96.
    [71] Yuan Q, Ravikrishna R, Valsaraj K T. Reusable adsorbents for dilute solution separation.5.Photodegradation of organic compounds on surfactant-modified titania [J]. Separation and PurificationTechnology,2001,24(1-2):309-318.
    [72] Hidaka H, Jou H, Nohara K, Zhao J. Photocatalytic degradation of the hydrophobic pesticidepermethrin in fluoro surfactant/TiO2aqueous dispersions [J]. Chemosphere,1992,25(11):1589-1597.
    [73] Huang Q, Hong C S. TiO2photocatalytic degradation of PCBs in soil-water systems containing fluorosurfactant [J]. Chemosphere,2000,41(6):871-879.
    [74] Estrellan C R, Salim C, Hinode H. Photocatalytic decomposition of perfluorooctanoic acid by iron andniobium co-doped titanium dioxide [J]. Journal of Hazardous Materials,2010,179(1-3):79-83.
    [75] Song C, Chen P, Wang C, et al. Photodegradation of perfluorooctanoic acid by synthesizedTiO2-MWCNT composites under365nm UV irradiation [J]. Chemosphere,2012,86:853-859.
    [76] Zhao B, Zhang P. Photocatalytic decomposition of perfluorooctanoic acid with b-Ga2O3wide bandgapphotocatalyst [J]. Catalysis Communications,2009,10(8):1184–1187
    [77] Li X, Zhang P, Jin L, et al. Efficient Photocatalytic Decomposition of Perfluorooctanoic Acid byIndium Oxide and Its Mechanism [J]. Environmental Science&Technology,2012,46(10):5528-5534.
    [78] Hori H, Yamamoto A, Koike K, et al. Photochemical decomposition of environmentally persistentshortchain perfluorocarboxylic acids in water mediated by iron(II)/(III) redox reactions [J]. Chemosphere,2007,68(3):572-5781.
    [79] Tang H, Xiang Q, Lei M, et al. Efficient degradation of perfluorooctanoic acid by UV-Fenton process[J]. Chemical Engineering Journal,2012,184:156-162.
    [80] Hori H, Nagaoka Y, Yamamoto A, et al. Efficient decomposition of environmentally persistentperfluorooctanesulfonate and related fluorochemicals using zerovalent iron in subcritical water [J].Environmental Science&Technology,2006,40(3):1049-1054.
    [81] Herrera V O, Alvarez R S, Somogyi A, et al. Reductive defluorination of perfluorooctane sulfonate [J].Environmental Science&Technology,2008,42,3260-3264.
    [82] Huang L, Dong W, Hou H. Investigation of the reactivity of hydrated electron toward perfluorinatedcarboxylates by laser flash photolysis [J]. Chemical Physics Letters,2007,436:124-128.
    [83] Park H, Vecitis C D, Cheng J, et al. Reductive Defluorination of Aqueous Perfluorinated AlkylSurfactants: Effects of Ionic Headgroup and Chain Length [J]. Journal of Physical Chemistry A,2009,113:690–696
    [84] Moriwaki H, Takagi Y, Tanaka M, et al. Sonochemical decomposition of perfluorooctanesulfonate andperfluorooctanoic acid [J]. Environmental Science&Technology,2005,39(9):3388-3392.
    [85] Vecitis C D, Park H, Cheng J, et al. Kinetics and mechanism of the sonolytic conversion of theaqueous perfluorinated surfactants, perfluorooctanoate (PFOA), and perfluorooctanesulfonate (PFOS) intoinorganic products [J]. Journal of Physical Chemistry A,2008,112:4261-4270.
    [86] Vecitis C D, Park H, Cheng J, et al. Enhancement of perfluorooctanoate and perfluorooctanesulfonateactivity at acoustic cavitation bubble interfaces [J]. Journal of Physical Chemistry C,2008,112:16850-16857.
    [87] Campbell T Y, Vecitis C D, Mader B T, et al. Perfluorinated Surfactant Chain-Length Effects onSonochemical Kinetics [J]. Journal of Physical Chemistry A,2009,113:9834-9842.
    [88] Panchangam S C, Lin A Y, Tsai J H, et al. Sonication-assisted photocatalytic decomposition ofperfluorooctanoic acid [J]. Chemosphere,2009,75:654-660.
    [89] Cheng J, Vecitis C D, Park H, et al. Sonochemical degradation of perfluorooctane sulfonate (PFOS)and perfluorooctanoate (PFOA) in landfill groundwater: Environmental matrix effects [J]. EnvironmentalScience&Technology,2008,42(21):8057-8063.
    [90] Cheng J, Vecitis C D, Park H, Mader B T, Hoffmann M R. Sonochemical degradation ofperfluorooctane Sulfonate (PFOS) and perfluorooctanoate (PFOA) in groundwater: Kinetic Effects ofMatrix Inorganics [J]. Environmental Science&Technology,2010,44(1):445–450.
    [91] Carter K E, Farrell J. Oxidative destruction of perfluorooctane sulfonate Using Boron-Doped DiamondFilm Electrodes [J]. Environmental Science&Technology,2008,42(16):6111–6115.
    [92] Qiongfang Zhuo, Shubo Deng, Bo Yang, Jun Huang, and Gang Y. Efficient electrochemical oxidationof perfluorooctanoate using a Ti/SnO2-Sb-Bi Anode [J]. Environmental Science&Technology,2011,45,2973–2979
    [93] Lin H, Niu J, Ding S, et al. Electrochemical degradation of perfluorooctanoic acid (PFOA) byTi/SnO2-Sb, Ti/SnO2-Sb/PbO2and Ti/SnO2-Sb/MnO2anodes [J]. Water research,2012,46:2281-2289
    [94] Anipsitakis G P, Dionysiou D D. Degradation of organic contaminants in water with sulfate radicalsgenerated by the conjunction of peroxymonosulfate with cobalt [J]. Environmental Science&Technology,2003,37(20):4790-4797.
    [95] Hori H, Yamamoto A, Hayakawa E, et al. Efficient decomposition of environmentally persistentperfluorocarboxylic acids by use of persulfate as a photochemical oxidant [J]. Environmental Science&Technology,2005,39(7):2383-2388
    [96] Lee Y C, Lo S L, Chiueh P T, et al. Efficient decomposition of perfluorocarboxylic acids in aqueoussolution using microwave-induced persulfate [J], Water research,2009,43:2811-2816.
    [97] Lee Y C, Lo S L, Chiueh P T, et al. Microwave-hydrothermal decomposition of perfluorooctanoic acidin water by iron-activated persulfate oxidation [J]. Water research,2010,44:886-892.
    [98] Lee Y C, Lo S L, Kuo J, et al. Persulfate oxidation of perfluorooctanoic acid under the temperatures of20-40℃[J]. Chemical Engineering Journal,2012,198-199:27-32.
    [99] Liu C S, Higgins C P, Wang F, et al. Effect of temperature on oxidative transformation ofperfluorooctanoic acid (PFOA) by persulfate activation in water [J]. Separation and PurificationTechnology,2012,91:46-51
    [100] Lee Y C, Lo S L, Chiueh P T, et al. Efficient decomposition of perfluorocarboxylic acids in aqueoussolution using microwave-induced persulfate [J]. Water Research,2009,43:2811–2816.
    [101] Xiao H, Lv B, Zhao G, et al. Hydrothermally Enhanced Electrochemical Oxidation of HighConcentration Refractory Perfluorooctanoic Acid [J]. Journal of Physical Chemistry A,2011,115(47):13836–13841.
    [102] Zhao H, Gao J, Zhao G, et al. Fabrication of novel SnO2-Sb/carbon aerogel electrode for ultrasonicelectrochemical oxidation of perfluorooctanoate with high catalytic efficiency [J]. Applied Catalysis B:Environmental,2013,136-137:278-286.
    [103]若冯,化茂李.声化学及应用[M].西安:陕西师范大学,1993.
    [104] Petrier C. Ultrasound and environment: sonochemical degradation of chloroaromatic derivatives [J].Environmental Science&Technology,1998,32:1316-1318.
    [105] Hua I, Hoffmann M R. Optimization of ultrasonic irradiation as an advanced oxidation technology [J].Environmental Science&Technology,1997,31:2237-2243.
    [106] Linda K W, Hoffmann M R. Sonolytic decomposition of ozone in aqueous solution: mass transfereffects [J]. Environmental Science&Technology,1998,32:3941-3947.
    [107] Susliek K S,Doktyes S J, Flint E B. On the Origin of Sonoluminescence and sonochemistry [J].Ultrasonics,1990,28,280-285.
    [108] Behnajady M A, Modirshahla N, Tabrizi S B, et al. Ultrasonic degradation of Rhodamine B inaqueous solution: Influence of operational parameters [J]. Journal of Hazardous Materials,2008,152:381-386.
    [109] Gogate P R, Mujumdar S, Pandit A B. Sonochemical reactors for wastewater treatment: comparisonusing formic acid degradation as a model reaction [J]. Advances in Environmental Research,2003,7:283-299.
    [110] Gogate P R. Cavitation: an auxiliary technique in wastewater treatment schemes [J]. Advances inEnvironment Research,2002,6:335-358
    [111] Psillakis E, Goula G, Kalogerakis N, et al. Degradation of polycyclic aronmatic hydropcaibons inaqueous solutions by ultrasonic irradiation [J]. Journal of Hazrardous Materials,2004, B108:95-102
    [112] Gogate P R, Pandit A B. Engineering design methods for cavitation reactoes II: Hydrodynamiccavitation reactors [J]. Aiche Journal,2000b,46:1641-1654.
    [113] Nomura H, Koda S, Yasuda K, et.al. Quantification of ultrasonic intensity based on thedecomposition reaction of porphyrin [J]. Ultrasonics Sonochemistry,1996,3, S153-S156
    [114] Eentezari M H. Effects of frequency on sonochemical reactionsⅡ:temperature and intensity effects[J]. Ultrasonic Sonochemistry,1996,3:19.
    [115]岑科达.超声降解染料废水的实验研究[D].合肥:合肥工业大学,2007.
    [116]朱昌平,黄波,倪才华等.功率超声的声学参数对废水处理效果的影响[J].水资源保护,2008,24(3):57-61
    [117] Ku Y, Chen K Y, Lee K C. Ultrasonic destruction of2-chlorophenol in aqueous solution [J]. WaterResearch,1997,31(4):929-935.
    [118] Gaddam K,Cheung H M. Effect of pressure, temprerature and pH on the sonochemical destruction of1,1,1-trichloroethane in dilute aqueous solution [J]. Ultrasonics Sonochemistry,2001,(8):103-109.
    [119] Turro N J. Modern molecular photochemistry. Menlo Park: Benjaming/Cummings [M]. PublishingCo Inc,1978,15-500
    [120]雷乐成,汪大翚.水处理高级氧化技术[M].北京:化学工业出版社,2001.
    [121]肖新颜,廖东亮,万彩霞等. UV光强度对甲基橙光催化降解性能影响的研究[J].世界科技研究与发展,2007,29(6):7-10.
    [122]温淑瑶,马敏立,陈素云等.紫外光光强对TiO2-膨润土降解十二烷基苯磺酸钠的影响[J].2009,28(6):36-38.
    [123]邓南圣,吴峰.环境光化学[M].北京:化学工业出版社,2003.
    [124] Mason T J. Current trend in Sonochemistry. Cambridge:The Society of Chemical Industry [M],1992.
    [125] Lim M, Son Y, Park B, et al. Sonophotochemical degradation of bisphenol A with solid catalysts [J].Japanese Journal of Applied Physics,2010,49(7):07HE06.
    [126] Torres R A, Petrier C, Combet E, et al. Bisphenol A mineralization by integrated ultrasound-UV-iron(II) treatment [J]. Environmental Science&Technology,2007,41:297-302.
    [127] Maezawa A, Nakadoi H, Suzuki K, et al. Treatment of dye wastewater by using photocatalyticoxidation with sonication [J]. Ultrasonics Sonochemistry,2007,14(5):615-620.
    [128] Grieser F, Ashokkumar M. Degradation of orange-G by advanced oxidation processes [J]. UltrasonicsSonochemistry,2010,17(2):338-343.
    [129] Wang X, Jia J, Wang Y. Degradation of C.I. Reactive Red2through photocatalysis coupled withwater jet cavitation [J]. Journal of Hazardous Materials,2011,185(1):315-321.
    [130] Hamdaoui O, Naffrechoux E. Sonochemical and photosonochemical degradation of4-chlorophenolin aqueous media [J]. Ultrasonics Sonochemistry.2008,15(6),981-987.
    [131] Gultekin I, Ince N H. Synthetic endocrine disruptors in the environment and water remediation byadvanced oxidation processes [J]. Journal of Environmental Management,2007,85(4):816-832.
    [132] Grieser F, Ashokkumar M. Degradation of formetanate hydrochloride by combined advancedoxidation processes [J]. Separation and Purification Technology,2010,73(3):409-414
    [133] Naffrechoux E, Chanoux S, Petrier C, et al. Sonochemical and photochemical oxidation of organicmatter [J]. Ultrasonics Sonochemistry,2000,7:255-259
    [134] Torres R A, Pétrier C, Combet E, et al. Bisphenol A mineralization by integrated ultrasound-UV-iron(II) treatment [J]. Environmental Science&Technology,2007,41(1):297-302.
    [135] Katsumata H, Okada T, Kaneco S, et al. Degradation of fenitrothion by ultrasound/ferrioxalate/UVsystem [J]. Ultrasonics Sonochemistry,2010,17:200-206.
    [136] Wu C H. Photodegradation of C.I. Reactive Red2in UV/TiO2-based systems: Effects of ultrasoundirradiation [J]. Journal of Hazardous Materials,2009,167:434-439
    [137] Segura Y, Molina R, Martínez F et al. Integrated heterogeneous sono–photo Fenton processes for thedegradation of phenolic aqueous solutions [J]. Ultrasonics Sonochemistry,2009,16:417-424.
    [138] Joseph C G, Pum G L, Bono A, et al. Operating parameters and synergistic effects of combiningultrasound and ultraviolet irradiation in the degradation of2,4,6-trichlorophenol [J]. Desalination,2011,276:303-309.
    [139] Wu C H, Yu C H. Effects of TiO2dosage, pH and temperature on decolorization of C.I. Reactive Red2in a UV/US/TiO2system [J]. Journal of Hazardous Materials,2009,169:1179-1183.
    [140] Hamdaoui O, Naffrechoux E. Sonochemical and photosonochemical degradation of4-chlorophenolin aqueous media [J]. Ultrasonics Sonochemistry,2008,15:981-987.
    [141] Katsumata H, Kaneco S, Suzuki T, et al. Sonochemical degradation of2,3,7,8-tetrachlorodibenzo-p-dioxins in aqueous solution with Fe(III)/UV system [J].Chemosphere,2007,69:1261-1266.
    [142] Zhou T, Lim T T, Wu X. Sonophotolytic degradation of azo dye reactive black5in anultrasound/UV/ferric system and the roles of different organic ligands [J].Water Research,2011,45:2915-2924.
    [143]顾浩飞,安太成,文晟等.超声光催化降解苯胺及其衍生物研究[J].环境科学学报,2003,23(9):593-597.
    [144] Stapleton D R, Emery R J, Smith C, et al. Degradation of2-chloropyridine in water by ultraviolet andultrasound irradiation [J]. Int. J. of Environment and Pollution,2006,28:87–99.
    [145] Na S, Hua C, Cui M, et al. Sonophotolytic diethyl phthalate (DEP) degradation with UVC or VUVirradiation [J]. Ultrasonics Sonochemistry,2012,19:1094-1098.
    [146] Chen J, Zhang P, Liu J. Photodegradation of perfluorooctanoic acid by185nm vacuum ultravioletlight [J]. Journal of Environmental Science,2007,19:387-390.
    [147] Giri R, Ozaki H, Okada T, et al. Factors influencing UV photodecomposition of perfluorooctanoicacid in water [J]. Chemical Engineering Journal,2012,180:197-203.
    [148]赵德明,丁成,徐新华等.超声波降解全氟辛烷磺酸和全氟辛酸的动力学[J].化工学报.2011(3)62:829-834.
    [149]王贝贝.全氟取代有机物(PFCs)的光降解研究[D].武汉:华中科技大学,2009.
    [150]傅珏生,张健,王振羽等.实验设计与分析[M].北京:人民邮电出版社,2009.
    [151] Bashir M J K., Aziz H A, Yusoff M S, et al. Application of response surface methodology (RSM) foroptimization of ammoniacal nitrogen removal from semi-aerobic landfill leachate using ionexchange resin[J]. Desalination,2010,254(1-3):154-161.
    [152] Zhang H, Li Y, Wu X, et al. Application of response surface methodology to the treatment landfillleachate in a three-dimensional electrochemical reactor [J]. Waste Management,201030(11):2096-102.
    [153] Tarley C R T, Silveira G, Santos W N L, et al. Chemometric tools in electroanalytical chemistry:Methods for optimization based on factorial design and response surface methodology [J]. MicrochemicalJournal.,2009,92(1):58-67.
    [154] Rosell C M, Santos E, Collar C. Mixing properties of fibre-enriched wheat bread doughs: A responsesurface methodology study [J]. European Food Research and Technology,2006,223(3):333-340.
    [155] Box G E P, Wilson K B. On the Experimental Attainment of Optimum Conditions [J]. Journal of theRoyal Statistical Society B,1951,1:1-45.
    [156] Novak N, Majcen Le Marechal A., Bogataj M. Determination of cost optimal operating conditions fordecoloration and mineralization of C. I. Reactive Blue268by UV/H2O2process [J]. Chemical EngineeringJournal,2009,151(1-3):209-219.
    [157] Krbahti B.K., Tanyola A. Electrochemical treatment of simulated textile wastewater with industrialcomponents and Levafix Blue CA reactive dye: Optimization through response surface methodology [J].Journal of Hazardous Materials,2008,151(2-3):422-431.
    [158] Wu Y, Zhou S, Qin F, et al. Modeling physical and oxidative removal properties of Fenton process fortreatment of landfill leachate using response surface methodology (RSM)[J]. Journal of HazardousMaterials,2010,180(1-3):456-465.
    [159]吴彦瑜. Fenton氧化与MAP化学沉淀工艺深度处理垃圾渗滤液[D].广州:华南理工大学,2011.
    [160] Aghamohammadi N, Aziz H B, Isa M H, et al. Powdered activated carbon augmented activatedsludge process for treatment of semi-aerobic landfill leachate using response surface methodology [J].Bioresource Technology,2007,98:3570-3578.
    [161] Wang Y, Li W G, Su C Y, et al. Optimization on homogeneous Fenton advanced treatment of tannerywastewater using response surface methodology [J]. Acta Scientiae Circumstantiae,2012,32(10):2408-2414
    [162] Design-Expert Software Version7.1User's Guide[M].2007.
    [163]尚兴宏.若干菁染料化合物结构和性能的量子化学研究[D].南京:南京理工大学,2001.
    [164]王花丽.嘧啶与三唑类含氮杂环化合物结构与性质关系研究[D].西安:西北大学,2005.
    [165]王政华.表面活性剂与环糊精溶液中多氯联苯(PCBs)的光降解研究[D].长沙:湖南大学,2007.
    [166]周公度,段连运.结构化学基础[M].第3版,北京:北京大学出版社,2002.163-168
    [167] Ravichandran L, Selvam, K, Swaminathan M. Effect of oxidants and metal ions onphotodefluoridation of pentafluorobenzoic acid with ZnO [J]. Separation and Purification Technology.2007,56(6):192-198.
    [168] Peyton G R. The free-radical chemistry of persulfate-based total organic carbon analyzers [J].MarineChemistry,1993,41(1-3):91-103.
    [169] Anipsitakis G P, Dionysiou D D. Degradation of organic contaminants in water with sulfate radicalsgenerated by the conjunction of peroxymonosulfate with cobalt [J]. Environmental Science&Technology,2003,37(20):4790-4797.
    [170] Neta P, Madhavan V, Zemel H, et al. Rate constants and mechanism of reaction of SO4·-witharomatic compounds [J].Journal of the American Chemical Society,1977,99(1):163-164.
    [171] Chu G, Zhang S, Yao S, et al. Spectroscopic characterization of mechanisms of oxidation of Phe bySO4·-radical: a pulse radiolysis study [J]. Science in China, Series B: Chemistry,2002,45(4):398-406.
    [172] Ivanov K L, Glebov E M, Plyusnin V F, et al. Laser flash photolysis of sodium persulfate in aqueoussolution with additions of dimethylformamide [J]. Journal of Photochemistry and Photobiology A:Chemistry,2000,133(1-2):99-104.
    [173] Tsao M S, Wilmarth, W K. The aqueous chemistry of inorganicfree radicals I. the mechanism of thephotolytic decomposition ofaqueous persulfate ion and evidence regarding the sulfate-hydroxylradicalinterconversion equilibrium [J].Journal of PhysicalChemistry,1959,63(3):346-353.
    [174] Beitz T, Bechmann W, Mitzner R. Investigations of reactions of selected azaarenes with radicals inwater,1. hydroxyl and sulfate radicals [J].Journal of Physical Chemistry A,1998,102(34):6760-6765.
    [175] Okitsu K, Suzuki T, Takenaka N, et al. Acoustic multibubble cavitation in water: a new aspect of theeffect of a rare gas atmosphere on bubble temperature and its relevance to sonochemistry [J]. Journal ofPhysical Chemistry B,2006,110:20081-20084.
    [176] Anipsitakis G P, Dionysiou D D. Radical generation by the interaction of transition metals withcommon oxidants [J]. Environmental Science&Technology,2004,38(13):3705-3712.
    [177] Fernandez J, Maruthamuthu P, Renken A, et al. Bleaching and photobleaching of orange II withinseconds by the oxone/Co2+reagent in Fenton-like processes [J]. Applied Catalysis B: Environmental,2004,49(3):207-215.
    [178]陈晓旸.基于硫酸自由基的高级氧化技术降解水中典型有机污染物研究[D].大连:大连理工大学,2007.
    [179] Liang C J, Bruell C J, Marley M C, et al. Thermally activated persulfate oxidation oftrichloroethylene (TCE) and1,1,1-trichloroethane (TCA) in aqueous systems and soil slurries [J].Soil&Sediment Contamination,2003,12:207-228
    [180] Antoniou M G, De La Cruz A A, Dionysiou D D. Cyanobacterial toxins: Treating the new generationof water contaminants [C]. AIChE Annual Meeting, Conference Proceedings,2005:5697-5698.
    [181] Anipsitakis G P, Dionysiou D D, Gonzalez M A. Cobaltmediated activation of peroxymonosulfateand sulfate radical attack on phenolic compounds. Implications of chloride ions [J]. Environmental Science&Technology,2006,40:1000-1007.
    [182] Huang K C, Couttenye R A, Hoag G E. Kinetics of heat assisted persulfate oxidation of methyltert-butyl ether (MTBE)[J]. Chemosphere,2007,49:413-420.
    [183] Liang C, Wang Z S, Bruell C J. Influence of pH on persulfate oxidation of TCE at ambienttemperatures [J]. Chemosphere,2007,66:106-113.
    [184] Waldemer R H, Tratnyek P G, Johnson R L, et al. Oxidation of chlorinated ethenes by heat-activatedpersulfate: Kinetics and products [J]. Environmental Science&Technology,2007,41:1010-1015.
    [185] Li, B Z, Li L, Lin K, et al. Removal of1,1,1-trichloroethane from aqueous solution by asono-activated persulfate process [J].Ultrasonics Sonochemistry,2013,20:855-863.
    [186] Yu Z Lioubov, K-M, Renken A. Detoxification of diluted azo-dyes at biocompatible pH with theoxone/Co2+reagent in dark and light processes [J]. Journal of Molecular Catalysis A: Chemical,2006,252(1-2):113-119.
    [187]王小蓓.超声波-硫酸自由基技术处理船舶压载水的研究[D].大连:大连海事大学,2009.
    [188] Hori H, Nagano Y, Murayama M, et al. Efficient decomposition of perfluoroether carboxylic acids inwater with a combination of persulfate oxidant and ultrasonic irradiation [J]. Journal of Fluorine Chemistry,2012,141:5–10.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700