用户名: 密码: 验证码:
三江平原小叶章湿地碳特征对模拟CO_2升高和氮沉降的响应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
全球CO_2浓度升高和氮沉降呈现日益增加的趋势,这些因素必将影响到植物生理生态特性,进而影响到陆地生态系统结构和功能。长期模拟大气CO_2浓度升高和氮沉降实验对预测未来全球气候变化条件下湿地生态系统生产力和碳汇功能具有十分重要的意义。本研究在我国东北三江平原湿地设置了模拟CO_2浓度升高和氮沉降的原位控制实验,系统地探讨了CO_2浓度升高和氮沉降对三江湿地优势种小叶章光合特性、光合产物和矿质元素含量的影响;以及小叶章湿地碳、水通量以及土壤呼吸的响应过程,为湿地对全球变化的适应过程提供理论依据。本研究通过OTC开顶式气室设置对照CO_2浓度(AC)、高CO_2浓度处理1(550ppm,EC1)和高CO_2浓度处理2(700ppm,EC2)3个水平;在每个气室内通过施用NH4NO3模拟3个氮沉降水平,分别为对照(0g N/m~2.a,NN)、低氮处理(4g N/m~2.a,LN)和高氮处理(8g N/m~2.a,HN)3个水平。共3次重复。获得主要结论如下:
     (1)CO_2(550ppm和700ppm)升高条件下,小叶章出现光合下调现象,施氮减缓了光合下调,高氮处理下小叶章无明显的光合适应现象。在实验设计的氮沉降范围内,CO_2浓度升高降低了小叶章叶片气孔导度(Gs)、蒸腾速率(Tr),促进了水分利用效率(WUE)的提高。CO_2浓度升高显著影响了小叶章最大净光合速率(Amax)、光补偿点(LCP)、光饱和点(LSP)、最大羧化速率(Vc,max)和CO_2补偿点(г*)。光合参数对CO_2浓度升高的响应依赖于供氮水平,未施氮和低氮条件下,CO_2升高降低了小叶章叶片Amax、Vc,max,提高了LCP、LSP和г*;在高氮条件下,CO_2浓度升高未显著影响光合参数Amax、暗呼吸速率(Rd)、表观量子产量(AQE)、LCP、LSP、Vc,max和最大电子速率(Jmax)。施氮显著增加了Amax和AQE,降低了Rd、LCP和LSP,促进了小叶章光合能力的提高。CO_2浓度升高显著影响了小叶章叶片光合色素含量。未施氮和低氮条件下,CO_2浓度升高降低了小叶章叶片叶绿素a、叶绿素b、类胡萝卜素和叶绿素总量;但在高氮条件下,小叶章光合色素含量则未发生显著变化。施氮处理显著增加了小叶章叶片光合色素含量。上述结果表明,充足的氮供应可减轻甚至抑制小叶章对CO_2浓度升高的适应。小叶章出现光合适应与Vc,max的降低有关,暗示小叶章发生光合适应很大程度上是由于1,5-二磷酸核酮糖(RuBP)羧化限制。
     (2)CO_2浓度升高显著增加了小叶章根中淀粉含量、各器官可溶性糖含量,但对小叶章叶片、茎的淀粉含量的影响不显著。CO_2浓度升高对小叶章叶片可溶性蛋白含量依据氮处理而异,在未施氮条件下,CO_2升高降低了可溶性蛋白含量;在低氮和高氮水平下,则增加了可溶性蛋白含量。施氮处理显著增加了小叶章茎、根中淀粉含量和总淀粉含量、小叶章根、茎和器官总可溶性糖含量以及小叶章叶片可溶性蛋白含量;对叶片中淀粉和可溶性糖含量影响不显著。
     不同种类矿质元素对CO_2浓度升高的响应不同。CO_2浓度升高未对小叶章叶片C含量产生显著影响;对小叶章叶片N含量影响因氮处理不同而异。在未施氮和低氮处理下,CO_2升高降低了小叶章叶片N素含量,在高氮处理条件下,小叶章叶片N含量变化不大。CO_2浓度升高显著增加了小叶章叶片P和K含量;显著改变了小叶章C/N、C/P、N/P和N/K。施氮处理显著增加了小叶章叶片N含量;但不同程度降低了小叶章叶片P和K含量,增加了小叶章N/P和N/K。表明CO_2浓度升高和施氮改变了植物养分格局,暗示未来CO_2升高将有利于湿地植物减轻P、K元素限制。
     (3)在2010-2011两个生长季中,小叶章湿地净生态系统CO_2交换量(NEE)、生态系统呼吸量(ER)和总生态系统生产力(GEP)呈现夏季高而春秋两季低的季节动态,而且有显著的年际动态,这与生长季早期大气温度、土壤温度和植被盖度有关。CO_2浓度升高降低了NEE、生态系统水分蒸发蒸腾损失量(ET),但增加了ER、GEP和生态系统水分利用效率(WUE)。NEE的降低主要是由于CO_2升高导致ER增加的幅度高于GEP增加的幅度。施氮不仅增加了生态系统碳通量,而且也削弱了CO_2浓度升高对NEE的负面效应。我们的研究结果表明,在未来伴随氮沉降逐渐增加的趋势下,CO_2浓度升高将有利于三江平原小叶章湿地碳固定。
     (4)土壤呼吸的季节动态呈现夏季高的单峰曲线模式,主要归因于夏季较高的大气温度促进了植物生长和土壤微生物活性。本研究中,土壤呼吸速率和土壤温度呈现指数相关。CO_2浓度升高条件下,土壤呼吸呈现增加的趋势。施氮处理第一年土壤呼吸显著增加,而第二年土壤呼吸呈现降低的趋势,这表明施氮对土壤呼吸的促进作用随着时间的推移减弱甚至产生抑制作用。CO_2浓度升高和氮沉降对土壤呼吸的影响有显著的互作效应,二者互作显著增加了土壤呼吸,增加幅度在20%-29%。表明在未来CO_2浓度升高条件下,不管氮沉降水平如何,都将增加三江平原小叶章湿地土壤呼吸和土壤碳循环。
The increasingly increases of atmospheric CO_2and nitrogen deposition can influenceplant photosynthetic capacity and then affect ecosystem structure and functions. Thelong-term continuous simulation of atmospheric CO_2and nitrogen (N) depositionexperiments is significant to predict the future global climate change on wetland ecosystemproductivity and carbon sequestration. This study is based on the results through thecontrolled situ-experiment on the Sanjiang Plain wetland in northeast China. This studyfocus on the photosynthetic characteristics, photosynthetic product and mineral elements ofthe dominant species Calamagrostis angustifolia, and ecosystem carbon, water fluxes andsoil respiration of C.angustifolia wetland under different CO_2and N level, which provide atheoretical basis for the wetland adaptation process to global change. There were three CO_2concentration accomplished using Open Top Chambers (370ppm AC,550ppm EC1and700ppmEC2), and three N deposition level (0g N/m~2.a, NN;4g N/m~2.a, LN;8g N/m~2.a, HN) suppliedas NH4NO3. Each treatment had three replicates. The main conclusions are as follows:
     (l) Photosynthetic acclimation phenomena occured when C.angustifolia exposed toelevated CO_2(550ppm and700ppm). Nitrogen addition weakened photosyntheticacclimation phenomena and photosynthetic acclimation phenomena were not found underhigh nitrogen addition. The stomatal conductance (Gs) and transpiration rate (Tr) weredecreased and the water use efficiency (WUE) was enhanced under elevated CO_2. ElevatedCO_2significantly influnced the maximum net photosynthetic rate (Amax), lightcompensation point (LCP), light saturation point (LSP), maximum carboxylation rate(Vc,max) and CO_2compensation point (г*). The response of photosynthetic parameters toelevated CO_2varied according to the level of N. Elevated CO_2decreased Amaxand Vc,max,increased LCP, LSP and г*under NN and LN treatment. However, elevated CO_2could notsignificantly affect Amax, dark respiration rate (Rd), apparent quantum efficiency (AQE),LCP, LSP, Vc,maxand maximum electron transport rate (Jmax) under HN. At the same time,N-addition enhanced Amaxand AQE, but decreased Rd,LCP and LSP, which showed that Naddition could increased photosynthetic capacity.
     Elevated CO_2significantly altered the photosynthetic pigment content of leaves inC.angustifolia. The response of photosynthetic pigment content to elevated CO_2variedaccording to the level of N. The chlorophyll a, chlorophyll b, carotenoids and totalchlorophyll content of C.angustifolia were decreased under NN and LN treatment.However, the photosynthetic pigments contents of C.angustifolia grown under elevatedCO_2were not significantly lower than those grown under ambient CO_2under HN treatment.N addition enhanced chlorophyll a, chlorophyll b, carotenoids and total chlorophyll contentof C.angustifolia.
     The results indicate that the photosynthetic capacity of C.angustifolia declined underlong-term elevated CO_2, but enough N addition could alleviate photosynthetic acclimation.The photosynthetic acclimation occured accompanying with significant decrease of Vc,max.Our results imply that photosynthetic acclimation under elevated CO_2is largely due toRuBP carboxylation limitation.
     (2) Elevated CO_2significantly increased the starch content of root, the soluble sugarcontent of leaves, stem, root and total organ in C.angusitifoila, but had no significanteffects on the starch content of leaves and stem. The response of soluble protein content toelevated CO_2varied according to the level of nitrogen. Elevated CO_2decreased solubleprotein content of leaves in C.angusitifoila under NN treatment, but increased solubleprotein content under LN and HN treatment. N addition enhanced the starch content andsoluble sugar content of root, stem and total organ, and the soluble protein content ofleaves, but had no significant effect on the starch content and soluble sugar content ofleaves in C.angusitifoila.
     The response of the mineral element to elevated CO_2varied according to the elementsspecies and the level of N. Elevated CO_2had no significant effects on the organic carbon(C) of leaves in C.angusitifoila. The response of N content of leaves to elevated CO_2variedaccording to the level of nitrogen. Elevated CO_2significantly decreased N content ofleaves in C.angusitifoila under NN and LN level but not under HN treatment. Phosphorus(P) and potassium (K) content of leaves was significantly increased under elevated CO_2.Elevated CO_2significantly influnced C/N, C/P, N/P and N/K of leaves in C.angusitifoila. Naddition significantly increased the content of N, decreased the content of P and K, andincreased N/P and N/K of leaves in C.angusitifoila. Our results show that elevated CO_2andnitrogen addition could change the nutrition pattern of plant and imply that elevated CO_2could facilitate wetland plant to mitigate P and K limitation.
     (3) The seasonal dynamics of ecosystem carbon fluxes (NEE, ER and GEP) inC.angusitifoila wetland were high in mid-summer and low in the early and late growingseasons in2010and2011. In addition, there were remarkable interannual variabilities inthe ecosystem C fluxes. This was coincided with air temperature in the early growingseason, the soil temperature and the vegetation cover. Elevated CO_2significantly decreasedNEE and evapotranspiration (ET), but enhanced GEP, ER and water use efficiency (WUE).Elevated CO_2reduced NEE because the stimulation caused by the elevated CO_2had agreater impact on ER than on GEP. The addition of N stimulated ecosystem C fluxes inboth years and ameliorated the negative impact of elevated CO_2on NEE. Future elevatedCO_2may favor carbon sequestration in C.angusitifoila wetland when coupled withincreasing nitrogen deposition.
     (4) Soil respiration displayed strong seasonal patterns, with higher values observed inmidsummer and lower values in spring and autumn in all treatments, which mainly due tohigher atmospheric temperature induced higher plant growth and soil microbial activity inthe midsummer. There were significantly exponential relationships between soil respirationand soil temperature. Elevated CO_2significantly enhanced soil respiration by repeatedmeasures ANOVA. The effect of the N addition on soil respiration was significantly increased in the first year, whereas was decreased in the second year when analyzing yearby year. It was indicated that the effect of the N addition on soil respiration had beeninhibited over time. There was a significantly interactive effect between elevated CO_2andN addition on soil respiration, and the combined effect of them significantly increased soilrespiration by20%-29%compared to that in the control chambers.The results suggest thatelevated CO_2will accelerate soil respiration and carbon cycling in C.angusitifoila wetlandregardless of nitrogen deposition level.
引文
[1] IPCC. Intergovernmental Panel on Climate Change. Climate Change2001: the scientific basis[M].Cambridge, UK: Cambridge University Press,2001.
    [2] IPCC. Intergovernmental Panel on Climate Change. Climate Change2007: The Physical ScienceBasis [M]. Cambridge, UK and New York, USA: Cambridge University Press,2007.
    [3] Gruber N, Galloway J N.An Earth-system perspective of the global nitrogen cycle [J].Nature,2008,451(17):293-296.
    [4] Galloway J N, Townsend A R, Erisman J W, Bekunda M, Cai Z C, Freney J R, Martinelli L A,Seitzinger S P, Sutton M A. Transformation of the nitrogen cycle: recent trends, questions, andpotential solutions [J].Science,2008,320:889-892.
    [5] Liu X J, Zang Y, Han W X, Tang A T, Shen J L, Cui Z L, Vitousek P, Erisman J W, Goulding K,Christie P. Enhanced nitrogen deposition over China [J].Nature,2013, doi:10.1038/nature11917.
    [6]段晓男,王效科,陈琳.湿地生态系统固碳潜力研究进展[J].生态环境,2006,5(5):1091-1095.
    [7]倪红伟.三江平原湿地植物多样性研究[D].东北师范大学博士后出站报告,2001.
    [8]王建波,倪红伟,付小玲,钟海秀,王继丰.大气CO2浓度升高对小叶章光合色素含量和光合参数的影响[J].国土与自然资源研究,2013,1:82-84.
    [9]倪红伟.三江平原典型草甸小叶章种群地上器官生物量及其分层结构[J].植物研究,1996,16(3):356-362.
    [10]倪红伟,臧淑英,高亦珂.三江平原沼泽化草甸小叶章种群地上生物量及其生长速率季节动态的研究[J].植物研究,1996,16(4):489-495.
    [11]倪红伟,张兴,贾利.三江平原典型草甸小叶章种群地上生物量动态[J].植物研究,1998,18(3):328-335.
    [12]邢军会,倪红伟,王建波.二氧化碳浓度升高与氮沉降对三江平原小叶章群落生物量累积及其分配格局的影响[J].中国农学通报,2011,27(13):49-54.
    [13] Zhang S R, Dang Q L, Cao B. Nutrient supply has greater influence than sink strength onphotosynthetic adaptation to CO2elevation in white birch seedlings [J].2013, Plant Science,203-204:55-62.
    [14] Ainsworth E A, Long S P. What have we learned from15years of free-air CO2enrichment(FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plantproduction to rising CO2[J].New Phytologist,2005,165(2):351-372.
    [15]许大全.光合作用及有关过程对长期高CO2浓度的响应[J].植物生理学通讯,1994,30(2):81-87.
    [16] Gunderson C A, Wullschleger S D. Photosynthetic acclimation in trees to rising atmospheric CO2[J]. Photosynthesis Research,1994,39:369-388.
    [17] Zong Y Z,Shangguan Z P. Nitrogen deficiency limited the improvement of photosynthesis in maizeby elevated CO2under drought [J].Journal Integrative Agriculture,2013, DOI:10.1016/S2095-3119(13)60349-4.
    [18] Wong S C. Elevated atmospheric partial pressure of CO2and plant growth.I.Interactions of nitrogennutrition and photosynthetic capacity in C3and C4plants [J].Oecologia,1997,44:68-74.
    [19] Kimball B A. Carbon dioxide and agricultural yield: An assemblage and analysis of430priorobservations [J].Agronomy Journal,1989,75:779-787.
    [20] Wand S E, Midgley G F, Jones M H, Curtis P S. Responses of wild C4and C3grass (Poaceae)species to elevated atmospheric CO2concentration: a meta‐analytic test of current theories andperceptions [J]. Global Cange Bology,1999,5:723-741.
    [21] Ainsworth E A, Davey P A, Hymus G J, Osborne C P, Rogers A, Blum H, Nosberger J, Long S P. Isstimulation of leaf photosynthesis by elevated carbon dioxide concentration maintained in the longterm? A test with Lolium perenne grown for10years at two nitrogen fertilization levels under FreeAir CO2Enrichment (FACE)[J]. Plant, Cell&Environment,2003,26(5):705-714.
    [22] Miller A, Tsai C H, Hemphill D, Endres M, Rodermel S, Spalding M. Elevated carbon dioxideaffects during leaf ontogeny (A New Perspective on Acclimation)[J]. Plant Physiology,1997,115(3):1195-1200.
    [23] Diego Gutiérrez, Rosa Morcuende, Alejandro Del Pozo, Rafael Martínez-Carrasco, Pilar Pérez.Involvement of nitrogen and cytokinins in photosynthetic acclimation to elevated CO2of springwheat [J].Journal of Plant Physiology,2013,170(15):1337-1343.
    [24] Kimball B A, Kobayashi K, Bindi M. Responses of agricultural crops to free-air CO2enrichment[J]. Advance in Agronomy,2002,77:293-368.
    [25] Streit K, Siegwolf R T, Hagedorn F, Schaub M, Buchmann N. Lack of photosynthetic or stomatalregulation after9years of elevated CO2and4years of soil warming in two conifer species at thealpine treeline [J]. Plant, Cell&Environment,2013, doi:10.1111/pce.12197.
    [26] Li Y P, Zhang Y B, Zhang X L, Korpelainen H, Berninger F, Li C Y. Effects of elevated CO2andtemperature on photosynthesis and leaf traits of an understory dwarf bamboo in subalpine forestzone, China [J]. Physiologia Plantarum,2013,148:261-272.
    [27] Bunce J A. Stomatal conductance, photosynthesis and respiration of temperate deciduous treeseedlings grown outdoors at an elevated concentration of carbon dioxide [J].Plant, Cell&Environment,1992,15(5):541-549.
    [28] Anderson P D, Tomlinson P T. Ontogeny affects response of northern red oak seedlings to elevatedCO2and water stress: I. Carbon assimilation and biomass production [J]. New Phytologist,1998,140(3):477-491.
    [29] Tjoelker M G, Oleksyn J, Reich P B. Temperature and ontogeny mediate growth response toelevated CO2in seedlings of five boreal tree species [J]. New Phytologist,1998,140(2):197-210.
    [30] Novriyanti E, Watanabe M; Kitao M, Utsugi H, Uemura A, Takayoshi K. High nitrogen andelevated CO2effects on the growth, defense and photosynthetic performance of two eucalypt species[J].Environmental Pollution,2012,170:124-130.
    [31] Conley M M, Kimball B A, Brooks T J, Pinter P J, Hunsaker D J, Wall G W, Adam N R, Lamorte RL, Matthias A D, Thompson T L, Leavitt S W, Ottman M J, Cousins A B, Triggs J M.CO2enrichmentincreases water use efficiency in sorghum [J].New phytologist,2001,151(2):407-412.
    [32] Rowland-Bamford A J, Backer J T, Allen L H, Bowes G. Acclimation of rice to changingatmospheric carbon dioxide concentration[J]. Plant, Cell&Environ,1991,14(6):577-583.
    [33] Rey A, Jarvis P G. Long-term photosynthetic acclimation to increased atmospheric CO2concentration in young birch (Betula pendula) trees [J].Tree Physiology,1998,18(7):441-450.
    [34] Poorter H, van Berkel Y, Baxter R, Hertog J, Dijkstra P, Gifford R M, Griffin K L, Roumet C, RoyJ, Wong S C. The effect of elevated CO2on the chemical composition and construction costs ofleaves of27C3species [J]. Plant, Cell&Environment,1997,20(4):472-482.
    [35]张远彬.CO2浓度升高对红桦幼苗生理与生长的影响[D].2007.
    [36] Benjamin D D, Joseph C B, Paul D, Hungate B A. CO2effects on plant nutrient concentrationdepend on plant functional group and available nitrogen: a meta-analysis [J] Plant Ecology,2011,213:505-521.
    [37]庞静,朱建国,谢祖彬.大气CO2体积分数升高对植物N素吸收的影响[J].生态环境,2005,14(3):429-433.
    [38]李伏生,康绍忠. CO2浓度升高、氮和水分对春小麦养分吸收和土壤养分的效应[J].植物营养与肥料学报,2002,8(3):303-309.
    [39]李义勇,黄文娟,赵亮,方熊,刘菊秀.大气CO2浓度升高和N沉降对南亚热带主要乡土树种叶片元素含量的影响[J].植物生态学报,2012,36(5):447-455.
    [40] Liu J X, Zhang D Q, Zhou G Y, Duan H L.Changes in leaf nutrient traits and photosynthesis of fourtree species: effects of elevated CO2, N fertilization and canopy positions [J].Journal of PlantEcology,2012,5(4):376-390.
    [41] Finzi A C, Norby R J, Calfapietra C, Budynek A G, Gielen B, Holmes W E, Hoosbeek M R, IversenC M, Jackson R B, Kubiske M K, Ledford J, Liberloo M, Oren R, Polle A, Pritchard S, Zak D R,Schlesinger W H, Ceulemans R. Increases in nitrogen uptake rather than nitrogen-use efficiencysupport higher rates of temperate forest productivity under elevated CO2[J]. Proceedings of NationalAcademy of Science,2007,104(35):14014-14019.
    [42] Saarnio S, Jarvio S, Saarinen T, Vasander H, Silvola J. Minor changes in vegetation and carbon gasbalance in a boreal mire under raised CO2or NH4NO3supply [J]. Ecosystems,2003,6:46-60.
    [43] Hungate B A, Holland E A, Jackson R B, Chapin S F, Mooney H A, Field C B. The fate of carbonin grasslands under carbon dioxide enrichment [J]. Nature,1997,388:576-579.
    [44] Carney K M, Hungate B A, Drake B G, Megonigal J P, Affiliations A. Altered soil microbialcommunity at elevated CO2leads to loss of soil carbon [J]. Proceedings of the National Academy ofSciences,2007,104:4990-4995.
    [45] Gruber N, Galloway J N. An earth-system perspective of the global nitrogen cycle [J]. Nature,2008,451:293-296.
    [46] LeBauer D S, Treseder K K. Nitrogen limitation of net primary productivity in terrestrialecosystems is globally distributed [J]. Ecology,2008,89:371-379.
    [47] Niu S L, Wu M Y, Han Y, Xia J Y, Zhang Z, Yang H J, Wan S Q. Nitrogen effects on netecosystem carbon exchange in a temperate steppe [J]. Global Change Biology,2010,16:144-155.
    [48] Xia J Y, Niu S L, Wan S Q. Response of ecosystem carbon exchange to warming and nitrogenaddition during two hydrologically contrasting growing seasons in a temperate steppe [J]. GlobalChange Biology,2009,15:1544-1556.
    [49] Kivim ki S K, Sheppard L J, Leith I D, Grace J. Long-term enhanced nitrogen deposition increasesecosystem respiration and carbon loss from a Sphagnum bog in the Scottish Borders [J].Environmentand Experiment Botony,2013,90:53-61.
    [50] Mo J M, Zhang W, Zhu W X, Gundersen P, Fang Y T, Li D J, Wang H. Nitrogen addition reducessoil respiration in a mature tropical forest in southern China [J]. Global Change Biology,2008,14:403-412.
    [51] Janssens I A, Dieleman W, Luyssaert, Subke J A, Reichstein M, Ceulemans R, Ciais P, Dolman AJ, Grace J, Matteucci G, Papale D, Piao S L, Schulze E D, Tang J, Law B E. Reduction of forest soilrespiration in response to nitrogen deposition [J]. Nature,2010,3:315-322.
    [52] Allison S D, Czimczik C I, Treseder K K. Microbial activity and soil respiration under nitrogenaddition in Alaskan boreal forest [J]. Global Change Biology,2008,14:1156-1168.
    [53] Bradford M A, Fierer N, Jackson R B, Maddox T R, Reynolds J F. Nonlinear root-derived carbonsequestration across a gradient of nitrogen and phosphorous deposition in experimental mesocosms[J]. Global Change Biology,2008,14:1113-1124.
    [54] Reay D S, Dentener F, Smith P, Grace J, Feely R A. Global nitrogen deposition and carbon sinks[J]. Nature,2008,1:430-437.
    [55] Luo Y Q, Su B, Currie W S, Dukes J S, Finzi A, Hartwig U, Hungate B, Murtrie R E, Oren R,Parton W J, Pataki D E, Shaw M R, Zak D R, Field C B. Progressive nitrogen limitation ofecosystem responses to rising atmospheric carbon dioxide [J]. BioScience,2004,54:731-739.
    [56] Erickson J E, Peresta G, Montovan K J, Drake B G. Direct and indirect effects of elevatedatmospheric CO2on net ecosystem production in a Chesapeake Bay tidal wetland [J]. Global ChangeBiology,2013,19(11):3368-3378.
    [57] Rasse D P, Peresta G, Drake B G. Seventeen years of elevated CO2exposure in a Chesapeake BayWetland: sustained but contrasting responses of plant growth and CO2uptake [J]. Global ChangeBiology,2005,11:369-377.
    [58] Langley J A, Megonigal P. Ecosystem response to elevated CO2levels limited by nitrogen-induced plant species shift [J]. Nature,2010,466:96-99.
    [59]徐小锋,田汉勤,万师强.气候变暖对陆地生态系统碳循环的影响[J].植物生态学报,2007,31(2):175-188.
    [60]张东秋,石培礼,张宪洲.土壤呼吸主要影响因素的研究进展[J].地球科学进展,2005,20(7):778-785.
    [61] Selsted M B, Linden L D, Ibrom A, Pedersen J K, Mikkelsen T N, Pilegaard K, Beier C, Ambus P.Soil respiration is stimulated by elevated CO2and reduced by summer drought: three years ofmeasurements in a multifactor ecosystem manipulation experiment in a temperate heathland [J].Global Change Biology,2012,18(4):1216-1230.
    [62] Cox P M, Betts R A, Jones C D, Spall S A, Totterdell I J. Acceleration of global warming due tocarbon-cycle feedbacks in a coupled climate mode [J]. Nature,2000,408:184-187.
    [63] Cremer W, Bondeau A, Woodward F, Prentice I C, Betts R A, Brovkin V, Cox P M, Fisher V, FoleyJ A, Friend A D, Kucharik C, Lomas M R, Ramankutty M, Sitch M, Smith B, White A, Molling C Y.Global response of terrestrial ecosystem structure and function to CO2and climate change: resultsfrom six dynamic global vegetation models [J]. Global Change Biology,2001,7(4):357-373.
    [64] Trumbore S. Carbon respired by terrestrial ecosystems: Recent progress and challenges [J]. GlobalChange Biology,2006,12:141-153.
    [65] Piao S L, Ciais P, Friedlingstein P, Peylin P, Reichstein M, Luyssaert S, Margolis H, Fang J Y, BarrA, Chen A P, Grelle A, Hollinger D Y, Laurila T, Lindroth A, Richardson A D, Vesala T. Net carbondioxide losses of northern ecosystems in response to autumn [J]. Nature,2008,451:49-52.
    [66] Peng Q, Dong Y S, Qi Y C, Xiao S S, He Y T, Ma T. Effects of nitrogen fertilization on soilrespiration in temperate grassland in Inner Mongolia, China [J]. Environment Earth Science,2011,62:1163-1171.
    [67] Bowden R D, Davidson E, Savage K, Arabia C, Steudler P. Chronic nitrogen additions reduce totalsoil respiration and microbial respiration in temperate forest soils at the Harvard Forest [J]. ForestEcology and Management,2004,196:43-56.
    [68] Allison S D, Czimczik C I, Treseder K K. Microbial activity and soil respiration under nitrogenaddition in Alaskan boreal forest [J]. Global Change Biology,2008,14:1-13.
    [69]曹裕松,李志安,傅声雷,邹碧,丁永祯,张卫信.模拟氮沉降对鹤山3种人工林表土碳释放的影响[J].江西农业大学学报,2006,28:101-105.
    [70] Baronti S, Tognetti R, Lanini G M. Soil respiration and microbial activity in a Mediterraneangrassland exposed to Free Air CO2Enrichment (FACE)[J]. Community Ecology,2008,9:65-73.
    [71] Lagomarsino A, Lukac M, Godbold D L, Marinari S, Angelis P D. Drivers of increased soilrespiration in a popla coppice exposed to elevated CO2[J]. Plant Soil,2013,362:93-106.
    [72] Callaway R M, DeLucia E H, Thomas E M, Schlesinger W H. Compensatory responses of CO2exchange and biomass allocation and their effects on the relative growth rate of ponderosa pine indifferent CO2and temperature regimes [J]. Oecologia,1994,98:159-166.
    [73] Hertog J, Stulen I, Lambers H. Assimilation, respiration and allocation of carbon in Plantago majoras affected by atmospheric CO2levels-a case-study [J]. Vegetation,1993,104:369-378.
    [74] Reich P B. Elevated CO2reduces losses of plant diversity caused by nitrogen deposition[J]. Science,2009,326:1399-1402.
    [75] Luo Y Q, Jacson R B, Field C B, Mooney H A. Elevated CO2increases below ground respiration inCalifornia grasslands [J]. Oecologia,1996,108:130-137.
    [76] Trueman R J, Gonzalez M A. Accelerated belowground C cycling in a managed agriforestecosystem exposed to elevated carbon dioxide concentrations [J]. Global Change Biology,2005,11:1258-1271.
    [77] Lee T D, Barrott S H, Reich P B. Photosynthetic responses of13grassland species across11yearsof free-air CO2enrichment is modest, consistent and independent of N supply [J]. Global ChangeBiology,2011,17:2893-2904.
    [78] Morgan J A, Pataki D E, Korner C. Water relations in grassland and desert ecosystems exposed toelevated atmospheric CO2[J]. Oecologia,2004,140:11-25.
    [79] Yin X Q, Song B, Dong W H, Xin W D, Wang Y Q. A review on the eco-geography of soil fauna inChina [J]. Journal of Geogrophical Sciences,2010,20(3):333-346.
    [80] Vickery J.Contr. New South Wales National Herbarium.1940(1):67.
    [81]王晓琦,王艳馥,沙伟,杨柳,倪红伟.三江平原不同生境下小叶章茎解剖结构的比较[J].生态学杂志,2006,25(7):785-788.
    [82]倪红伟.三江平原不同群落小叶章居群地上生物量动态及其时间序列分析[J].植物研究,1999,(1):88-93.
    [83]倪红伟,赵玉敏,高玉慧.小叶章居群生产结构及其与微环境因子的关系[J].国土与自然资源研究,1998,(4):71-73.
    [84]倪红伟,高玉慧,高亦珂,陈继红.三江平原不同群落类型小叶章种群密度季节动态比较[J].东北林业大学学报,1999,27(1):39-41.
    [85]倪红伟,马克明,赵伏臣.小叶章居群分布格局的分形特征Ⅰ计盒维数[J].植物研究,2000,20(2):229-234.
    [86]柴凤久,李红等.小叶章的蒸腾特点[J].饲料博览,1992,(3):23-26.
    [87]杨永兴,王世岩,何太蓉,田昆,杨波.三江平原典型湿地生态系统生物量及其季节动态研究[J].中国草地,2002,24(1):522-526.
    [88]孙雪利,刘景双,褚衍儒.三江平原小叶章和毛果苔草中N素营养动态分析[J].应用生态学报,2000,11(6):893-897.
    [89]王丽,胡金明,宋长春,杨涛.波动和静止水文情势下小叶章的生理生态特征[J].生态学报,2008,28(4):1794-1801.
    [90]杨涛,宫辉力,胡金明,王丽.两种水分生态型小叶章的生理生态特征研究[J].西北植物学报,2009,29(4):762-767.
    [91]窦晶鑫,刘景双,王洋,赵光影.小叶章对氮沉降的生理生态响应[J].湿地科学,2009,7(1):40-46.
    [92]刘德燕,宋长春.湿地植物小叶章对外源氮输入的响应[J].应用生态学报,2008,19(12):2599-2604.
    [93]赵光影,刘景双,窦晶鑫,周旺明,王洋,秦胜金.CO2浓度倍增对湿地小叶章生理特性的影响[J].环境科学研究,2008,21(5):134-138.
    [94]窦晶鑫,刘景双,汪洋,赵光影.模拟土壤温度升高对湿草甸小叶章生长及生理特性的影响.应用生态学报[J].2009,20(8):1845-1851.
    [95]陈卫卫.三江平原稻田生态系统N2O排放研究[D].2007.
    [96]倪红伟,李君.洪河自然保护区生物多样性[M].黑龙江科技出版社,1999.
    [97] Farquhar G D, Caemmerer S, Berry J A. A biochemical model of photosynthetic CO2assimilationin leaves of C3species [J]. Planta,1980,149(1):78-90.
    [98] Sharkey T D, Bernacchi C J, Farquhar G D, Singsaas E L. Fitting photosynthetic carbon dioxideresponse curves for C3leaves [J]. Plant, Cell and Environment,2007,30:1035-1040.
    [99]廖轶,陈根云,张海波,蔡时青,朱建国,韩勇,刘钢,许大全.水稻叶片光合作用对开放式空气CO2浓度增高(FACE)的响应与适应[J].应用生态学报,2002,13:1205-1209.
    [100] Li F S, Kang S Z, Zhang J H. Interactive effects of elevated CO2, nitrogen and drought on leafarea, stomatal conductance, and evapotranspiration of wheat [J]. Agricultural Water Management,2004,67:221-233.
    [101] Sefcik L T, Zak D R, Ellsworth D S. Seedling survival in a northern temperate forest understory isincreased by elevated atmospheric carbon dioxide and atmospheric nitrogen deposition [J]. GlobalChange Biology,2007,13:132-146.
    [102] Reich P B, Hungate B A, Luo Y Q. Carbon-nitrogen interaction in terrestrial ecosystems inresponse to rising atmospheric carbon dioxide [J]. Annual Review Ecology, Evolution, andSystematics,2006,37:611-636.
    [103] Ellsworth D S, Reieh P B, Naumburg E S, Koch G W, Kubiske M E, Smith S D. Photosynthesis,carboxylation and leaf nitrogen responses of16species to elevated pCO2across four free-air CO2enrichment experiments in forest, grassland and desert [J]. Global Change Biology,2004,10:2121-2138.
    [104]赵光影,刘景双,王洋,窦晶鑫.大气CO2浓度升高和氮肥施用对三江平原湿地小叶章生物量及根冠比的影响[J].生态与农村环境学报,2009,25(1):38-41.
    [105] Hymus G J, Baker N R, Long S P. Growth in elevated CO2can both increase and decreasephotochemistry and photoinhibition of photosynthesis in a predictable manner Dactylis glomeratagrown in two levels of nitrogen nutrition [J]. Plant Physiology,2001,127:1204-1211.
    [106] Long S P, Baker N R, Raines C A. Analyzing the responses of photosynthetic CO2assimilation tolong-term elevation of atmospheric CO2concentration [J].Vegetation,1993,104/105:33-45.
    [107] Sage R F, Sharkey T D, Seemann J R. Acclimation of photosynthesis to elevated CO2in five C3species [J]. Plant Physiology,1989,89:590-596.
    [108] Rogers G S, Milham P J, Thibaud M C, Conroy J P. Interactions between rising CO2concentrationand nitrogen supply in cotton. I. Growth and leaf nitrogen concentration [J].Australia Journal PlantPhysiology,1996,23:119-125.
    [109] Hikosaka K. Modelling optimal temperature acclimation of the photosynthetic apparatus in C3plants with respect to nitrogen use [J]. Annual of Botany,1997,80:721-730.
    [110] Pettersson R, Medonald J S, Stadenberg I. Response of small bireh Plants (Betula Pendularoth.) toelevated CO2and nitrogen supply [J]. Plant, Cell&Environment,1993,16:1115-1121
    [111]廖建雄,王根轩. CO2和温度升高及干早对小麦叶片化学成分的影响[J].植物生态学报,2000,24(6):744-747.
    [112] Ainsworth E A, Rogers A, Blum H, Nosberger J, Long S P. Variation in acclimation ofphotosynthesis in Trifolium repens after eight years of exposure to free air CO2enrichment (FACE)[J]. Journal of Experimental Botany,2003,54:2769-2774.
    [113]周先容,汪建华,张红,王进闯,张远彬.CO2浓度升高和模拟氮沉降对青川箭竹叶营养质量的影响[J].生态学报,2012,32(24):7644-7653.
    [114] Daniel P R, Pierre T. Leaf carbohydrate controls over Arabidopsis growth and response toelevated CO2—An experimentally based model [J]. New Phytologist,2006,172:500-513.
    [115] Ludewig F, Sonnewald U, Kander F, Heineke D, Geiger M, Stitt M, Müller-R ber B T, Gillissen B,Kühn C, Frommer W B.The role of transient starch in acclimation to elevated atmospherie CO2[J].FEBS Letters,1998,429:147-151.
    [116] Stitt M. Rising CO2levels and their potential significance for carbon flow in photosynthetic cells[J]. Plant Cell&Environment,1991,14:741-762.
    [117] Paul M J, Foyer C H. Sink regulation of photosynthesis [J]. Journal of Experimental Botany,2001,52:1383-1400.
    [118] Paul M J, Pellny T K. Carbon metabolite feedback regulation of leaf photosynthesis anddevelopment [J].Journal of Experimental Botany,2003,54:539-547.
    [119] Jarvis P G. European forests and global change-the likely impacts of rising CO2and temperature[M]. Cambridge University Press,1998.
    [120] Urbonavi iūt A, Samuolien G, Sakalauskait J, Duchovskis P, Brazaityt A, ik nianien J B,Ulinskait R, abajevien G, Baranauskis K.The effect of elevated CO2concentrations on leafcarbohydrate, chlorophyll contents and photosynthesis in radish [J].Polish Journal of EnvironmentStudies,2006,15(6):921-925.
    [121]林碧英,张瑜,林义章,肖钊.不同CO2浓度对豇豆光合特性和若干生理生化指标的影响[J].植物营养与肥料学报,2011,17(4):146-146.
    [122]高霁,郝兴宇,居烽,李迎春,林而达.自由大气CO2浓度升高对夏大豆光合色素含量和光合作用的影响[J].中国农学通报,2012,28(6):47-52.
    [123]韦彩妙,林植芳.提高CO2浓度对两种亚热带树苗光合作用的影响[J].植物学报,1996,38(2):123-130.
    [124] Barnes J D, Bettarini I, Polle A, Slee N, Raines C, Miglietta F, Raschi A, Fordham M. The impactof elevated CO2on growth and photosynthesis in Agrostis canina L.ssp. Monteluccii adapted tocontrastion atmospheric CO2concentrations [J]. Oecologia,1997,110:169-178.
    [125]蒋高明,韩兴国,林光辉.大气CO2浓度升高对植物的直接影响——国外十余年来模拟实验研究之主要手段及基本结论[J].植物生态学报,1997,21(6):489-502.
    [126] Streit K,Siegwolt R W, Hagedron F, Schaub M, Buchmann N. Lack of photosynthetic or stomatalregulation after9years of elevated CO2and4years of soil warming in two conifer species at thealpine treeline [J]. Plant, Cell&Environment,2013, DOI:10.1111/pce.12197.
    [127] EI KohenA,Mousseau M. Interactive effeets of elevated CO2and mineral nutrition on growth andCO2exehange of sweet chestnut seedlings(Castanea sativa)[J].Tree Physiology,1994,14:679-690.
    [128]黄建晔,董桂春,杨洪建,王余龙,朱建国,杨连新,单玉华.开放式空气CO2增高对水稻物质生产与分配的影响[J].应用生态学报,2003,14(2):253-257.
    [129] Finn G A, Brun W A. Effect of atmospheric CO2enrichment on growth, nonstructuralcarbohydrate content and root nodule activity in soybean [J]. Plant Physiology,1982.69:327-331.
    [130] Long S P,Ainsworth E A,Rogers A, Ort D R. Rising atmospheric carbon dioxide: Plants FACEthe future [J].Annual Review of Plant Biology,2004,55:591-628.
    [131]谢祖彬,朱建国,张雅丽,马红亮,刘钢,韩勇,曾青,蔡祖聪.水稻生长及其体内C、N、P组成对开放式空气CO2浓度增高和N、P施肥的响应[J].应用生态学报,2002,13(10):1223-1230.
    [132]马红亮,朱建国,谢祖彬,刘钢,曾青,韩勇.开放式空气CO2浓度升高对冬小麦P、K吸收和C∶ N,C∶ P比的影响[J].农业环境科学学报,2005,24(6):1192-1198.
    [133] Liu J X, Zhang D Q, Zhou G Y, Vuillin F, Deng Q, Wang C L. CO2enrichment increases nutrientleaching from model forest ecosystems in subtropical China [J]. Biogeosciences,2008,5:1783-1795.
    [134] Tingey D T, Mckane R B, Olszyk D M, Johnson M G, Rygiewicz P T, Lee E H. Elevated CO2and temperature alter nitrogen allocation in Douglas-fir [J]. Global Change Biology,2003,9(7):1038-1050.
    [135] Matson P, Lohse K A, Hall S J. The globalization of nitrogen deposition: consequences forterrestrial ecosystems [J]. Ambio,2002,31:113-119.
    [136] Likens G E, Driscoll C T, Buso D C. Long-term effects of acid rain: response and recovery of aforest ecosystem [J]. Science,1996,272:244-246.
    [137] Nakaji T, Takenaga S, Kuroha M. Photosynthetic response of Pinus densiflora seedlings to highnitrogen load [J]. Environmental Science,2002,9,269-282.
    [138] Maroco J P, Breia E, Faria T, Pereira J S, Chaves M M. Effects of long-term exposure to elevatedCO2and N fertilization on the development of photosynthetic capacity and biomass accumulation inQuercus suber L [J]. Plant, Cell and Environment,2002,25:105-113.
    [139] Liu J X, Huang W J, Zhou G Y. Nitrogen to phosphorus ratios of tree species in response toelevated carbon dioxide and nitrogen addition in subtropical forests [J].Global Change Biology,2013,19:208-216.
    [140] Güsewell S. N: P ratios in terrestrial plants: variation and functional significance [J]. Newphytologist,2004,164:243-266.
    [141] Mcgroddy M E, Daufresne T, Hedin L O. Scaling of C: N: P stoichiometry in forests worldwide:Implications of terrestrial red field-type ratios [J]. Ecology,2004,85(9):2390-2401.
    [142] Marcel R. Hoosbeek, Nico Van Breemen, Harri Vasander. Potassium limits potential growth ofbog vegetation under elevated atmospheric CO2and N deposition [J]. Global change biology,2002,8:1130-1138.
    [143] Welp L R, Randerson J T, Liu H P. The sensitivity of carbon fluxes to spring warming andsummer drought depends on plant functional type in boreal forest ecosystem [J]. Agric For Meteorol,2007,147:172-185.
    [144] Zhou X P, Wang X K, Tong L, Zhang H, Lu F, Zheng F, Hou P, Song W, Ouyang Z. Soilwarming effect on net ecosystem exchange of carbon dioxide during the transition from wintercarbon source to spring carbon sink in a transition from winter carbon source to spring carbon sinkin a temperate urban lawn [J]. Journal of Environment Science,2012,24:2104-2112.
    [145] Zhao L, Li Y, Xu SX, Zhou H K, Gu Song, Yu G R, Zhao X Q. Diurnal, seasonal and annualvariation in net ecosystem CO2exchange of an alpine shrubland on Qinghai–Tibetan plateau [J].Global Change Biology,2006,12:1940-1953.
    [146] Yan L M, Chen S P, Huang J H, Lin G H. Increasing water and nitrogen availability enhanced netecosystem CO2assimilation of a temperate semiarid steppe [J]. Plant and Soil,2011,349:227-240.
    [147] Williams C A. Soil moisture controls on canopy-scale water and carbon fluxes in an Africansavanna [J]. Water Resources Research,2004,40, doi:10.1029/2004WR003208.
    [148] Jiang L, Guo R, Zhu T C, Guo J X. Water-and Plant-Mediated Responses of Ecosystem CarbonFluxes to Warming and Nitrogen Addition on the Songnen Grassland in Northeast China [J]. PLoSONE,2012,7(9): e45205doi:10.1371/journal.pone.00452051.
    [149] Song C C, Sun L, Huang Y, Wang Y S, Wan Z M. Carbon exchange in a freshwater marsh in theSanjiang Plain, northeastern China [J]. Agricultural Forest Meteorology,2011,151:1131-1138.
    [150] Bonneville M C, Strachan I B, Humphreys E R, Roulet N T. Net ecosystem CO2exchange in atemperate cattail marsh in relation to biophysical properties [J]. Agricultural Forest Meteorology,2008,148:69-81.
    [151] Wang J B, Zhu T C, Ni H W, Zhong H X, Fu X L, Wang J. Effects of elevated CO2and nitrogendeposition on ecosystem carbon fluxes on the Sanjiang Plain wetland in Northeast China [J]. PloSOne,2013,8(6): e66563.doi:1371/journal.pone.0066563.
    [152] Nijs I, Roy J, Salager J L, Fabreguettes J F. Elevated CO2alters carbon fluxes in earlysuccessional Mediterranean ecosystems [J]. Global Change Biology,2000,6:981-994.
    [153] Bachman S, White J L, Pendall E, Williams D G, Morgan J A, Newcomb J. Elevated carbondioxide alters impacts of precipitation pulses on ecosystem photosynthesis and respiration in asemi-arid grassland [J].Oecologia,2010,162(3):791-802.
    [154] Jasoni R L, Smith S D, Arnone J A. Net ecosystem CO2exchange in Mojave Desert shrublandsduring the eighth year of exposure to elevated CO2[J]. Global Change Biology,2005,11:749-756.
    [155] Casella E, Soussana J F. Long-term effects of CO2enrichment and temperature increase on thecarbon balance of a temperate grass sward [J]. Journal of Experimental Botany,1997,48:1309-1321.
    [156] Adair E C, Reich P B, Trost J J. Elevated CO2stimulates grassland soil respiration by increasingcarbon inputs rather than by enhancing soil moisture [J]. Global Change Biology,2011,17:3546-3563.
    [157] Pendall E, Del Grosso S, King J Y, Lecain D R, Milchunas D G, Morgan J A, Mosier A R, OjimaD S, Parton W A, Tans P P, White J C. Elevated atmospheric CO2effects and soil water feedbacks onsoil respiration components in a Colorado grassland [J]. Global Biogeochemical Cycles,2003,17:1-13.
    [158] Milchunas D G, Mosier A R, Morgan J A, Lecain D R, King J Y, Nelson J A. Root productionand tissue quality in a shortgrass steppe exposed to elevated CO2: using a new ingrowth method [J].Plant and Soil,2005,268:111-122.
    [159] Sowerby A, Blum H, Gray T R, Ball A S. The decomposition of Lolium perenne in soils exposedto elevated CO2: comparisons of mass loss of litter with soil respiration and soil microbial biomass[J]. Soil Biology Biochemistry,2000,32:1359-1366.
    [160] Hui D F, Luo Y Q, ChengW X, et al. Canopy radiation-and water use efficiencies as affected byelevated CO2[J]. Global Change Biology,2001,7:75-91.
    [161] Pregitzer K S, Burton A J, Zak D R, Talhelm A F. Simulated chronic nitrogen depositionincreases carbon storage in northern temperate forests [J]. Global Change Biology,2008,14:142-153.
    [162] Bubier J L, Moore T R, Bledzki L A. Effects of nutrient addition on vegetation and carboncycling in an ombrotrophic bog [J]. Global Change Biology,2007,13:1168-1186.
    [163] Niu S L, Yang H J, Zhang Z, Wu M Y, Lu Q, Li L H, Han X G, Wan S Q. Non-additive effects ofwater and nitrogen addition on ecosystem carbon exchange in a temperate steppe [J]. Ecosystems,2009,12:915-926.
    [164] Cheng X L, Luo Y Q, Su B. Responses of net ecosystem CO2exchange to nitrogen fertilization inexperimentally manipulated grassland ecosystems [J]. Agricultural and Forest Meteorology,2009,149:1956-1963.
    [165] Harpole W S, Potts D L, Suding K N. Ecosystem responses to water and nitrogen amendment in aCalifornia grassland [J]. Global Change Biology,2007,13:2341-2348.
    [166]刘德燕,宋长春.沼泽湿地植物光合特性及固“碳”潜势对外源氮输入的响应[J].环境科学学报,2008,228:305-312.
    [167] Lovell R D, Hatch D J. Stimulation of microbial activity following spring applications of nitrogen[J]. Biology and Fertility of Soils,1998,26:28-30.
    [168] Hungate B A, Dukes J S, Shaw M R, Luo Y Q, Field C B. Nitrogen and climate change [J].Science,2003,302:1512-1513.
    [169] Bert G, Drake M A, Meler G. More efficient plants: a consequence of rising atmospheric CO2?[J].Annual Review Plant Physiology and Plant Molecular Biology,1997,48:609-639.
    [170] Oren R, Ellsworth D S, Johnsen K H, Phillips N, Ewers B E, Maier C, Sch fer K V, McCarthy H,Hendrey G, McNulty S G, Katul G G. Soil fertility limits carbon sequestration by forest ecosystemsin a CO2-enriched atmosphere [J]. Nature,2001,411:469-472.
    [171] Reich P B, Hobbie S E, Lee T L, Ellsworth D S, West J B, Tilman D, Knops J H, Naeem S, TrostJ. Nitrogen limitation constrains sustainability of ecosystem response to CO2[J]. Nature,2006,440:922-925.
    [172] Aeschlimann U, N sbergre J, Edwards P J. Responses of net ecosystem CO2exchange inmanaged grassland to long-term CO2enrichment, N fertilization and plant species [J]. Plant CellEnvironment,2005,28:823-833.
    [173] Stitt M, Krapp A. The interaction between elevated carbon dioxide and nitrogen nutrition: thephysiological and molecular background [J]. Plant Cell Environment,1999,22:583-621.
    [174]李玉宁,王关玉,李伟.土壤呼吸作用和全球碳循环[J].地学前缘,2002,9(2):351-357.
    [175]方精云,王娓.作为地下过程的土壤呼吸:我们理解了多少[J]?植物生态学报,2007,31(3):345-347
    [176] Raich J W, Potter C S. Global patterns of carbon dioxide emissions from soils [J]. GlobalBiogeochemistry cycles,1995,9:23-36.
    [177] Raich J W, Schlesinger W H. The global carbon dioxide flux in soil respiration and its relationshipto vegetation and climate [J].Tellus,1992,44B:81-99.
    [178] Hungate B A, Holland E A, Jackson R B, Chapin F S, Mooney H A, Field C B. The fate of carbonin grasslands under carbon dioxide enrichmen t [J]. Nature,1997,388:576-579.
    [179] Craine J M, Wedin D A, Reich P B. The response of soil CO2flux to changes in atmospheric CO2,nitrogen supply and plant diversity [J]. Global Change Biology,2001,7:947-953.
    [180] Wan S Q, Norby R J, Ledford J, Weltzin J. Responses of soil respiration to elevated CO2, airwarming, and changing soil water availability in a model old-field grassland [J]. Global ChangeBiology,2007,13:2411-2424.
    [181] Zhou Y M, Li M H, Cheng X B, Wang C G, Fan A N, Shi L X, Han S J. Soil respiration inrelation to photosynthesis of Quercus mongolica trees at elevated CO2[J].PLoS ONE,2010,5:1-8.
    [182] Bahn M, Rodeghiero M, Anderson D, et al. Soil Respiration in European Grasslands in Relationto Climate and Assimilate Supply [J]. Ecosystems,2008,11:1352-1367.
    [183] Lovelock C E. Soil respiration and belowground carbon allocation in mangrove forests [J].Ecosystems,2008,11:342-354.
    [184] Verburg P S, Arnone J A, Obrist D. Net ecosystem C exchange in two experimental grasslandecosystems [J]. Global Change Biology,2004,10:498-508.
    [185] Ball A S, Drake B G. Stimulation of soil respiration by carbon dioxide enrichment of marshvegetation [J].Soil Biology Biochemistry,1998,30:1203-1205.
    [187] Lin G, Ehleringer J R, Rygiewicz P T, Johnson M G, Tingey D T. Elevated CO2and temperatureimpacts on different components of soil CO2efflux in Douglas-fir terracosms [J]. Global ChangeBiology,1999,5:157-168.
    [188] Pregitzer K S, Burton A J, King J S, Zak D R. Soil respiration, root biomass, and root turnoverfollowing long-term exposure of northern forests to elevated atmospheric CO2and tropospheric O3[J]. New Phytologist,2008,180:153-161.
    [189] Morgan J A, Pataki D E, Korner C. Water relations in grassland and desert ecosystems exposed toelevated atmospheric CO2[J]. Oecologia,2004,140:11-25.
    [190] Bunce J A. Carbon dioxide effects on stomatal responses to the environment and water use bycrops under field conditions [J]. Oecologia,2004,140:1-10.
    [191] Dermody O, Weltzin J F, Engel E C. How do elevated CO2, warming, and reduced precipitationinteract to affect soil moisture and LAI in an old field ecosystem [J]. Plant and Soil,2007,301255-266.
    [192] Hungate B A, Reichstein M, Dijkstra P, Johnson D, Hymus G, Tenhunen J D, Hinkle C R, DrakeB G. Evapotranspiration and soil water content in a scrub-oak woodland under carbon dioxideenrichment [J]. Global Change Biology,2002,8:289-298.
    [193] Niklaus P A, Spinnler D, Kornerb C. Soil moisture dynamics of calcareous grassland underelevated CO2[J]. Oecologia,1998,117:201-208.
    [194] Bader MKF, Ko¨rner C. No overall stimulation of soil respiration under mature deciduous foresttrees after7years of CO2enrichment. Global Change Biology,2010,16:2830-2843.
    [195] Williams M A, Rice C W, Owensby C E. Carbon dynamics and microbial activity in tallgrassprairie exposed to elevated CO2for8years [J]. Plant and Soil,2000,227:127-137.
    [196] Rogers H H, Runion G B, Krupa S V. Plant responses to atmospheric CO2enrichment withemphasis on roots and the rhizosphere [J]. Environment Pollution,1994,83:155-189.
    [197] Deng Q, Zhou G, Liu J, Liu S, Duan H, Zhang D. Responses of soil respiration to elevated carbondioxide and nitrogen addition in young subtropical forest ecosystems in China [J]. Biogeosciences,2010,7:315-328.
    [198] Adair E, Reich P, Trost J, Hobbie S. Elevated CO2stimulates grassland soil respiration byincreasing carbon inputs rather than by enhancing soil moisture [J]. Global Change Biology,2011,doi:10.1111/j.1365-2486.2011.02484.x
    [199] Phillips R, Finzi A, Bernhardt E. Enhanced root exudation induces microbial feedbacks to Ncycling in a pine forest under long-term CO2fumigation [J]. Ecology Letters,2011,14:187-194.
    [200] Wolf A, Drake B, Erickson J, Megonigal J. An oxygen-mediated positive feedback betweenelevated carbon dioxide and soil organic matter decomposition in a simulated anaerobic wetland [J].Global Change Biology,2007,13:2036-2044.
    [201] Ramirez K S, Craine J M, Fierer N. Nitrogen fertilization inhibits soil microbial respirationregardless of the form of nitrogen applied [J].Soil Biology&Biochemistry,2010,422:2336-2338.
    [202] Janssens I A, Dieleman W, Luyssaert S, Subke J A, Reichstein M, Ceulemans R, Ciais P, DolmanJ, Grace J, Matteucci G, Papale D, Piao S L, Schulze E D, Tang J, Law B E. Reduction of forest soilrespiration in response to nitrogen deposition [J]. Nature,2010,3:315-322.
    [203] Kou T J, Zhu J G, Xie Z B, Hasegawa T, Heiduk K. Effect of elevated atmospheric CO2concentration on soil and root respiration in winter wheat by using a respiration partitioning chamber[J].Plant and Soil,2007,299:237-249.
    [204]赵光影,刘景双,王洋. CO2浓度升高与氮添加对三江平原湿地小叶章生长的影响[J].应用生态学报,2011,22:1653-1658.
    [205] Lu S J, Mattson K G, Zaerr J B. Root respiration of Douglas-fir seedlings: Effects of Nconcentration [J]. Soil Biology&Biochemistry,1998,30:331-336.
    [206] Phillips R P, Fahey T J. Fertilization effects on fine root biomass, rhizosphere microbes andrespiratory fluxes in hardwood forest soils [J]. New Phytologist,2007,176:655-664.
    [207] Micks P, Aber J D, Boone R D. Short-term soil respiration and nitrogen immobilization responseto nitrogen applications in control and nitrogen-enriched temperate forests [J]. Forest Ecology andManagement,2004,196:57-70.
    [208] Luo Y, Su B, Currie W S. Progressive nitrogen limitation of ecosystem responses to risingatmospheric carbon dioxide [J]. BioScience,2004,54:731-739.
    [209] Zak D R, Pregitzer K S, King J S, Holmes W E. Elevated atmospheric CO2, fine roots and theresponse of soil micro organisms: a review and hypothesis [J]. New Phytologist,2000,147(1):201-222.
    [210] Liberloo M, Dillen S Y, Calfapietra C, Marinari S, Luo Z B, De Angelis P, Ceulemans R.Elevated CO2concentration, fertilization and their interaction: growth stimulation in a short-rotationpoplar coppice (EU-ROFACE)[J].Tree Physiology,2005,25(2):179-189.
    [211] Pregitizer K S,King J S,Burton A J. Responses of tree fine roots to temperature [J].NewPhytologist,2000,147:105-115.
    [212] Mo J M, Zhang W, Zhu W X, Gundersen P, Fang Y T, Li D J, Wang H. Nitrogen addition reducessoil respiration in a mature tropical forest in southern China [J]. Global Change Biology,2008,14:403-412.
    [213] Tingey D T, Lee E H, Waschmann R, Johnson M G, Rygiewicz P T. Does soil CO2effluxacclimatize to elevated temperature and CO2during long-term treatment of Douglas-fir seedlings [J]?New Phytologist,2006,170:107-118.
    [214] Luo Y, Wan S, Hui D, Wallace L L.Acclimatization of soil respiration to warming in a tall grassprairie [J].Nature,2001,413:622-625.
    [215] Wang W J, Baldock J A, Dalal R C. Decomposition dynamics of plant materials in relation tonitrogen availability and biochemistry determined by NMR and wet-chemical analysis [J]. SoilBiology&Biochemistry,2004,36:2045-2058.
    [216] Craine J M, Morrow C, Fierer N. Microbial nitrogen limitation increases decomposition [J].Ecology,2007,88:2105-2113.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700