用户名: 密码: 验证码:
加压CO_2杀菌机理初探及对乳中酶和细菌活性的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
加压CO2杀菌是指利用高于或接近于临界温度(31.1℃)和临界压力(7.13MPa)的CO2对食品进行杀菌的技术。CO2是一种天然、安全的杀菌剂,加压CO2杀菌技术的杀菌温度低,杀菌后可通过减压使CO2完全分离出来,被认为是一种非常有前途的冷杀菌技术。本课题的目的是首先研究加压CO2对生理盐水中细菌的杀菌效果、并分析影响因素和残存细菌活性;然后研究加压CO2的杀菌机理;再对比研究加压CO2与巴氏杀菌对原料乳天然菌群的杀菌效果及在贮藏期间天然菌群的生长情况;最后研究CO2对原料乳中蛋白酶和脂肪酶活性的影响及在贮藏期间酶活性的改变情况。将加压C02杀菌技术应用到乳品工业将是一项技术革新,通过本课题研究将为加压CO2冷杀菌技术提供理论依据,对使用加压CO2对乳及乳制品杀菌具有重要意义。
     使用加压CO2处理生理盐水中的大肠杆菌、荧光假单胞菌、枯草芽孢杆菌和金黄色葡萄球菌。通过改变压力(1.5MPa、3MPa、4.5MPa、6MPa和7.5MPa)、时间(20min、40min、60min、80min和100min)、温度(30℃、35℃、40℃、45℃和50℃)、加压介质(生理盐水、脱脂乳和全脂乳)和加压方式(连续加压40min、间歇加压20min×2和间歇加压10min×4)研究影响杀菌效果的因素同时研究残存细菌活性的改变情况(30℃、7.5MPa、加压CO2连续处理20min、40min、60min)。结果表明加压CO2的杀菌效果随着压力、时间和温度提高而逐渐提高;牛乳成分对细菌具有保护作用;在低压下改变加压方式并不能显著(P>0.05)提高杀菌效果;加压CO2对4种菌的杀菌效果为:荧光假单胞菌>大肠杆菌>枯草芽孢杆菌>金黄色葡萄球菌;对革兰氏阴性菌的杀菌效果要好于革兰氏阳性菌;加压CO2对残存大肠杆菌和荧光假单胞菌具有后续破坏作用,使残存细菌的生长迟滞期发生显著延长(P<0.05),但对残存枯草芽孢杆菌和金黄色葡萄球菌并没有产生明显后续破坏作用,残存细菌的生长迟滞期并没有发生延长。
     使用加压CO2处理生理盐水中的大肠杆菌(7.5MPa,处理温度为25℃和45℃,处理时间为10min、20min、30min、40min、50min)和枯草芽孢杆菌(7.5MPa,处理温度为25℃和45℃,处理时间为20min、40min、60min、80min、100min)。与巴氏杀菌(63℃、30min)比较,通过检测细菌细胞膜通透性的改变情况,菌体内蛋白质、核酸、K+和Mg2+的泄漏情况,菌体超微结构和菌体DNA的改变情况,用FTIR分析菌体成分和菌体蛋白质二级结构的改变情况来综合研究加压CO2的杀菌机理。结果表明当加压CO2处理使菌体致死的过程中,细胞膜通透性显著(P<0.05)变大,但与热杀菌不同,没有发生全透改变;短时加压CO2处理不足以使菌体内蛋白质泄漏,长时加压CO2处理致使蛋白泄漏,并且泄漏量是显著(P<0.05)大于巴氏杀菌,但所需时间比99%以上菌体死亡时间明显滞后,所以只是细菌死亡后的后发结果;加压CO2处理使菌体内核酸发生显著(P<0.05)泄漏,菌体死亡与核酸泄漏有关;菌体死亡与加压CO2处理引起的菌体K+和Mg2+泄漏有关;加压CO2处理使菌体发生变形,破坏了菌体细胞壁和细胞膜,由此也证明菌体细胞膜通透性变大,菌体内成分发生泄漏。加压CO2处理后,菌体DNA没有发生明显降解,说明菌体死亡与菌体DNA损伤无关;通过FTIR分析可知,加压C02处理导致菌体脂肪酸发生改变,核酸物质发生改变,大肠杆菌的肽聚糖层发生明显改变,枯草芽孢杆菌的肽聚糖层变化并不明显,大肠杆菌的蛋白质性质发生改变,枯草芽孢杆菌的蛋白质性质发生不规律改变;与加热处理不同,C02处理使大肠杆菌蛋白质的α-螺旋结构减少,转变为β-折叠结构和β-转角结构,枯草芽孢杆菌蛋白质的β-折叠结构增加,α-螺旋结构、β-转角结构、无规卷曲结构的改变没有规律。
     使用加压C02处理原料乳。研究加压C02与巴氏杀菌对原料乳中天然菌群的杀灭效果以及对比研究了在贮藏期间处理后原料乳的稳定性。通过改变C02压力(4.5、7.5、10.5MPa)、加压时间(20、40、60min)、温度(4、15、25℃)和加压方式(连续加压和间歇加压)研究加压C02处理参数对杀菌效果的影响。在最适条件下在冷藏温度下加压C02处理对于原料乳中天然菌群的贮藏稳定性的影响也被研究,并且被比较和巴氏杀菌样品(63℃,30min)。结果表明原料乳中假单胞菌、肠杆菌科细菌、乳酸菌和金黄色葡萄球菌菌数降低,细菌总数也降低;C02压力、时间、温度对杀菌效果影响较大,加压方式的影响相对较小;对于加压C02处理原料乳中革兰氏阳性菌比革兰氏阴性菌更加具有抵抗力;在7.5MPa、4℃下,连续加压C02处理40min,原料乳中的金黄色葡萄球菌菌数降低到不能检测的水平,假单胞菌、肠杆菌科细菌和细菌总数降低到低于巴氏杀菌的水平,乳酸菌菌数高于巴氏杀菌水平;在贮藏期间,CO2处理原料乳中的假单胞菌、肠杆菌科细菌菌数和细菌总数低于巴氏杀菌,乳酸菌菌数高于巴氏杀菌,未检测出金黄色葡萄球菌:与巴氏杀菌相比,C02处理使原料乳的保藏期延长2天。
     使用加压C02处理原料乳(压力7.5MPa,温度25℃和45℃,时间20min和40min,连续加压)。结果表明与未处理原料乳蛋白酶活性3.61U/mL和脂肪酶活性0.43U/mL相比,CO2处理后不脱气时,CO2处理原料乳的蛋白酶活性(不同条件下分别为2.92U/mL、2.92U/mL2.40U/mL、2.20U/mL)和脂肪酶活性(不同条件下分别为0.25U/mL、0.26U/mL、0.16U/mL、0.12U/mL)都发生显著(P<0.05)降低;CO2处理后脱气时,原料乳的蛋白酶活性(不同条件下分别为3.30U/mL、3.42U/mL、3.24U/mL、3.21U/mL)发生较小(P>0.05)回升,脂肪酶活性(不同条件下分别为0.55U/mL.0.51U/mL、0.57U/mL、0.52U/mL)发生显著(P<0.05)提高;加压CO2处理能够抑制原料乳在贮藏过程中的蛋白质分解,著且短时加压的抑制作用更大,但温度对抑制作用的影响并不大;加压CO2处理导致原料乳在贮藏过程中脂肪分解程度变大,并且低温和长时加压的脂肪分解程度更大,脂肪分解加速是在加压CO2处理条件下原料乳的脂肪球变小所致。
Pressurized CO2treatment was a food sterilization technology that using the temperature above or close the critical temperature of31.1℃and the pressure above or close the critical pressure7.13MPa. CO2was a natural and safe antiseptic. The sterilization temperature of pressurized CO2technology was low. CO2could be separated completely by decompression after sterilization. Pressurized CO2treatment was considered as a very promising cold sterilization. The purpose of this project is to investigate the bactericidal effects of pressurized CO2on the bacteria in saline, analyse the influencing factors and the residual bacterial activity; investigate the sterilization mechanism of pressurized CO2; compare the sterilization effects of pressurized CO2and thermal pasteurization on natural microorganisms in raw milk and the growth of natural microorganisms during storage; investigate the effects of pressurized CO2on protease and lipase activity in raw milk and the change of activity during storage. The application of pressurized CO2sterilization techniques to the dairy industry would be a technological innovation, the research of this subject would provide the theoretical basis for CO2cold sterilization technology, and the research of this subject had the significant meaning to the pressurized CO2sterilization of milk and dairy products.
     Escherichia coli, Pseudomonas fluorescens, Bacillus subtilis and Staphylococcus aurens in saline were treated by pressurized CO2. The factors influencing the bactericidal effects were studied by changing the pressure (1.5MPa,3MPa,4.5MPa,6MPa and7.5MPa), time (20min,40min,60min,80min and100min), temperature (30℃,35℃,40℃,45℃and50℃), media (saline, skim milk and whole milk) and modus (40min,20min×2and10min×4). The change of residual bacterial activity was also studied (30℃,7.5MPa, treated by pressurized CO220min,40min and60min). The results showed that bactericidal effects of pressurized CO2were increased when the pressure, time, temperature were increased. The milk ingredients could protect the bacteria. Changing the pressurized modus under low pressure could not increase the bactericidal effects. The bactericidal effects of pressurized CO2to the four bacteria were Pseudomonas fluorescens> Escherichia coli> Bacillus subtilis> Staphylococcus aureus. The bactericidal effects of pressurized CO2to Gram-negative bacteria were better than Gram-positive bacteria. Pressurized CO2had the subsequent damaging effects to residual Escherichia coli and Pseudomonas fluorescens, the growth lag phases of residual bacteria were extended a lot. But pressurized CO2did not have the subsequent damaging effects to residual Bacillus subtilis and Staphylococcus aureus, the growth lag phases of residual bacteria were not extended.
     Escherichia coli (7.5MPa,25℃/45℃,10min/20min/30min/40min/50min) and Bacillus subtilis (7.5MPa,25℃/45℃,20min/40min/60min/80min/100min) in saline were treated by pressurized CO2Compared with pasteurization (63℃,30min), the sterilization mechanism of pressurized CO2was studied by detecting the change of membrane permeability, the leakage of bacterial protein, nucleic acid, K+and Mg2+, the change of bacterial ultrastructure, the change of bacterial DNA. The change of bacterial components and bacterial protein secondary structure were also studied by FTIR. The results showed that the membrane permeability was increased (P<0.05) when the bacteria were inactivated by pressurized CO2, but differently from thermal pasteurization, the transmissive changes were not happened. Protein leakage was not happened under pressurized CO2treatment of short time. Although the protein leakage under pressurized CO2treatment of long time was more than (P<0.05) thermal pasteurization significantly, the time was lagged to the time of99%bacterial death. So protein leakage under pressurized CO2treatment of long time was not the reason of bacterial death, was only the secondary phenomenon of bacterial death. Pressurized CO2treatment induced the bacterial nucleic acid leaked significantly (P<0.05), so bacterial death was related to the bacterial nucleic acid leakage. Bacterial death was related to the bacterial K+and Mg2+leakage induced by pressurized CO2treatment. Pressurized CO2treatment destroyed the cell wall and membrane, bacterial deformation was happened. It was also certified that the bacterial membrane permeability was increased and the bacterial components were leaked. The degradation of bacterial DNA was not happened after pressurized CO2treatment, so bacterial death was not related to the damage of bacterial DNA. It was known through FTIR that pressurized CO2treatment induced the change of bacterial fatty acid and nucleic acid. The peptidoglycan layer of Escherichia coli changed obviously, the peptidoglycan layer of Bacillus subtilis did not change obviously. The protein of Escherichia coli changed obviously, the protein of Bacillus subtilis changed erratically. Differently from thermal pasteurization, pressurized CO2treatment induced the a-helix structure of Escherichia coli decreased, the a-helix structure changed to the β-sheet structure and the β-turn structure. The β-sheet structure of Bacillus subtilis increased, the change of a-helix structure, p-turn structure and the random coil structure of Bacillus subtilis were irregular.
     Raw milk was treated by pressurized CO2. The inactivation effects of pressurized CO? and pasteurization on natural microorganisms in raw milk and the stability of the treated raw milk during storage were investigated comparatively. The effects of pressurized CO2treatment parameters on the inactivation results were investigated by changing CO2pressure (4.5,7.5and10.5MPa), pressurized time (20,40and60min), temperature (4,15and25℃) and pressurized modus (continuous treatment and intermittent treatments). The effect of pressurized CO2treatment at the optimal conditions on the storage stability of natural microorganisms in raw milk at4℃was investigated and compared with the samples pasteurized at63℃for30min. The results showed that the viable counts of Pseudomonas, Enterobacteriaceae, LAB and Staphylococcus aureus in raw milk were decreased and the total bacterial count was also decreased. The CO2pressure, pressurized time and temperature had more profound effects on the inactivation degree while the effect of pressurized modus was less profound relatively. The gram-positive bacteria in raw milk were more resistant to the pressurized CO2treatment than gram-negative bacteria. At7.5MPa,4℃, under continuous pressurized CO2treatment for40min, the viable count of Staphylococcus aureus was decreased to the level undetectable, the viable counts of Pseudomonas, Enterobacteriaceae and the total bacterial count were decreased to the levels lower than pasteurization, and the viable count of LAB was more than pasteurization. During storage, the viable counts of Pseudomonas, Enterobacteriaceae and the total bacterial count in the samples treated by pressurized CO2were lower than which in the samples treated by pasteurization, the viable count of LAB was more, Staphylococcus aureus was undetectable. Compared with pasteurization, the storage time of raw milk was extended two days.
     Raw milk was treated by pressurized CO2(7.5MPa,25℃/45℃,20min/40min, continuous treatment). The results showed that compared with the protease activity of untreated raw milk3.61U/mL and the lipase activity of untreated raw milk0.43U/mL, when not degassed after pressurized CO2treatment, the protease activity (2.92U/mL,2.92U/mL,2.40U/mL,2.20U/mL) and lipase activity (0.25U/mL,0.26U/mL,0.16U/mL,0.12U/mL) of pressurized CO2treated raw milk were decreased significantly (P<0.05), when degassed after pressurized CO2treatment, the protease activity (3.30U/mL,3.42U/mL,3.24U/mL,3.21U/mL) of raw milk was increased slightly (P>0.05) and the lipase activity (0.55U/mL,0.51U/mL,0.57U/mL,0.52U/mL) was increased significantly (P<0.05). Pressurized CO2treatment could inhibit the proteolytic of raw milk during storage, and the inhibition effect was more when under short time, but the effect of temperature was not more. Pressurized CO2treatment induced the lipolysis of raw milk increased during storage, and the degree of lipolysis was more under long time and low temperature. The smaller fat globules induced by pressurized CO2treatment was the reason of the speeded-up of lipolysis.
引文
[1]AWUAH G B, RAMASWAMY, H S, ECONOMIDES A. Thermal processing and quality: principles and overview[J]. Chemical Engineering and Processing,2007,46:584-602.
    [2]VIKRAM V B, RAMESH M N, PAPRULLA S G. Thermal degradation kinetics of nutrients in orange juice heated by electromagnetic and conventional methods[J]. Journal of Food Engineering,2005,69:31-40.
    [3]SAN MARTIN M F, BARBOSAE CANOVAS G V, SWANSON B G. Food Processing by high hydrostatic pressure[J]. Critical Reviews in Food Science and Nutrition,2004,42:627-645.
    [4]HOWARD I. Processing techniques and their effect on fruit and vegetable phytochemicals[C]. Improving the health-promoting properties of fruit and vegetable products. CRC Press.
    [5]THAYER D W, JOSEPHSON E S, BRYNJOLFSSON A, et al. Radiation pasteurization of foods[J]. Council for Agricultural Science and Technology,1996,7:1-10.
    [6]SHIGEHISA T, OHMOR1 T, SAITO A, et al. Effects of high hydrostatic pressure on characteristics of pork slurries and inactivation of microorganisms associated with meat and meat products[J]. International Journal of Food Microbiology,1991,12:207-215.
    [7]CHEFTEL J C. Review:high-pressure, microbial inactivation and food preservation[J]. International Journal of Food Science and Technology,1995,1:75-90.
    [8]柏冰.高压气体对液体杀菌的试验研究[D].重庆:重庆大学动力机械及工程学院,2005.
    [9]李军.鲜榨苹果汁非热杀菌技术与设备的研究[D].北京:中国农业大学农产品加工与储藏工程学院,2004.
    [10]曹明菊,郑晓燕,陈丽华.超高压杀菌技术在果汁生产中应用的研究进展闭[J].综述与述评,2007,10(12):7-10.
    [11]张胜勇.超高压食品处理技术试验研究[D].大连:大连理工大学化工工程机械学院,2006.
    [12]LIN H M, YANG Z Y, CHEN L F. Inactivation of Leuconostoc dextranicum with carbon dioxide under pressure[J]. Chemical Engineering Journal and the Biochemical Engineering Journal,1993,52:B29-B34.
    [13]HONG S I, PYUN Y R. Inactivation kinetics of Lactobacillus plantarum by high pressure carbon dioxide[J]. Journal of Food Science,1999,64:728-733.
    [14]SPILIMBERGO S, BERTUCCO A. Non-thermal bacteria inactivation with dense CO2[J]. Biotechnology and Bioengineering,2003,84:627-638.
    [15]DAMAR S, BALABAN M O. Review of dense phase CO2 technology:microbial and enzyme inactivation, and effects on food quality[J]. Journal of Food Science,2006,71:R1-Rll.
    [16]JIAN Z, THOMAS A D, MICHAEL A M, et al. Sterilization using high-pressure carbon dioxide[J]. Journal of Supercritical Fluids,2006, (38):354-372.
    [17]KAM1H1RA M, TAN1GUCHI M, KOBAYASH1 T. Sterilization of microorganisms with supercritical carbon dioxide[J]. Agricultural and Biological Chemistry,1987,51:407-415.
    [18]李汴生,阮征.非加热灭菌技术与应用[M].北京:化学工业出版社,2004.
    [19]WERNER B G, HOTCHKISS J H. Continuous flow nonthermal CO2 processing:the lethal effects of subcritical and supercritical CO2 on total microbial populations and bacterial spores in raw milk[J]. Journal of Dairy Science,2006,89:872-881.
    [20]FERRENTINO G, PLAZA M L, RAM1REZ-RODRIGUES M, et al. Effects of dense phase carbon dioxide pasteurization on the physical and quality attributes of a red grapefruit juice[J]. Journal of Food Science,2009,74:E333-E341.
    [21]SPILIMBERGO S, CIOLA L. Supercritical CO2 and N2O pasteurisation of peach and kiwi juice[J]. International Journal of Food Science and Technology,2010,45:1619-1625.
    [22]GARC1A-GONZALEZ L, GEERAERD A H, SPILIMBERGO S, et al. High pressure carbon dioxide inactivation of microorganisms in foods:The past, the present and the future[J]. International Journal of Food Microbiology,2007,117:1-28.
    [23]PARK S J, LEE J I, PARK J. Effects of a combined process of high-pressure carbon dioxide and high hydrostatic pressure on the quality of carrot juice[J]. Journal of Food Science,2002, 67:1827-1834.
    [24]GUNES G, BLUM L K, HOTCHKISS J H. Inactivation of yeasts in grape juice using a continuous dense phase carbon dioxide processing system[J]. Journal of the Science of Food and Agriculture,2005,85:2362-2368.
    [25]DAMAR S, BALABAN M O. Cold pasteurization of coconut water with a dense phase CO2 system[J]. IFT Annual Meeting Book of Abstracts,2005,7:15-20.
    [26]GARC1A-GONZALEZ L, GEERAERD A H, ELST K, et al. Inactivation of naturally occurring microorganisms in liquid whole egg using high pressure carbon dioxide processing as an alternative to heat pasteurization[J]. Journal of Supercritical Fluids,2009,51:74-82.
    [27]曾庆梅,周先汉,杨毅等.高密度CO2杀菌机制与协同措施研究现状[J].食品科学,2010,31:252.
    [28]母智深,白英,赵广华等.荧光假单胞杆菌胞外蛋白酶的纯化及热稳定性[J].高等学校化学学报,2008,29(4):762.
    [29]夏震.超高温灭菌乳加工系统及其灭菌原理[J].中国乳品工业,1998,26(2):28-31.
    [30]赵平.超高温牛乳常见质量问题的原因分析及控制措施[J].中国乳品工业,1999,27(2):33-35.
    [31]陈静静,孙志高.二氧化碳杀菌技术研究进展[J].粮食与油脂,2008,(4):10-12.
    [32]JIAN Z, NISHITA D, MICHAEL A M, et al. Supercritical carbon dioxide and hydrogen peroxide cause mild changes in spore structures associated with high killing rate of Bacillus anthracis[J]. Journal of Microbiological Methods,2007, (70):442-451.
    [33]SOO R K, HEE J P, DO S Y, et al. Analysis of survival rates and Cellular fatty acid profiles of Listeria monocytogenes treated with supercritical carbon Dioxide under the influence of cosolvents[J]. Journal of Microbiological Methods,2008, (75):47-54.
    [34]ERKMEN O. Inactivation of Salmonella typhimnrium by high pressure carbon dioxide[J]. Food Microbiology,2000,17:225-232.
    [35]ISENSCHMID A, MARISON I W, STOCKAR U. The influence of pressure and temperature of compressed CO2 on the survival of yeast cells[J]. Journal of Biotechnology,1995,39: 229-237.
    [36]ERKMEN O. Effects of high-pressure carbon dioxide on Escherichia coli in nutrient broth and milk[J]. International Journal of Food Microbiology,2001,65:131-135.
    [37]ERKMEN O. Kinetic analysis of Listeria monocytogenes inactivation by high pressure carbon dioxide[J]. Journal of Food Engineering,2001,47:7-10.
    [38]ERKMEN O, KARAMAN H. Kinetic studies on the high pressure carbon dioxide inactivation of Salmonella typhimurium[J]. Journal of Food Engineering,2001,50:25-28.
    [39]ERKMEN O. Predictive Modelling of Listeria monocytogenes inactivation under high pressure carbon dioxide[J]. Lebensmittel-Wissenschaft Und-Technologie-Food Science and Technology,2000,33:514-519.
    [40]KARAMAN H, ERKMEN O. High carbon dioxide pressure inactivation kinetics of Escherichia coli in broth[J]. Food Microbiology,2001,18:11-16.
    [41]KIM S R, RHEE M S, KIM B C, et al. Modeling of the inactivation of Salmonella typhimurium by supercritical carbon dioxide in physiological saline and phosphate-buffered saline[J]. Journal of Microbiological Methods,2007,70:132-141.
    [42]ISHIKAWA H, SHIMODA H, SHIRATSUCHI H, et al. Sterilization of microorganisms by the supercritical carbon dioxide micro-bubble method[J]. Bioscience Biotechnology and Biochemistry,1995,59:1949-1956.
    [43]HONG S I, PARK W S, PYUN Y R. Inactivation of Lac to bacillus sp. from kimchi by pressure CO2[J]. Lebensmittel-Wissenschaft Und-Technologie-Food Science and Technology,1997,30: 681-685.
    [44]SHIMODA M, YAMAMOTO Y, COCUNUBO-CASTELLANOS J, et al. Antimicrobial effect of pressured carbon dioxide in a continuous flow system[J]. Food Science,1998,63:709-712.
    [45]SHIMODA M, COCUNUBO-CASTELLANOS J, KAGO H, et al. The influence of dissolved CO2 concentration on the death kinetics of Saccharomyces cerevisiae[J]. Journal of Applied Microbiology,2001,91:306-311.
    [46]LIAO H, HU X, LIAO X, et al. Inactivation of Escherichia coli inoculated into cloudy apple juice exposed to dense phase carbon dioxide[J]. International Journal of Food Microbiology, 2007,118(2):126-131.
    [47]ATSUSHI E, KOZO N, MASARU H, et al. Lethal effect of high-pressure carbon dioxide on a bacterial spore[J]. The Journal of supercritical fluids,2002,22(1):55-63.
    [48]SPILIMBERGO S, BERTUCCO A, LAURO F M, et al. Inactivation of Bacillus subtilis spores by supercritical CO2 treatment[J]. Innovative Food Science and Emerging Technologies,2004,4:161-165.
    [49]方蕾.果汁冷杀菌技术[J].综述与述评,2007,10(8):1-4.
    [50]ANGELA D, FARIBA D, JEFFREY H, et al. Bacterial inactivation by using near and Supercritical carbon dioxide[J]. Proceedings of the National Academy of Sciences of the United States of America,1999,96:10344-10348.
    [51]DEBS-IOUKA E, LOUKA G, ABRAHAM G, et al. Effect of compressed carbon dioxide on microbial cell viability[J]. Applied and Environmental Microbiology,1999,65(2):626-631.
    [52]DILLOW A K, DEHGHANI F, HRKACH J S, et al. Bacterial inactivation by using near and supercritical CO2[J]. Proceedings of the National Academy of Sciences of the United States of America,1999,10(96):10344-10348.
    [53]ERKMEN O. Mathematical modeling of Escherichia coli inactivation under high-pressure carbon dioxide[J]. Journal of Bioscience and Bioengineering,2001,92(1):39-43.
    [54]TIZIANA P, ALBERTO B, NICOLA E, et al. Continuous plant for food preservation by high pressure CO2[J]. Journal of Food Engineering,2007,79:1410-1417.
    [55]SOICHI F, TAISUKE W, TETSUYA K, et al. Inactivation of food poisoning bacteria and Geobacillus stearothermophilus spores by high pressure carbon dioxide treatment[J]. Food Control,2009,20:53-58.
    [56]GARCIA-GONZALEZ L, GEERAERD A H, ELST K, et al. Influence of type of microorganism, food ingredients and food properties on high-pressure carbon dioxide inactivation of microorganisms[J]. International Journal of Food Microbiology,2009,129: 253-263.
    [57]GARCIA-GONZALEZ L, GEERAERD A H, MAST J, et al. Membrane permeabilization and cellular death of Escherichia coli, Listeria monocytogenes and Saccharomyces cerevisiae as induced by high pressure carbon dioxide treatment[J]. Food Microbiology,2010,27:541-549.
    [58]OULE K M, DICK.MAN M, ARULJOSEPH. Microbicidal effect of pressurized CO2 and the influence of sensitizing additives[J]. European Journal of Scientific Research,2010,4: 569-581.
    [59]贾十儒,孙爱友,张保泉等.超临界CO2对面包酵母活性影响的研究[J].中国生物工程杂志,2003,23(7):94-97.
    [60]柏冰,周建军,俞逾等.采用高压CO2气体灭活啤酒酵母的试验研究[J].食品科学,2005,26(10):43-45.
    [61]吴垠.微生物在加压CO2下的致死过程及机理研究[D].浙江:浙江大学材料与化学工程学院,2006.
    [62]ISENSCHMID A, MARISON I W, STOCKAR U. The influence of pressure and temperature of compressed CO2 on the survival of yeast cells[J]. Journal of Biotechnology,1995,39: 229-237.
    [63]TOMASULA P M, BOSWELL R T. Measurement of the solubility of carbon dioxide in milk at high pressures[J]. Journal of Supercritical Fluids,1999,16:21-26.
    [64]DEVLIEGHERE F, DEBEVERE J, VAN I J. Concentration of carbon dioxide in the waterphase as a parameter to model the effect of modified atmosphere on microorganisms[J]. International Journal of Food Mmicrobiology,1998,43:105-113.
    [65]DIEA-GONZALEZ F, JARVIS G N, ADAMOVICH D A, et al. Use of carbonate and alkali to eliminate Escherichia coli from dairy cattle manure[J]. Environmental Science and Technology,2000,34:1275-1279.
    [66]CORRAL L G, POST L S, MONTVILLE T J. Antimicrobial activity of sodium bicarbonate[J]. Journal of Food Science,1998,53:981-982.
    [67]叶盛英,丁德坤,宋贤良.不同参数超临界CO2处理对乳酸菌活性的影响[J].农业工程学报,2007,23(2):218-222.
    [68]钱俊青,林春绵,陈小龙.超临界CO2对酵母菌生长状况影响的研究[J].高校化学工程学报,2004,18(3):394-398.
    [69]FOSTER D. Bursting bacteria by release of gas pressure[J]. Nature,1951,167:33-40.
    [70]FOSTER J W, COWAN R M, MAAG T A. Rupture of bacteria by explosive decompression[J]. Journal of Bacteriology,1962,83:330-340.
    [71]WHITE A, BURNS D, CHRISTENSEN T W. Effective terminal sterilization using supercritical carbon dioxide[J]. Journal of Biotechnology,2006,123:504-505.
    [72]BALLESTRA P, DASILVA A A, CUG J L.Inactivation of Escherichia coli by carbon dioxide under pressure[J]. Journal of Food Science,1996,61:829-836.
    [73]SHIMODA M, YAMAMOTO Y, COCUNUBO-CASTELLANOS J, et al. Antimicrobial effects of pressured carbon dioxide in a continuous flowsystem[J]. Journal of Food Science, 1998,63:709-716.
    [74]HONG S I, PYUN Y R. Membrane damage and enzyme inactivation of Lactobacillus plantarum by high pressure CO2 treatment[J]. International Journal of Food Microbiology, 2001,63:19-26.
    [75]NAKAMURA K, ENOMOTO A, FUKUSHIMA H, et al. Disruption of microbial-cells by the flash discharge of high-pressure carbon dioxide[J]. Bioscience Biotechnology and Biochemistry,1994,58:1297-1305.
    [76]ENOMOTO A, NAKAMURA K, NAGAI K, et al. Inactivation of food microorganisms by high-pressure carbon dioxide treatment with or without explosive decompression[J]. Bioscience Biotechnology and Biochemistry,1997,61:1133-1140.
    [77]ERKMEN O. Antimicrobial effect of pressurized carbon dioxide on Staphylococcus aureus in broth and milk[J]. Lebensmittel-Wissenschaft Und-Technologie-Food Science and Technology, 1997,30:826-829.
    [78]SPILIMBERGO S, BERTUCCO A, BASSO G, et al. Determination of extracellular and intracellular pH of Bacillus subtilis suspension under CO2 treatment[J]. Biotechnology and Bioengineering,2005,92:447-451.
    [79]HASS G J, PRESCOTTE H E, DUDLEY E, et al. Inactivation of microorganisms by carbon dioxide under pressure[J]. Journal of Food Safety,1989,9:253-260.
    [80]SPILIMBERGO S, EELVASSORE N, BERRUCCO A. Microbial inactivation by high pressure[J]. Journal of Supercritical Fluids,2002,22:55-63.
    [81]SPILIMBERGO S, BERTUCCO A, LAURO F M, et al. Inactivation of Bacillus subtilis spores by supercritical CO2 treatment[J]. Innovative Food Science and Emerging Technologies,2003,4:161-170.
    [82]SPILIMBERGO S, DEHGHANI F, BERTUCCO A, et al. Inactivation of bacteria and spores by pulse electric field and high pressure CO2 at low temperature[J]. Biotechnology and Bioengineering,2003,82:118-126.
    [83]周先汉,宋俊骅,曾庆梅等.高压CO2酸化杀菌机理的研究[J].食品科学,2010,31(11):11-14.
    [84]张国强,冯玉杰.超临界CO2萃取大豆卵磷脂工艺条件的研究[J].化学工程师,2005,8:55-56.
    [85]GIULIO B, ALBERTO B, VERONICA D C, et al. A study on the inactivation of microorganisms and enzymes by high pressure CO2[J]. Biotechnology and Bioengineering, 2006,95(1):155-160.
    [86]LIN H M, CHAN E C, CHEN C, et al. Disintegration of yeast cells by pressurized carbon dioxide[J]. Biotechnology Progress,1991,7:201-204.
    [87]LIN H M, YANG Z Y, CHEN L F. An improved method for disruption of microbial cells with pressured carbon dioxide[J]. Biotechnology Progress,1992,8:165-166.
    [88]LIN H M, YANG Z Y, CHEN L F. Inactivation of Saccharomyces cerevisiae by supercritical and subcritical carbon dioxide[J]. Biotechnology Progress,1992,8:458-465.
    [89]LIN H M, CAO N J, CHEN L F. Antimicrobial effect of pressurized carbon dioxide on Lsiteria monocytogenes[J]. Journal of Food Science,1994,59(3):657-665.
    [90]BALLESTRA P, CUQ J L. Influence of pressurized carbon dioxide on the thermal inactivation of bacterial and fungal spores[J]. Food Science and Technology-Lebensmittel-Wissenschaft and Technologie,1998,31:84-90.
    [91]饶伟丽.高密度cO2对大肠杆菌菌体蛋白影响的研究[D].北京:中国农业科学院,2009.
    [92]WATANABE T, FURUKAWA S, HIRATA J, et al. Inactivation of Geobacillus stearothermophilus spores by high-pressure carbon dioxide treatment[J]. Applied and Environmental Microbiology,2003,69:7124-7131.
    [93]BALLESTRA P, CUQ J L. Influence of pressurized carbon dioxide on the thermal inactivation of Bacterial and fungal spores[J]. Lebensmittel-Wissenschaft Und-Technologie-Food Science and Technology,1998,31:84-88.
    [94]VOLKER K, RALF S, GERD B. Enzyme denaturation in supercritical CO2:stabilizing effect of S-S bonds during the depressurization step[J]. Biotechnology letters,1988,10(8):569-574.
    [95]GIEβAUF A, GAMSE T. A simple process for increasing the specific activity of porcine pancreatic lipase by supercritical carbon dioxide treatment[J]. Journal of Molecular Catalysis B:Enzymatic,2000,9:57-64.
    [96]TEDJO W, ESHTIAGHI M N, KNORR D. Impact of supercritical Carbon Dioxide and High Pressure on Lipoxygdenase and Peroxidase Activity[J]. Journal of Food Science,2000,65(8): 1284-1287.
    [97]GIEβAUF A, MAGOR W, STEINBERGER DORIS J, et al. A study of hydrolases stability in supercritical carbon dioxide (SC-CO2) [J]. Enzyme and Microbial Technology,1999,24: 577-583.
    [98]贝君,吴继红,廖小军等.高密度二氧化碳对脂肪氧化酶活性与结构变形的影响[J].中国食品学报,2008,8(5):51-57.
    [99]尹卓容,冯德琴,王晓霞.超临界二氧化碳抑制脂肪氧化酶及灭菌作用的研究明[J].山东轻工业学院学报,1999,13(4):33-36.
    [100]MAJA H, ZELJKO K. Activity and stability of lipases from different sources in supercritical carbon dioxide and near-critical propane[J]. Journal of chemical technology and biotechnology,2001,76:1260-1266.
    [101]BERTOLONI G, BERTUCCO A, CIAN V D, et al. A study on the inactivation of micro-organisms and enzymes by high pressure CO2[J]. Biotechnology and Bioengineering, 2006,95(1):155-160.
    [102]TISI D A. Effect of dense phase carbon dioxide on enzyme activity and casein proteins in raw milk[D]. Cornell:Faculty of the graduate school of cornell university,2004.
    [103]廖红梅,周林燕,廖小军等.高密度二氧化碳对牛初乳的杀菌效果及对理性性质影响[J].农业工程学报,2009,25(4):260-264.
    [104]钟葵,黄文,廖小军等.高密度二氧化碳技术对牛奶杀菌效果动力学分析[J].化工学报,2010,61(1):146-150.
    [105]韩冰,谢宏,张德权.牛奶高密度CO2杀菌效果及杀菌动力学研究[J].食品科技,2010,35:67.
    [106]刘美凤.加压CO2对乳中荧光假单胞菌杀菌效果及杀菌机理研究[D].哈尔滨:东北农业大学,2012.
    [107]付瑞东,刘美凤,姚春艳等.加压CO2对污染乳中金黄色葡萄球菌杀菌效果的研究[J].食品工业,2012,5:20-24.
    [108]薛源,桂芬琦,孙志健等.高压CO2技术杀菌灭酶效果及其机理研究进展[J].食品工业科技,2006,3(27):203-205.
    [109]肖建,张静,孟艳霞等.高密度二氧化碳技术对哈密瓜汁中多酚氧化酶的钝化效果研究[J].食品科技,2009,34(5):42-45.
    [110]肖建,张静,陈计峦.高密度二氧化碳技术对哈密瓜汁中脂氧化酶的钝化效果研究[J].农产品加工,2009,(5):76-80.
    [111]LIAO H M, HU X S, LIAO X J, et al. Effect of high pressure CO2 and mild heat processing on natural microorganisms in apple juice[J]. International Journal of Food Microbiology, 2010,137:81-87.
    [112]POZO-INSFRAN D, BALABAN M, TALCOTT S. Inactivation of polyphenol oxidase in muscadine grape juice by dense phase CO2 processing[J]. Food Research International,2007, 40:894-899.
    [113]ARREOLA A G, BALABAN M O, MARSHALL M R, et al. Supercritical carbon dioxide effects on some quality attributes of single strength orange juice[J]. Journal of Food Science, 1991a,56:1030-1033.
    [114]BALABAN M O, KINCAL D, HILL S, et al. The synergistic use of carbon dioxide and pressure in nonthermal processing of juices[J]. IFT Annual Meeting Book of Abstracts,2001, June:23-27.
    [115]YAGIZ Y, LIM S L, BALABAN M O. Continuous high pressure CO2 processing of mandarin juice[J]. IFT Annual Meeting Book of Abstracts,2005, July:15-20.
    [116]GUI F, WU J, CHEN F, et al. Change of polyphenol oxidase activity, color, and browning degree during storage of cloudy apple juice treated by supercritical carbon dioxide[J]. European Food Research and Technology,2005,223:427-432.
    [117]DEL POZO-INSFRAN D, BALABAN M O, TALCOTT S T. Microbial stability, phytochemical retention, and organoleptic attributes of dense phase CO2 processed muscadine grape juice[J]. Journal of Agricultural and Food Chemistry,2006,54:5468-5473.
    [118]CHOI Y M, RYU Y C, LEE S H, et al. Effects of supercritical carbon dioxide treatment for sterilization purpose on meat quality of porcine longissimus dorsi muscle[J]. Lebensmittel-Wissenschaft Und-Technology,2008,41:317-322.
    [119]CHAO R R, MULVANEY S J, BAILEY M E, et al. Supercritical CO2 conditions affecting extraction of lipid and cholesterol from ground beef[J]. Journal of Food Science,1991,56: 183-187.
    [120]孙源源.超临界CO2对肉馅中细菌的杀菌效果及模型分析研究[J].河南工业大学学报,2009,30(3):60-64.
    [121]SIRISEE U, HSIEH F, HUFF H E. Microbial safety of supercritical carbon dioxide processes[J]. Journal of Food Processing and Preservation,1998,22:387-403.
    [122]WEI C I, BALABAN M O, FERNANDO S Y, et al. Bacterial effect of high pressure CO2 treatment on foods spiked with Listeria or Salmonella[J]. Journal of Food Protection,1991, 54:189-193.
    [123]CHOI Y M, BAE Y Y, KIM K H, et al. Effects of supercritical carbon dioxide treatment against generic Escherichia coli, Listeria monocytogenes, Salmonella typhimurium, and E. coli O157:H7 in marinades and marinated pork[J]. Meat Science,2009a,82:419-424.
    [124]MEUJO D A F, KEVIN D A, PENG J, et al. Reducing oyster-associated bacteria levels using supercritical fluid CO2 as an agent of warm pasteurization[J]. International Journal of Food Microbiology,2010,138:63-70.
    [125]HAAS G J, PRESCOTT H E, DUDLEY E, et al. Inactivation of microorganisms by carbon dioxide under pressure[J]. Journal of Food Safety,1989,9:253-265.
    [126]VALVERDE M T, MAR-INIESTA F, CALVO L. Inactivation of Saccharomyces cerevisiae in conference pear with high pressure carbon dioxide and effects on pear quality[J]. Journal of Food Engineering,2010,98:421-428.
    [127]KUHNE K, KNORR D. Effects of high pressure carbon dioxide on the reduction of microorganisms in fresh celery[J]. Internationale Zeitschrift Lebensmittel-Technik, Marketing, Verpackung and Analytik,1990,41:55-57.
    [128]HONG S I, PARK W S. High pressure carbon dioxide effect on kimchi fermentation[J]. Bioscience, Biotechnology, and Biochemistry,1999,63:1119-1121.
    [129]ZHONG Q, BLACK D G, DAVIDSON P M, et al. Nonthermal inactivation of Escherichia coli K-12 on spinach leaves, using dense phase carbon dioxide[J]. Journal of Food Protection, 2008,71:1015-1017.
    [130]CALVO L, MUGUERZA B, CIENFUEGOS-JOVELLANOS E. Microbial inactivation and butter extraction in a cocoa derivative using high pressure CO2[J]. Journal of Supercritical Fluids,2007,42:80-87.
    [131]DEHGHANI F, ANNABI N, TITUS M, et al. Sterilization of Ginseng using a high pressure CO2 at moderate temperatures[J]. Biotechnology and Bioengineering,2008,102:569-576.
    [132]CALVO L, TORRES E. Microbial inactivation of paprika using high-pressure CO2[J]. The Journal of Supercritical Fluids,2010,52:134-141.
    [133]戚伟民,钱平,余坚勇等.中性体系中超高压-Nisin协同作用下的细菌致死机理[J].微生物学报,2011,51(1):3542.
    [134]谢孟峡,刘媛.红外光谱酰胺Ⅲ带用于蛋白质二级结构的测定研究[J].高等学校化学学报,2003,24(2):226-231.
    [135]卞为东,孙素琴,黄岳顺等.光谱学与光谱分析[J],2000,20(4):471.
    [136]GB4789.3-2010.食品安全国家标准食品微生物学检验大肠菌群计数[S].
    [137]RITZ M, THOLOZAN J L, FEDERIGHI M, et al. Physiological damages of Listeria monocytogenes treated by high hydrostatic pressure[J]. International Journal of Food Microbiology,2002,79(1-2):47-53.
    [138]PAGAN R, MACKEY B. Relationship between membrane damage and cell death in pressure-treated Escherichia coli cells:differences between exponential-and stationary-phase cells and variation among strains[J]. Applied and Environmental Microbiology,2000, 66(7):2829-2834.
    [139]BRADFBRD M M. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein dye binding[J]. Analytical Biochemistry, 1976,72(1-2):248-254.
    [140]WOO I S, RHEE I K, PARK H D. Differential damage in bacterial cells by microwave radiation on the basis of cell wall structure[J]. Applied and Environmental Microbiology, 2000,66(5):2243-2247.
    [141]KHAN M A S, NAKAMURA S, OGAWA M, et al. Bactericidal action of egg yolk phosvitin against Escherichia coli under thermal stress[J]. Journal of Agricultural and Food Chemistry, 2000,48:1503-1506.
    [142]DHERMENDRA K T, BEHARI J, SEN P. Time and dose-dependent antimicrobial potential of Agnanoparticles synthesized by top-down approach[J]. Current Science,2008,95(5): 647-655.
    [143]CHANG C H, CHIANG M L, CHOU C C. The effect of temperature and length of heat shock treatment on the thermal tolerance and cell leakage of Cronobacter sakazakii BCRC 13988[J]. International Journal of Food Microbiology,2009,134:184-189.
    [144]DENG B, HE H K. Analytical techniques of atomic absorption spectrometry[M]. Beijing: Chemical Industry Press,2004.
    [145]沈萍,范秀荣,李广武.微生物实验[M].北京:高等教育出版社,1999.
    [146]李勇明,赵玉琪.实用分子生物学方法手册[M].北京:科学出版社,1999.
    [147]CHURCH C F, SWAISGOOD H E, PORTER D H, et al. Spectrophotometric assay using phthaldialdehyde for determination of proteolysis in milk and isolated milk proteins[J]. Journal of Dairy Science,1983,66:1219-1227.
    [148]MA Y, BARBANO D M, SANTOS M V. Effect of CO2 addition to raw milk on proteolysis and lipolysis at 4℃[J]. Journal of Dairy Science,2003,86:1616-1631.
    [149]ERKMEN O, KARATAS S. Effect of high hydrostatic pressure on Staphlococcus aureus in milk[J]. Journal of Food Engineering,1997,33(3-4):257-262.
    [150]薄纯智.超高压食品处理效果的实验与模拟研究[D].大连:大连理工大学,2007.
    [151]SPILIMBERGO S, MANTOAN D, QUARANTA A, et al. Real-time monitoring of cell membrane modification during supercritical CO2 pasteurization[J]. Journal of Supercritical Fluids,2009, (48):93-97.
    [152]MOUSSA M, PERRIER-CORNET J M, GERVAIS P. Damage in Escherichia coli cells treated with a combination of high hydrostatic pressure and subzero temperature[J]. Applied and Environmental Microbiology,2007,73(20):6508-6518.
    [153]AI-QADIRI H M, AI-ALAMI N I, AI-HOLY M A, et al. Using fourier transform infrared (FT-IR) absorbance spectroscopy and multivariate analysis to study the effect of chlorine-induced bacterial injury in water[J]. Journal of Agricultural and Food Chemistry, 2008,56(19):8992-8997.
    [154]AI-QADIRI H M, LIN M, CAVINATO A G, et al. Fourier transform infrared spectroscopy, detection and identification of Escherichia coli O157:H7 and alicyclobacillus strains in apple juice[J]. International Journal of Food Microbiology,2006,111(1):73-80.
    [155]戚伟民.超高压与Nisin协同作用下的细菌致死机理[D].江苏:江南大学,2010.
    [156]MIETKE H, BEER W, SCHLEIF J, et al. Differentiation between probiotic and wild-type Bacillus cereus isolates by antibiotic susceptibility test and Fourier transform infrared spectroscopy (FT-IR)[J]. International Journal of Food Microbiology,2010,140(1):57-60.
    [157]ULMER H M, HERBERHOLD H, FAHSEL S, et al. Effects of pressure-induced membrane phase transition on inactivation of hora, an ATP-dependent multidrug resistance transporter, in Lactobacillus plantarum[J]. Applied and Environmental Microbiology,2002,68(3): 1088-1095.
    [158]HAMZAH M, AL-QADIRI N I, AL-ALAMI M A, et al. Using fourier transform infrared (FT-IR) absorbance spectroscopy and multivariate analysis to study the effect of chlorine-induced bacterial injury in water[J]. Journal of Agricultural and Food Chemistry, 2008,56(19):8992-8997.
    [159]RIZVI S S H, DANIELS J A, BENADO A L, et al. Supercritical fluid extraction operating principles and food applications[J]. Food Technology,1986,40(7):57-64.
    [160]LI H, ZHAO L, WU J, et al. Inactivation of natural microorganisms in litchi juice by high-pressure carbon dioxide combined with mild heat and nisin[J]. Food Microbiology,2012, 30:139-145.
    [161]ESPIE W E, MADDEN R H. The carbonation of chilled bulk milk[J]. Milchwissenschaft, 1997,52:249-253.
    [162]MARTIN J D, WERNER B G, HOTCHKISS J H. Effects of carbon dioxide on bacterial growth parameters in milk as measured by conductivity[J]. Journal of Dairy Science,2003, 86:1932-1940.
    [163]唐传核.乳蛋白水解物中的苦味肽的研究[J].中国乳品工业,2001,29(1):8-11.
    [164]ADA MS D M, BRAWLEY T G. Heat resistant bacterial lipases and ultra-high temperature sterilization of dairy products[J], Journal of Dairy Science,1981,64(10):1951-1956.
    [165]ANDREWS A T. Chemical aspects of food enzymes[M]. London:Royal Society of Chemistry Burlington House,1986.
    [166]汪玉松.乳品生物化学[M].长春:吉林大学出版社,1995.
    [167]ST-GELAIS D, CHAMPAGNE C P. Production of cheddar cheese using milk acidified with carbon dioxide[J]. Milchwissenschaft-Milk Science International,1997,52(11):614-618.
    [168]HAYES M G, KELLY A L. The influence of native whey proteins on enzyme activity Chymosin[J]. Milchwissenschaft-Milk Science International,2002,57(5):264-267.
    [169]HAYES M G, MCSWEENEY P L H. The influence of native and heat-denatured whey proteins on enzyme activity plasmin[J]. Milchwissenschaft-Milk Science International,2002, 57(4):208-211.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700