用户名: 密码: 验证码:
白酒中四甲基吡嗪全程代谢机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
四甲基吡嗪(tetramethylpyrazine,TTMP)又名川芎嗪(1igustiazine),是我国首先从常用中药川芎中提取出的生物碱,它是川芎治疗心脑血管疾病的有效成分之一,临床上已广泛应用于治疗缺血性心脑血管疾病及慢性心衰、肾衰等并且取得了良好的疗效。
     白酒作为我国特有的酒种,早在上世纪80年代,在进行白酒中风味物质分析时就已经在白酒中发现了四甲基吡嗪,但是由于含量较低,没有引起重视。作者在2006年率先提出四甲基吡嗪是白酒中的主要功能性成分之一,在不同香型白酒中普遍存在,引起行业的关注。由于白酒中四甲基吡嗪的合成机理尚不清晰,在本论文开展研究工作之前尚没有有效的方法用于提高白酒中四甲基吡嗪的含量。而高含量四甲基吡嗪是成功塑造中国白酒是“健康白酒”的关键。芝麻香型白酒是建国后白酒两大创新香型之一,以其优雅舒适的香气,醇和细腻的风味深受消费者喜爱,现在已经成为中国高档白酒的代表之一,虽然芝麻香型白酒总吡嗪含量较高,但是四甲基吡嗪含量相对较低。针对白酒中四甲基吡嗪含量相对较低这一共性问题,本论文以江苏今世缘芝麻香型白酒酿造过程为研究模型,以提升酒体中四甲基吡嗪含量为主要导向,紧紧围绕四甲基吡嗪的合成机理来进行,为高四甲基吡嗪含量芝麻香型白酒的酿造提供实验基础、理论依据与新思路。主要研究内容如下:
     (1)构建了酒曲、酒醅与白酒酒体中包括四甲基吡嗪在内的含氮化合物的定性(GC×GC-TOF-MS)与定量(GC-NPD)测定技术与方法体系。针对本论文在开展研究时尚没有成熟的技术与方法体系用于酒曲、酒醅与白酒酒体中四甲基吡嗪分析这一问题,本论文首先基于GC×GC-TOF-MS对顶空固相微萃取(HS-SPME)和液-液萃取的效果进行了比对于分析,结果表明:前者萃取效果优于后者,然后通过运用顶空固相微萃取和GC×GC-TOF-MS联用对白酒中功能性成份实现全扫描。同时从萃取头类别、萃取时间、萃取温度和盐离子浓度角度对HS-SPME萃取条件进行优化,得到了从酒曲、酒醅与白酒酒体中提取吡嗪类物质提取的最佳条件:萃取头CAR/DVB/PDMS,萃取温度50°C,时间40min,NaCl浓度0.3g/ml;最后利用优化后的顶空固相微萃取和GC-NPD联用技术实现了白酒中9种吡嗪类物质的快速、准确检测方法。在所测范围内,吡嗪类化合物均有较好的线性关系(R2>0.999),检测限均小于150ng/L,相对标准偏差在2.51%-10.28%之间,加标回收率在85.13%-108.05%之间,同时发现芝麻香型白酒中四甲基吡嗪含量相对较低。
     (2)确认了芝麻香型白酒酿造过程中,细菌曲制曲阶段所生成的四甲基吡嗪是酒中四甲基吡嗪的主要来源之一。系统的对酒曲、酒醅与白酒酒体中的吡嗪类物质进行分析,酒曲中吡嗪类物质变化规律为:多粮曲高于纯小麦曲;高温曲高于中温曲;细菌曲中吡嗪类物质含量最高,酵母曲和白曲中吡嗪化合物含量很低。芝麻香酒醅堆积前后吡嗪类物质含量进行比较分析,大部分吡嗪物质在堆积后含量增加,四甲基吡嗪含量是堆积外层含量高于堆积内层。比较细菌曲及堆积过程中四甲基吡嗪增量发现,细菌曲与堆积阶段所产生的四甲基吡嗪贡献率分别为:60%和40%。这表明:细菌曲是芝麻香型白酒中四甲基吡嗪的主要来源之一。
     (3)从细菌曲中获得一株具有高产四甲基吡嗪能力的菌株Bacillus subtilis S12。对细菌曲中4株菌分别进行纯培养,并测定四甲基吡嗪含量,发现菌株S12产四甲基吡嗪含量最高。根据菌落形态特征、细胞形态特征以及生理生化特性,参考《常见细菌系统鉴定手册》和《伯杰氏系统细菌学手册》,同时对S12的16S rDNA序列进行测序利用Clustal X、Bioedit和MEGA4.0选择Kimura2-parameter模型构建系统发育树,由系统发育树结果结合蛋白组MALDI-TOF分析,鉴定S12为枯草芽孢杆菌。
     (4)发现并证明:在固态发酵条件下是Bacillus subtilis S12所产生氨基酸脱氢酶实现从氨基酸到氨的转化,氨和3-羟基丁酮通过缩合作用合成四甲基吡嗪,因此氨基酸脱氢酶是合成四甲基吡嗪的关键酶。进而提出并验证了Bacillus subtilis S12固态发酵中四甲基吡嗪合成的新理论:基于酶-化学联合反应的四甲基吡嗪合成机制。通过试验证明:3-羟基丁酮和氨基酸不能合成四甲基吡嗪,只有3-羟基丁酮和氨通过缩合作用才能合成四甲基吡嗪。Bacillus subtilis S12在固态发酵的条件下,代谢产生3-羟基丁酮,分泌蛋白酶将蛋白质降解为氨基酸,然后由细菌曲中Bacillus subtilis S12产生的氨基酸脱氢酶(如谷氨酸脱氢酶和苯丙氨酸脱氢酶)将氨基酸脱氢得到氨。在白酒细菌曲制曲过程中,四甲基吡嗪的合成分为两个阶段:第一阶段是0到24小时,最适温度下(37oC),细菌代谢产生3-羟基丁酮和氨;第二阶段是在高温条件下3-羟基丁酮和氨进行缩合反应,合成四甲基吡嗪。其中温度对第二阶段四甲基吡嗪合成影响很大,高温利于反应的进行。
     (5)构建了Bacillus subtilis S12固态条件下两阶段酶-化学联合反应的四甲基吡嗪合成动力学模型。在0-24小时的第一阶段,四甲基吡嗪的形成为0级动力学反应,动力反应常数为0.002;在24-48小时,四甲基吡嗪的合成为一级动力学反应,分数转化技术可以成功用于描述四甲基吡嗪的合成与积累,频率因子常数A0的取值为1.4×105min-1,活化能Ea的数值为18kcal/mol,从37oC到62oC,预测值与实验值均具有极高的吻合性。利用模型预测的结果指导机械化制曲和酿酒生产,与传统方法对比:曲中四甲基吡嗪含量提高4倍,酒体中四甲基吡嗪提高7.5倍。
Tetramethylpyrazine (TTMP) also Known as1igustiazine, which is an alkaloid extractedfrom Chinese herbal medicine Ligusticum chuanxiong Hort. It also is the key component partin Ligusticum chuanxiong Hort to cure cardiovascular and cerebrovascular diseases.Pharmacological studies proved that TTMP have the ability for dilating blood vessels,increasing coronary blood flow and inhabitation of platelet aggregation and so on. In addition,TTMP also is an important flavoring agent, the author previously found that TTMP existed inChinese liquors and presented a seminar related to TTMP as the functional component inChinese liquors at “The First Symposium on Chinese Liquor and Health” held in2006. Thefinding of the presence of TTMP in Chinese liquors made it similar to red wine as thefunctional nutraceutical wine for health improvement in addition to being an alcoholicbeverage. Sesame flavor liquor is one of two major innovative flavors discovered after1950.It has become top grade Chinese liquors in China as its excellent and comforting aroma.Although the content of pyrazines in sesame flavor liquor is higher compared to otherflavored Chinese liquors in which the content of TTMP is low. To improve the level of TTMPin sesame flavored liquor, this research thesis takes sesame flavored liquor brewing process asthe research model from the Jiangsu Jinshiyuan company, and mainly focused on (1)Development of the method and technology based on GC-NPD for determination the level ofpyrazines in Chinese liquors, Qu and fermentation grains;(2) Determined the main stage forTTMP formation of the enetire fermentation process from Qu preparation to distilled liquorwhich were analyzed by GC-MS technology;(3) Improvement of the yield of TTMPprecursors-acetoin for strain S12through screening and cultivation of the bacteria strainswhich exist in Qu and classified S12as Bacillus subtilis S12by comparing the16S rDNAsequence of S12, physiological and biochemical analysis as well as MALDI-MS analysis;(4)A two-stage synthetic mechanism " enzyme/thermal catalytic synthesis of TTMP " wasdeveloped through analysis of the levels of TTMP in the reaction mixture which containscarbon source (glucose or acetoin) and nitrogen (amino acid or ammonium ions) at varioustemperatures, as well as construction of an mathematical dynamics model to describe thesynthesis of TTMP, and application of the model in the industrial preparation of bacteria Qu.The main research accomplishments are shown as follows:
     (1) Established the technology and methodology for the determination the compoundscontaining nitrogen, including TTMP using GC-NPD and GC-MSMS in Qu,fermentationgrain and liquor. Since there are still no available technology and methodology for thedetermination of the nitrogen compounds in Qu,fermentation grain and liquor before. In thisthesis, the author developed the method of headspace solid-phase microextraction combined with GC-NPD technology. And determined the optimal condition for pyrazines extractionfrom Qu, fermentation grain and liquor by optimization of the condition of headspacesolid-phase microextraction (HS-SPME): Extraction was done with CAR/DVB/PDMS.extraction temperature was50°C for40min. The NaCl concentration was0.3g/ml; by usingheadspace solid-phase microextraction combined with GC-NPD technology,9pyrazines wereaccurately detected in Qu, fermentation grain and liquor. Pyrazine compounds had good linearrelationship (R2>0.999) in the measuring range, the detection limits were less than150ng/L.The relative standard deviation was between2.51%-10.28%. The recovery is between85.13%-108.05%. The author found that TTMP level is low in liquor.
     (2) Confirming tetramethylpyrazine generated in the preparation of bacteria koji stage isthe main source of TTMP in sesame flavor liquor. Systematic studies was conducted tocompare the pyrazines contents in various Qu used for sesame flavored liquor brewing,fermentation grain and liquor. The results shown that the levels of pyrazines in the grain quwas higher than pure wheat starter, and high temperature Daqu was higher than that ofmedium temperature. However, the pyrazines level in the bacteria starter culture was thehighest, and the level of pyrazines in yeast Qu and Bai Qu was low. The accumulation ofpyrazines level in fermented grains before and after “duiji” was analyzed. When the level ofmost pyrazines in fermented grains were increased, the accumulation of pyrazines in outerpacking were higher than that of inner layer. In addition, Comparing with the increasing ofpyrazines level in bacteria culture stages during which the increase of pyrazines in thefermentation grain was low.
     (3) Screening for high yield of TTMP strain S12and identification of it as Bacillussubtilis S12. Four strains were screened from the bacteria Qu, The highest yield of TTMP wasproduced by S12and its TTMP yield was67.4mg/kg. According to the colonial morphology,cell morphological characteristics and physiological and biochemical characteristics, also withreference to "common bacterial system identification manual" and "Bergy's Manual ofSystematic Bacteriology", as well as the genetic tree was constructed based on the16S rDNAsequence of S12using Clustal X, Bioedit and MEGA4.0, all the results combined withproteomic analysis of S12using MALDI-TOF, S12identified the culture as Bacillus subtilisS12.
     (4) A new theory is proposed and demonstrated to be related to TTMP synthesis inChinese liquor by solid-stage fermentation with enzyme/thermal dynamic coupling catalysismechanism for tetramethylpyrazine synthesis. Bacillus subtilis S12producing amino aciddehydrogenase which changed the amino acid to ammonium; acetoin and amino acid which could not synthesize TTMP. TTMP production can proceed with3-hydroxy-2-butanone andammonium ion. Under the synthetic process with the bacterial Qu culture, synthesis of TTMPcan be divided into two stages: the first stage is0-24hours,3-hydroxy-2-butanone is mainlysynthesized in this stage; the second stage is the thermal power stage, under high temperature,acetoin and ammonium ion undertake chemical reaction and produce TTMP. Hightemperature enhanced TTMP production.
     (5) Proposed kinetics model for TTMP synthesis in the preparation process of bacteriaQu with Bacillus subtilis S12was formulated. In the first stage of0-24hours, the chemicalreaction of TTMP formation is0grade, the dynamic reaction constant is0.002; In the secondstage of24-48hours, the chemical reaction of TTMP formation belong to first-order kinetics,fraction conversion technology was successfully used to describe TTMP synthesis andaccumulation, A0was0.14, and activation energy Ea is18kcal/mol, the data used to developthe model in this work were proven to be accurately fitting the experimental data. Thebacteria Qu preparation of mechanized production was guided by the model. Comparing withtraditional methods, the TTMP levels in Qu increased4-fold and7.5-fold in the originalsesame flavored liquor.
引文
1.徐岩,范文来,王海燕等.风味分析定向中国白酒技术研究的进展[J].酿酒科技,2010(011):73-78
    2.沈怡方.白酒生产技术全书[M].中国轻工业出版社,1998
    3.沈怡方.白酒的香型,风格与流派[J].酿酒,2003,1:000
    4. Pace-Asciak C R, Hahn S, Diamandis E P, et al. The red wine phenolics trans-resveratrol andquercetin block human platelet aggregation and eicosanoid synthesis: Implications for protectionagainst coronary heart disease [J]. Clinica Chimica Acta,1995,235(2):207-219
    5. Pace-Asciak C R, Rounova O, Hahn S E, et al. Wines and grape juices as modulators of plateletaggregation in healthy human subjects [J]. Clinica Chimica Acta,1996,246(1):163-182
    6.郝秋娟,张香美,戴明明.啤酒营养与保健[J].啤酒科技,2007,10:009
    7.刘静波,林松毅.浅谈啤酒的营养价值及特殊保健功效[J].酿酒,2002,5:58-60
    8.胡国栋.白云边酒特征香味组份的研究[J].酿酒,1992,1:029
    9.辛磊.白酒微量成分与酒体风格特征关系的探讨[J].食品与机械,2004,20(2):49-50
    10.范文来,徐岩.中国白酒风味物质研究的现状与展望[J].酿酒,2007,34(4):31-37
    11. Wagner R, Czerny M, Bielohradsky J, et al. Structure-odour-activity relationships ofalkylpyrazines [J]. Zeitschrift für Lebensmitteluntersuchung und-forschung A,1999,208(5-6):308-316
    12. Buttery R G, Seifert R M, Guadagni D G, et al. Characterization of volatile pyrazine and pyridinecomponents of potato chips [J]. Journal of agricultural and food chemistry,1971,19(5):969-971
    13. Masuda H,Mihara S. Olfactive properties of alkylpyrazines and3-substituted2-alkylpyrazines [J].Journal of agricultural and food chemistry,1988,36(3):584-587
    14. Maga J A,Sizer C E. Pyrazines in foods. Review [J]. Journal of agricultural and food chemistry,1973,21(1):22-30
    15. Peers C, Smith P,Nye P. Ligustrazine selectively blocks ATP-sensitive K channels in mousepancreatic β cells [J]. FEBS letters,1990,261(1):5-7
    16. Feng L, Ke N, Cheng F, et al. The protective mechanism of ligustrazine against renalischemia/reperfusion injury [J]. Journal of Surgical Research,2011,166(2):298-305
    17.吴建峰.中国白酒中健康功能性成分四甲基吡嗪的研究[J].酿酒科技,2007,1:117-120
    18.胡国芬,王建平.川芎嗪的药理作用及临床应用进展[J].中国药物与临床,2006,6(10):773-774
    19. Lian X, Wang S, Xu G, et al. The application with tetramethyl pyrazine for antithrombogenicityimprovement on silk fibroin surface [J]. Applied Surface Science,2008,255(2):480-482
    20. Nie S-Q, Kwan C-Y,Epand R M. Pyrazine derivatives affect membrane fluidity of vascular smoothmuscle microsomes in relation to their biological activity [J]. European Journal of Pharmacology:Molecular Pharmacology,1993,244(1):15-19
    21. Jones J H, Bicking J B,Cragoe E J. Pyrazine diuretics. IV. N-Amidino-3-amino-6-substitutedpyrazinecarboxamides [J]. Journal of Medicinal Chemistry,1967,10(5):899-903
    22. Kim S G, Kedderis G L, Batra R, et al. Induction of rat liver microsomal epoxide hydrolase bythiazole and pyrazine: hydrolysis of2-cyanoethylene oxide [J]. Carcinogenesis,1993,14(8):1665-1670
    23. MILCZARSKA B, FOKS H, SOKOLOWSKA I, et al. STudies on pyrazine derivatives. xxxiii.synthesis and tuberculostatic activity of l-[l-(2-pyrazinyl)-ethyl]-4-n-substituted thiosemicarbazidederivatives [J].1999
    24.杜波,单爱军,张玉娟等.川芎嗪对重度脑损害脑功能保护的量化研究[J].中华急诊医学杂志,2013,22(1):73-76
    25.褚燕君,许景伟.川芎嗪对酒精性肝炎患者血清SOD, LPO, TNF-α, IL-8, PC-Ⅲ与HA的影响[J].中国综合临床,2003,19(7):597-598
    26.蔡敏,李宏宇,来文兵等.川芎嗪对酒精性股骨头缺血性坏死骨细胞凋亡影响的实验研究[J].中国临床新医学,2013,6(4)
    27.罗长荣,王国中,邓家国.川芎嗪对老年肺心病患者肺动脉高压的作用[J].安徽医药,1997,1(3):18-19
    28. Adams T, Doull J, Feron V, et al. The FEMA GRAS assessment of pyrazine derivatives used asflavor ingredients [J]. Food and chemical toxicology,2002,40(4):429-451
    29.贺铮怡,敖宗华,吴珏等.镇江香醋中川芎嗪的测定及生成机理的研究[J].中国调味品,2004,2:36-39
    30. Godefroot M, Sandra P,Verzele M. New method for quantitative essential oil analysis [J]. Journalof Chromatography A,1981,203:325-335
    31. Takken H, Groesbeek N,Roos R. Downstream processing: Concentration and isolation techniquesin industry [J]. Bioformation of flavours. Royal Soc Chem, Cambridge,1992,186
    32. Cai Y,Ho C-T. Optimization for the Analysis of Pyrazines in Aqueous Solution by DirectImmersion-Solid Phase Microextraction [J]. SPECIAL PUBLICATION-ROYAL SOCIETY OFCHEMISTRY,2001,274:361-372
    33. Fan W,Qian M C. Identification of aroma compounds in Chinese ‘Yanghe Daqu’liquor by normalphase chromatography fractionation followed by gas chromatography [sol] olfactometry [J].Flavour and Fragrance Journal,2006,21(2):333-342
    34.范文来,徐岩,杨廷栋等.应用液液萃取与分馏技术定性绵柔型蓝色经典微量挥发性成分[J].酿酒,2012,39(1):21-29
    35. Teranishi R,Kint S. Sample preparation, Flavor Science. Sensible Principles and Techniques (TEAcree and R. Teranishi, eds.): American Chemical Society, Washington, DC,1993
    36. Frank D C, Owen C M,Patterson J. Solid phase microextraction (SPME) combined withgas-chromatography and olfactometry-mass spectrometry for characterization of cheese aromacompounds [J]. LWT-Food Science and Technology,2004,37(2):139-154
    37. Eisert R,Levsen K. Solid-phase microextraction coupled to gas chromatography: a new method forthe analysis of organics in water [J]. Journal of Chromatography A,1996,733(1):143-157
    38. Arthur C L,Pawliszyn J. Solid phase microextraction with thermal desorption using fused silicaoptical fibers [J]. Analytical chemistry,1990,62(19):2145-2148
    39. Pillonel L, Bosset J,Tabacchi R. Rapid preconcentration and enrichment techniques for theanalysis of food volatile. A review [J]. LWT-Food Science and Technology,2002,35(1):1-14
    40. Ridgway K, Lalljie S P,Smith R M. Sample preparation techniques for the determination of traceresidues and contaminants in foods [J]. Journal of Chromatography A,2007,1153(1):36-53
    41. Marilley L,Casey M. Flavours of cheese products: metabolic pathways, analytical tools andidentification of producing strains [J]. International Journal of Food Microbiology,2004,90(2):139-159
    42. Guillot S, Peytavi L, Bureau S, et al. Aroma characterization of various apricot varieties usingheadspace–solid phase microextraction combined with gas chromatography–mass spectrometryand gas chromatography–olfactometry [J]. Food Chem,2006,96(1):147-155
    43. Pragst F, Auwaerter V, Sporkert F, et al. Analysis of fatty acid ethyl esters in hair as possiblemarkers of chronically elevated alcohol consumption by headspace solid-phase microextraction(HS-SPME) and gas chromatography-mass spectrometry (GC-MS)[J]. Forensic ScienceInternational,2001,121(1):76-88
    44. Cserháti T. Mass spectrometric detection in chromatography. Trends and perspectives [J].Biomedical Chromatography,2002,16(5):303-310
    45. Scott R P. Principles and practice of chromatography [J]. Chrom-ed book series: Book,2003,1
    46. Karasek F W,Clement R E. Basic gas chromatography-mass spectrometry: principles andtechniques [M]. Elsevier Science,1988
    47. Koehler P E, Mason M E,Newell J A. Formation of pyrazine compounds in sugar-amino acidmodel systems [J]. Journal of agricultural and food chemistry,1969,17(2):393-396
    48. Shu C-K. Pyrazine formation from serine and threonine [J]. Journal of agricultural and foodchemistry,1999,47(10):4332-4335
    49. Block E, Putman D,Zhao S H. Allium chemistry: GC-MS analysis of thiosulfinates and relatedcompounds from onion, leek, scallion, shallot, chive, and Chinese chive [J]. Journal of agriculturaland food chemistry,1992,40(12):2431-2438
    50. Imhof R,Bosset J. Quantitative GC-MS analysis of volatile flavour compounds in pasteurized milkand fermented milk products applying a standard addition method [J]. LWT-Food Science andTechnology,1994,27(3):265-269
    51. Radovic B, Careri M, Mangia A, et al. Contribution of dynamic headspace GC–MS analysis ofaroma compounds to authenticity testing of honey [J]. Food Chem,2001,72(4):511-520
    52. Frame G M. Improved Procedure for Single DB‐XLB Column GC‐M S‐SIM Quantitation ofPCB Congener Distributions and Characterization of Two Different Preparations Sold as “Aroclor1254”[J]. Journal of High Resolution Chromatography,1999,22(10):533-540
    53. Díaz-Maroto M C, Sánchez-Palomo E,Pérez-Coello M S. Fast screening method for volatilecompounds of oak wood used for aging wines by headspace SPME-GC-MS (SIM)[J]. Journal ofagricultural and food chemistry,2004,52(23):6857-6861
    54. Butzke C E, Evans T J,Ebeler S E. Detection of cork taint in wine using automated solid-phasemicroextraction in combination with GC/MS-SIM. In: ACS Symposium Series: ACS Publications,1998:208-216
    55. Frysinger G S,Gaines R B. Comprehensive Two‐Dimensional Gas Chromatography with MassSpectrometric Detection (GC×GC/MS) Applied to the Analysis of Petroleum [J]. Journal of HighResolution Chromatography,1999,22(5):251-255
    56. Prazen B J, Bruckner C A, Synovec R E, et al. Second‐order chemometric standardization forhigh‐speed hyphenated gas chromatography: Analysis of GC/MS and comprehensive GC×GCdata [J]. Journal of Microcolumn Separations,1999,11(2):97-107
    57.鹿洪亮,钟巧霞,赵明月, et al. GC/MS, GC×GC/TOFMS分析烟草半挥发性中性成分比较[J].烟草科技,2007,1:32-37
    58. Zhang D, Huang X, Regnier F E, et al. Two-dimensional correlation optimized warping algorithmfor aligning GC×GC-MS data [J]. Analytical chemistry,2008,80(8):2664-2671
    59. Zhu S, Lu X, Ji K, et al. Characterization of flavor compounds in Chinese liquor Moutai bycomprehensive two-dimensional gas chromatography/time-of-flight mass spectrometry [J].Analytica chimica acta,2007,597(2):340-348
    60.徐占成,陈勇,周泽华等.中国名酒剑南春中有益于人体健康的物质种类和作用[J].酿酒,2008,35(3):108-110
    61.徐占成,陈勇,周泽华等.中国名酒剑南春中健康功能性成分的研究[J].酿酒科技,2008,5:41-43
    62.徐占成,陈勇,莫凯等.剑南春酒中萜烯类生理活性物质的GC×GC-TOFMS研究[J].酿酒科技,2009(9):48-49
    63.徐占成,唐清兰,徐姿静.利用现代科技揭秘剑南春中有益于人体健康的生理活性物质[J].酿酒科技,2010,1:047
    64. Sala C, Mestres M, Mart M, et al. Headspace solid-phase microextraction analysis of3-alkyl-2-methoxypyrazines in wines [J]. Journal of Chromatography A,2002,953(1):1-6
    65. Sala C, Mestres M, Mart M, et al. Headspace solid-phase microextraction method for determining3-alkyl-2-methoxypyrazines in musts by means of polydimethylsiloxane–divinylbenzene fibres [J].Journal of Chromatography A,2000,880(1):93-99
    66. Marchand S, de Revel G,Bertrand A. Approaches to wine aroma: release of aroma compoundsfrom reactions between cysteine and carbonyl compounds in wine [J]. Journal of agricultural andfood chemistry,2000,48(10):4890-4895
    67. Amrani-Hemaimi M, Cerny C,Fay L B. Mechanisms of formation of alkylpyrazines in theMaillard reaction [J]. Journal of agricultural and food chemistry,1995,43(11):2818-2822
    68. Adams A, Polizzi V, van Boekel M, et al. Formation of pyrazines and a novel pyrrole in Maillardmodel systems of1,3-dihydroxyacetone and2-oxopropanal [J]. Journal of agricultural and foodchemistry,2008,56(6):2147-2153
    69. Lojzova L, Riddellova K, Hajslova J, et al. Alternative GC–MS approaches in the analysis ofsubstituted pyrazines and other volatile aromatic compounds formed during Maillard reaction inpotato chips [J]. Analytica chimica acta,2009,641(1):101-109
    70. De Brito E S, García N H P, Amancio A C, et al. Effect of autoclaving cocoa nibs before roastingon the precursors of the Maillard reaction and pyrazines [J]. International journal of food science&technology,2001,36(6):625-630
    71. Hwang H-I, Hartman T G, Rosen R T, et al. Formation of Pyrazines from the Maillard Reaction ofGlucose and Lysine-. alpha.-amine-15N [J]. Journal of agricultural and food chemistry,1994,42(4):1000-1004
    72. Shu C K. Pyrazine formation from serine and threonine [J]. J Agric Food Chem,1999,47(10):4332-4335
    73. Chaveron H, Guyot B, Hashim L, et al. Formation and evolution of methylpyrazines during cocoaroasting (study of methylpyrazines extraction methods). In: Proceedings of the6th InternationalFlavor Conference, Greece,1989:305-319
    74. Amranihemaimi M, Cerny C,Fay L B. Mechanisms of Formation of Alkylpyrazines in theMaillard Reaction [J]. Journal of agricultural and food chemistry,1995,43(11):2818-2822
    75.袁春伟. maillard反应中吡嗪形成的研究[J].东南大学学报:自然科学版,1990,20(4):138-141
    76. Ho C-T. Thermal generation of Maillard aromas: John Wiley&Sons: Chichester, United Kingdom,1996:27-53
    77. Shipar M A H. Formation of pyrazines in dihydroxyacetone and glycine Maillard reaction: Acomputational study [J]. Food Chem,2006,98(3):403-415
    78. Jalbout A F,Shipar M A H. Formation of pyrazines in hydroxyacetaldehyde and glycinenonenzymatic browning Maillard reaction: A computational study [J]. Food Chem,2007,103(4):1208-1216
    79. Leejeerajumnean A, Duckham S C, Owens J D, et al. Volatile compounds in Bacillus‐fermentedsoybeans [J]. Journal of the Science of Food and Agriculture,2001,81(5):525-529
    80. Owens J D, Allagheny N, Kipping G, et al. Formation of volatile compounds during Bacillussubtilis fermentation of soya beans [J]. Journal of the Science of Food and Agriculture,1997,74(1):132-140
    81. Kosuge T, Adachi T,Kamiya H. Isolation of tetramethylpyrazine from culture of Bacillus natto,and biosynthetic pathways of tetramethylpyrazine [J].1962
    82. Selamat J,Harun S M. Formation of methyl pyrazine during cocoa bean fermentation [J]. PertanikaJournal of Tropical Agricultural Science,1994,17(1):27-32
    83. Ostovar K,Keeney P. Isolation and characterization of microorganisms involved in thefermentation of Trinidad's cacao beans [J]. Journal of Food Science,1973,38(4):611-617
    84. Gallois A, Kergomard A,Adda J. Study of the biosynthesis of3-isopropyl-2-methoxypyrazineproduced by Pseudomonas taetrolens [J]. Food Chem,1988,28(4):299-309
    85. Cheng T B, Reineccius G A, Bjorklund J A, et al. Biosynthesis of2-methoxy-3-isopropylpyrazinein Pseudomonas perolens [J]. Journal of agricultural and food chemistry,1991,39(5):1009-1012
    86. Yamaguchi N, Toda T, Teramoto T, et al. Effect of sugars on microbiological pyrazine formationby Bacillus natto in synthetic liquid medium [J]. Journal of the Japanese Society for Food Scienceand Technology,1993,40
    87. KIM K-S, LEE H-J, SHON D-H, et al. Optimum conditions for the production oftetramethylpyrazine flavor compound by aerobic fed-batch culture of Lactococcus lactis subsp.lactis biovar. diacetylactis FC1[J]. Journal of Microbiology and Biotechnology,1994,4(4):327-332
    88. Adachi T, Kamiya H,Kosuge T. Studies on the metabolic products of bacillus subtilis. iv.determination and mechanism of formation of tetramethylpyrazine [J]. Yakugaku zasshi: Journalof the Pharmaceutical Society of Japan,1964,84:545
    89. Lee J E, Lee H,Woo G. Tetramethylpyrazine production by immobilized culture of Lactococcuslactis subsp. lactis biovar. diacetilactis FC1[J]. Journal of Microbiology and Biotechnology,1996,6
    90. Xiao Z, Xie N, Liu P, et al. Tetramethylpyrazine production from glucose by a newly isolatedBacillus mutant [J]. Applied microbiology and biotechnology,2006,73(3):512-518
    91. Demain A, Jackson M,Trenner N. Thiamine-dependent accumulation of tetramethylpyrazineaccompanying a mutation in the isoleucine-valine pathway [J]. Journal of bacteriology,1967,94(2):323-326
    92. Beck H C, Hansen A M,Lauritsen F R. Novel pyrazine metabolites found in polymyxinbiosynthesis by Paenibacillus polymyxa [J]. FEMS microbiology letters,2003,220(1):67-73
    93. Murray K, Shipton J,Whitfield F.2-methoxypyrazines and the flavour of green peas (Pisumsativum)[J]. Chemistry and Industry,1970(27):897-898
    94. Kim K H,Lee H. Optimum conditions for the formation of ammonia as a precursor oftetramethylpyrazine by Lactococcus lactis ssp. lactis biovar. diacetilactis FC1[J]. Journal ofMicrobiology and Biotechnology,1991,1
    95. Besson I, Creuly C, Gros J, et al. Pyrazine production by Bacillus subtilis in solid-statefermentation on soybeans [J]. Applied microbiology and biotechnology,1997,47(5):489-495
    96. Larroche C, Besson I,Gros J-B. High pyrazine production by Bacillus subtilis in solid substratefermentation on ground soybeans [J]. Process Biochemistry,1999,34(6):667-674
    97. Zhu B-F,Xu Y. Production of tetramethylpyrazine by batch culture of Bacillus subtilis withoptimal pH control strategy [J]. Journal of industrial microbiology&biotechnology,2010,37(8):815-821
    98. Zhu B-F,Xu Y. A feeding strategy for tetramethylpyrazine production by Bacillus subtilis based onthe stimulating effect of ammonium phosphate [J]. Bioprocess and biosystems engineering,2010,33(8):953-959
    99. Reineccius G A, Keeney P G,Weissberger W. Factors affecting the concentration of pyrazines incocoa beans [J]. Journal of agricultural and food chemistry,1972,20(2):202-206
    100. Hashim P, Selamat J, Muhammad S, et al. Changes in free amino acid, peptide‐N, sugar andpyrazine concentration during cocoa fermentation [J]. Journal of the Science of Food andAgriculture,1998,78(4):535-542
    101. Yusep I, Jinap S, Jamilah B, et al. Influence of carboxypeptidases on free amino acid, peptide andmethylpyrazine contents of under‐fermented cocoa beans[J]. Journal of the Science of Food andAgriculture,2002,82(13):1584-1592
    102. Bondarovich H, Friedel P, Krampl V, et al. Volatile constituents of coffee. Pyrazines and othercompounds [J]. Journal of agricultural and food chemistry,1967,15(6):1093-1099
    103. Müller R,Rappert S. Pyrazines: occurrence, formation and biodegradation [J]. AppliedMicrobiology and Biotechnology,2010,85(5):1315-1320
    104. LI L, GAO Y-X,YUAN F. Research advance of volatile flavor compounds from roasted nuts [J].China Food Additives,2011,3:029
    105. Jeleń H, Majcher M, Ginja A, et al. Determination of compounds responsible for tempeh aroma [J].Food Chemistry,2013
    106. K gel S, Gross J, Hoffmann C, et al. Diversity and frequencies of methoxypyrazines inhemolymph of Harmonia axyridis and Coccinella septempunctata and their influence on the tasteof wine [J]. European Food Research and Technology,2012,234(3):399-404
    107. Dunlevy J D, Soole K L, Perkins M V, et al. Two O-methyltransferases involved in thebiosynthesis of methoxypyrazines: grape-derived aroma compounds important to wine flavour [J].Plant molecular biology,2010,74(1-2):77-89
    108. Ebeler S E,Thorngate J H. Wine chemistry and flavor: looking into the crystal glass[J]. Journal ofagricultural and food chemistry,2009,57(18):8098-8108
    109. Godelmann R, Limmert S,Kuballa T. Implementation of headspacesolid-phase-microextraction–GC–MS/MS methodology for determination of3-alkyl-2-methoxypyrazines in wine [J]. European Food Research and Technology,2008,227(2):449-461
    110. POPESCU R. Comparing Different Methods of Volatile Compounds Determination in Wine byGC/MS[J]. Bulletin of University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca.Agriculture,2011,68(2)
    111. Jeleń H H,Szczurek A. Solid phase microextraction for profiling volatile compounds in liqueredwhite wines [J]. Acta Sci. Pol. Technol. Aliment,2010,9(1):23-32
    112. Galvan T L, Kells S,Hutchison W D. Determination of3-alkyl-2-methoxypyrazines in ladybeetle-infested wine by solid-phase microextraction headspace sampling [J]. Journal of agriculturaland food chemistry,2008,56(3):1065-1071
    113. Alberts P, Stander M A, Paul S O, et al. Survey of3-Alkyl-2-methoxypyrazine Content of SouthAfrican Sauvignon Blanc Wines Using a Novel LC APCI-MS/MS Method [J]. Journal ofagricultural and food chemistry,2009,57(20):9347-9355
    114. Liebich H M, Koenig W A,Bayer E. Analysis of the flavor of rum by gas-liquid chromatographyand mass spectrometry [J]. Journal of Chromatographic Science,1970,8(9):527-533
    115.余晓,尹建军,胡国栋.白酒中含氮化合物的分析研究[J].酿酒,1992,1:71-76
    116. Zhu S, Lu X, Ji K, et al. Characterization of flavor compounds in Chinese liquor Moutai bycomprehensive two-dimensional gas chromatography/time-of-flight mass spectrometry [J]. AnalChim Acta,2007,597(2):340-348
    117.王莉,吴建霞,雷良波.气相色谱-质谱-离子扫描联用法快速检测白酒中4种吡嗪类化合物[J].中国酿造,2009,3:060
    118. Azenha M,Vasconcelos M T. Headspace solid-phase micro-extraction gas chromatography–massdetection method for the determination of butyltin compounds in wines [J]. Analytica chimica acta,2002,458(1):231-239
    119.严留俊,张艳芳,陶文沂等.顶空固相微萃取-气相色谱-质谱法快速测定酱油中的挥发性风味成分[J].色谱,2008,26(3)
    120. Wardencki W, Sowiński P,Cury o J. Evaluation of headspace solid-phase microextraction for theanalysis of volatile carbonyl compounds in spirits and alcoholic beverages [J]. Journal ofChromatography A,2003,984(1):89-96
    121.庄名扬.浅析中国白酒微量成份的生理活性[J].酿酒,2000,5:23-25
    122.庄名扬.中华浴酒的保健源——功能因子的剖析[J].2003
    123.庄名扬.酱香型白酒中微量成分的生理活性[J].2006
    124.范文来,徐岩,李记明等.应用GC-O和GC-MS研究蛇龙珠葡萄酒游离态挥发性香气成分[J].食品与发酵工业,2011,37(11):183-188
    125.熊子书.白酒的香型和风格[J].酿酒,1984,2:9-12
    126.李维青.白酒的香气与香型[J]. Liquor Making,2007,34(2): M8I
    127.吴衍庸.酒曲微生物分析与白酒香型初探[J].2004
    128.张春林,敖宗华,炊伟强等.固相微萃取-气相色谱-质谱法分析中高温大曲发酵,贮存过程中挥发性风味成分的变化[J].食品与发酵工业,2011,37(4):198-203
    129.范文来,张艳红,徐岩.应用HS-SPME和GC-MS分析白酒大曲中微量挥发性成分[J].酿酒科技,2007,12:74-78
    130.杨漫江.堆积发酵对酱香型白酒风味物质形成的影响[J].酿酒科技,2011,7:021
    131. Fan W, Xu Y,Zhang Y. Characterization of pyrazines in some Chinese liquors and theirapproximate concentrations [J]. Journal of agricultural and food chemistry,2007,55(24):9956-9962
    132. Socaci S A, Tofan M, Socaciu C, et al. Optimization of HS/GC-MS method for the determinationof volatile compounds from indigenous rosemary [J]. analysis,2009,2:6
    133. Demain A L, Jackson M,Trenner N R. Thiamine-dependent accumulation of tetramethylpyrazineaccompanying a mutation in the isoleucine-valine pathway [J]. J Bacteriol,1967,94(2):323-326
    134.东秀珠,蔡妙英.常见细菌系统鉴定手册[M].科学出版社,2001
    135. Buchanan R.伯杰氏系统细菌学手册[J].北京:中国科学出版社,1984
    136. Noguchi H, Uchino M, Shida O, et al. Bacillus vietnamensis sp. nov., a moderately halotolerant,aerobic, endospore-forming bacterium isolated from Vietnamese fish sauce [J]. Int J Syst EvolMicrobiol,2004,54(Pt6):2117-2120
    137. Palmisano M M, Nakamura L, Duncan K E, et al. Bacillus sonorensis sp. nov., a close relative ofBacillus licheniformis, isolated from soil in the Sonoran Desert, Arizona [J]. International journalof systematic and evolutionary microbiology,2001,51(5):1671-1679
    138. Espinal P, Seifert H, Dijkshoorn L, et al. Rapid and accurate identification of genomic speciesfrom the Acinetobacter baumannii (Ab) group by MALDI‐T OF MS[J]. Clinical Microbiologyand Infection,2012,18(11):1097-1103
    139. Leli C, Cenci E, Cardaccia A, et al. Rapid identification of bacterial and fungal pathogens frompositive blood cultures by MALDI-TOF MS [J]. International Journal of Medical Microbiology,2013
    140. Koehler P E,Odell G V. Factors affecting the formation of pyrazine compounds in sugar-aminereactions [J]. Journal of agricultural and food chemistry,1970,18(5):895-898
    141. Bemis-Young G L, Huang J,Bernhard R A. Effect of pH on pyrazine formation inglucose—glycine model systems [J]. Food Chemistry,1993,46(4):383-387
    142. Wong J M,Bernhard R A. Effect of nitrogen source on pyrazine formation [J]. Journal ofagricultural and food chemistry,1988,36(1):123-129
    143. Kempler G. Production of flavor compounds by microorganisms [J]. Adv. Appl. Microbiol,1983,29:29-51
    144. Rodriguez-Campos J, Escalona-Buendía H, Contreras-Ramos S, et al. Effect of fermentation timeand drying temperature on volatile compounds in cocoa [J]. Food Chemistry,2012,132(1):277-288
    145.朱兵峰,徐岩.一种用于枯草杆菌发酵生产四甲基吡嗪的补料策略A Feeding Strategy forTetramethylpyrazine Production by Bacillus subtilis Based on the Stimulating Effects ofAmmonium Phosphate [J].釀酒科技,2011,2011(2):17-22
    146.庄名扬,王仲文,孙达孟等.美拉德反应与酱香型白酒[J].酿酒,1999,4:42-47
    147.庄名扬.再论美拉德反应产物与中国白酒的香和味[J].2005
    148.徐岩,吴群,范文来等.中国白酒中四甲基吡嗪的微生物产生途径的发现与证实[J].酿酒科技,2011,7:37-39
    149.陈丽丽,潘玉兰,张建华.纳豆芽孢杆菌谷氨酸脱氢酶基因的克隆,表达及酶活性测定[J].上海交通大学学报(农业科学版),2010,1:018
    150. Massad G, Zhao H,Mobley H. Proteus mirabilis amino acid deaminase: cloning, nucleotidesequence, and characterization of aad [J]. Journal of bacteriology,1995,177(20):5878-5883
    151.弓晓峰,张静,张振辉等.纳氏试剂比色法测定土壤铵态氮的研究[J].环境科学与技术,2006,29(1):43-44
    152. Rizzi G P. The Strecker degradation and its contribution to food flavor. In: Flavor chemistry:Springer,1999:335-343
    153. Rizzi G P. Formation of pyrazines from acyloin precursors under mild conditions [J]. Journal ofagricultural and food chemistry,1988,36(2):349-352
    154. Chen J-C, Chen Q-H, Guo Q, et al. Simultaneous determination of acetoin and tetramethylpyrazinein traditional vinegars by HPLC method [J]. Food Chem,2010,122(4):1247-1252
    155. Aungpraphapornchai P, Sangobpun N,Sopha P. Isolation of Lactic Acid Bacteria from FermentedFoods Which Have Potential for Tetramethylpyrazine Production [J]. Srinakharinwirot ScienceJournal,2007,23(1):94-108
    156. Hao F, Wu Q,Xu Y. Precursor supply strategy for tetramethylpyrazine production by bacillussubtilis on solid-state fermentation of wheat bran [J]. Applied biochemistry and biotechnology,2013,169(4):1346-1352
    157. Xiao Z, Qiao S, Ma C, et al. Acetoin production associated with the increase of cell biomass inBacillus pumilus ATCC14884[J]. Afr. J. Biotechnol.,2010,18:1997-2003
    158. Montville T J, Hsu A H-M,Meyer M E. High-efficiency conversion of pyruvate to acetoin byLactobacillus plantarum during pH-controlled and fed-batch fermentations [J]. Applied andenvironmental microbiology,1987,53(8):1798-1802
    159. Zhu B, Xu Y,Fan W. Study of tetramethylpyrazine formation in fermentation system from glucoseby Bacillus subtilis XZ1124[J]. New Biotechnology,2009,25: S237
    160. Huang T-C, Fu H-Y,Ho C-T. Mechanistic studies of tetramethylpyrazine formation under weakacidic conditions and high hydrostatic pressure [J]. Journal of agricultural and food chemistry,1996,44(1):240-246
    161. HUANG T C, Bruechert L J,HO C T. Kinetics of Pyrazine Formation in Amino Acid‐GlucoseSystems [J]. Journal of food science,1989,54(6):1611-1614
    162. Leahy M,Reineccius G A. Kinetics of the formation of alkylpyrazines. In: Flavour Chemistry:Trends and Developments, ACS Symposium Series: ACS Publications,1989:246
    163. Ajandouz E H,Puigserver A. Nonenzymatic browning reaction of essential amino acids: Effect ofpH on caramelization and Maillard reaction kinetics [J]. Journal of agricultural and food chemistry,1999,47(5):1786-1793
    164. Villota R,Hawkes J. Chapter2Reaction Kinetics in Food Systems [J]. FOOD SCIENCE ANDTECHNOLOGY-NEW YORK-MARCEL DEKKER-,2007,162:125
    165. Jusino M, Ho C-T,Tong C. Formation kinetics of2,5-dimethylpyrazine and2-methylpyrazine in asolid model system consisting of amioca starch, lysine, and glucose [J]. Journal of agricultural andfood chemistry,1997,45(8):3164-3170
    166. Juni E. Mechanisms of formation of acetoin by bacteria [J]. Journal of Biological Chemistry,1952,195(2):715-726
    167. Juni E. Mechanisms of the formation of acetoin by yeast and mammalian tissue [J]. Journal ofBiological Chemistry,1952,195(2):727-734
    168. Grundy F J, Waters D A, Takova T Y, et al. Identification of genes involved in utilization ofacetate and acetoin in Bacillus subtilis [J]. Molecular microbiology,1993,10(2):259-271
    169. Romano P,Suzzi G. Origin and production of acetoin during wine yeast fermentation [J]. Appliedand environmental microbiology,1996,62(2):309
    170. Dela Cruz E O, Muguruma H, Jose W I, et al. Molecular imprinting of methyl pyrazines [J].1999
    171. SUGAWARA E, SUZUKI T,YOSHIDA Y. The Comparison of Pyrazine Compounds inNon-Salted Fermented Soybean Products [J]. Food Science and Technology International, Tokyo,1998,4(1):85-88
    172. Elibol M,Mavituna F. A kinetic model for actinorhodin production by Streptomyces coelicolor A3(2)[J]. Process Biochemistry,1999,34(6):625-631
    173. Chen L, Huang H, Liu W, et al. Kinetics of the5-hydroxymethylfurfural formation reaction inChinese rice wine [J]. Journal of agricultural and food chemistry,2010,58(6):3507-3511
    174. Levenspiel O. Interpretation of batch reactor data [J]. Chemical reaction engineering,1972:41-47
    175. Hill C G. An introduction to chemical engineering kinetics&reactor design [M]. Wiley New York,1977

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700