用户名: 密码: 验证码:
宁夏矿山地质环境评价与动态监测分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文在查明宁夏全区存在的主要矿山地质环境问题及潜在危害的基础上,基于ArcGIS,采用综合评判法对宁夏全区的矿山地质环境进行了量化分区评价,并分析了矿山地质环境问题的发展趋势;建立了宁夏石嘴山矿区的GPS变形监测系统,该系统可对矿区地表变形进行实时自动化监测;应用遥感技术实现了石嘴山矿区生态环境动态监测;采用两时相DEM叠加、数值模拟及概率积分法分析了石嘴山矿区地表变形特征,预测了地面塌陷发展趋势,并通过对代表性剖面的有限元数值模拟,揭示了采空区覆岩应力分布和变形破坏机理。从而为宁夏矿山地质环境评价、监测和地面塌陷机理研究提供了新思路和新方法,并对合理开发矿产资源、有效保护矿山地质环境和矿山生态的恢复与重建有重要参考价值与实践意义。取得的主要研究成果如下:
     (1)在查明宁夏全区存在的主要矿山地质环境问题基础上,依据各类矿山地质环境问题分布、现状及发展趋势,遵循可比性、简要性、整体性和可操作性原则,建立了包括地质环境条件、地质灾害、矿山开采状况、资源损毁、三废排放、水环境影响和环境治理率7项准则层和21项指标层的评价指标体系。
     (2)基于ArcGIS,采用综合评判法对宁夏全区的矿山地质环境进行了量化评价,其中各评价指标权重运用层次分析法与粗糙集理论相结合的组合赋权法确定。参考量化评价结果,结合实地调查资料,将全区矿山地质环境划分为影响严重区、较严重区和较轻区3个大区34个亚区,并对各亚区的地质环境背景、主要矿山环境地质问题及其危害进行了综合评述。
     (3)建立了石嘴山矿区GPS变形监测系统。在该矿区共布设了1个GPS参考站、67个GPS监测点及16个传统大地测量监测点,重点介绍了该监测系统的技术指标,整体设计、包含的各子系统及自动化监测的实现过程。
     (4)运用遥感技术实现了石嘴山矿区生态环境的动态监测。分别选取该矿区开采初期、矿山地质环境治理前、治理后三期遥感影像数据进行解译,并对解译成果进行叠加,得到地类动态变化图和矩阵,解译分析结果表明:上世纪70年代到2003年间,耕地和植被覆盖区面积急剧减小,向荒地及城镇居民点的转化尤为明显,这主要是由城市化进程中基础设施建设及水土流失造成;煤堆、水体、矸石山等面积都呈快速增长的趋势,主要由荒地转化而来,是采矿活动造成,矿区的环境遭到严重破坏。2003年到2009年间,植被覆盖区面积的增速最快,主要由荒地和城镇居民点转化而来,而矸石山、荒地等覆被面积都有明显减少,矿区生态环境得到很大改善,显示出地质环境治理恢复的成效。
     (5)选取石嘴山矿区两时相DEM数据进行叠加分析,得到了地表高程的变化情况:上世纪70年代~2003年间,矿区高程最大下降幅度为27.5m,沉降量较大的都分布在塌陷坑处,高程下降10~27.5m,并得到了七个较大塌陷坑的最大垂直位移和塌陷范围。同时选取4个典型剖面,对两时相地形线进行叠加分析,与塌陷坑相对应,得到了更为直观的地面塌陷位移与范围变化情况。
     (6)选取石嘴山矿区三个典型剖面,按照矿区实际开采情况,建立了离散元开采沉陷模型,得到了各开采水平的最大垂直位移和塌陷范围;采用概率积分法预计矿区走向主断面和倾向主断面的地表变形情况,得到的计算结果与数值模拟及不同时相DEM叠加结果基本一致,并预测当采深采厚比大于120时,采矿活动对地表的影响逐渐减小,引发地面塌陷及地裂缝的可能性变小,逐渐趋于稳定。
     (7)通过对石嘴山矿区典型剖面进行有限元数值模拟,揭示了开采过程中覆岩的应力变化特征和分布规律,并采用格里菲斯强度判据分析了地面塌陷的力学机制。
Based on finding out the main mining geo-environmental problems and its potentialhazards, the mining geo-environment of Ningxia was evaluated by use of comprehensiveassessment method on ArcGIS. Referred to the quantitative evaluation results, the mininggeo-environment problems of Ningxia zonation was comprehensively evaluated and itsdevelopment trend was analyzed. The GPS deformation monitoring system was established inShizuishan mining area and deformation could be monitored automatically and uninterrupted.The ecological environment of Shizuishan mining area was dynamiccally monitored byapplication of remote sensing technology. In this paper, the surface deformation in Shizuishanmining area was analyzed by means of superposition of two different period DEM, numericalsimulation and probability integration method, the trends of ground subsidence was predictedas well. One typical profile was selected and finite element models was simulated to indicatethe stress changes in overlying rocks and to reveal deformation characteristics. Mechanism ofground subsidence was analyzed to set an example for evaluating of mining geo-environmentin Ningxia. New ideas and new methods were provided for mine geo-environment monitoringand the study of ground subsidence mechanism. Therefore, the study was of importantacademic significance and application value on rational exploration of mineral resources, andmuch contribution to the effective protection of the mining geo-environment and ecologicalrecovery. The main conclusions are as follows:
     (1) Based on finding out the main mining geo-environmental problems in Ningxia,evaluation index system was established following principles of comparability, briefly,integrity and operability, according to distribution, present situation and development trend ofvarious types of geo-environment problems. It includes7criteria layers and21indicator layers. The criteria layers consisted of geological environment conditions, geological disasters,mining conditions, resource damage, waste discharge, water environmental impacts andenvironmental governance rate.
     (2) Mining geological environment of Ningxia was quantitatively evaluated by use of comprehensive evaluation method based on ArcGIS. The weight of evaluation index wascalculated combining AHP with rough set theory. Based on quantitative evaluation results andfield survey data, the study area was divided into3regions and34sub-regions, namely theseriously influenced area, the more serious influenced area and the lighter influenced area.The geological environment background and main mining geo-environmental problems ofeach sub-region were reviewed comprehensively.
     (3) GPS deformation monitoring system was established in Shizuishan mineral area. OneGPS reference station,67GPS monitoring stations and16traditional geodetic monitoringpoints were set up in the area. The technical indicators, the overall design, various subsystemsand the implementation process of automated monitoring were mainly introduced in thepaper.
     (4) Dynamic monitoring of the ecological environment in Shizuishan mining area hadbeen achieved by using remote sensing technology. Three period remote sensing image datawere interpreted and superimposed respectively, obtaining the dynamic changes of the landtype map and matrix. Analysis of the interpretation results showed that: firstly, from1970s to2003, the main change of lands in Shizuishan mining area was that vegetation coverage areaand cultivated land had been transformed to residential areas and wastelands by infrastructureconstruction and soil erosion. What’s more, the areas of gangue, coal pile, water etc. increasedgreatly because of mining activities. Secondly, the areas of vegetation coverage area increasedthe fastest during2003to2009from wasteland and residential areas whereas areas such asgangue and coal pile decreased sharply as a result of integrated renovation of mininggeo-environment.
     (5) Changes of surface elevation were obtained by overlay analysis of two period DEMdata of Shizuishan mining area. It could be summarized as: from1970s to2003, the largestdecline of the elevation was27.5m. Larger subsidence areas were located at the collapse pitwith the elevation decreasing from10to27.5m leading to the maximum vertical displacementand collapse range of seven large collapse pits. More intuitive changes of the displacementand range of ground subsidence were obtained by overlay analysis of two period topographic lines by selecting four typical profiles with correspondence to the collapse pit.
     (6) Discrete element model of three typical cross-sections in Shizuishan mining areawere established to obtain the maximum vertical displacement and the collapse range of eachmining level in accordance with the actual mining condition. The surface deformation of themain strike section and inclination section were predicted by use of probability integrationmethod. The calculated results were in consistence with the numerical simulation and DEMsuperimposed results. It can be deduced that the impact of mining activity on the surfacedeformation would gradually decrease when the ratio of the mining depth and thickness wasgreater than120and the possibility of causing ground subsidence and cracks would becomesmaller, gradually becoming stabilized.
     (7) The variation and distribution of the rock stress in the mining process were analyzedaccording to establish two-dimensional finite element numerical simulation model of threetypical cross-sections in Shizuishan mining area. The deformation characteristics and failuremechanism of the overburden rocks were revealed combining with the geological conditionsand mining current situation.
引文
[1]汤中立,李小虎,焦建刚等.矿山地质环境问题及防治对策[J].地球科学与环境学报,2005,(6):1-4
    [2]武强,刘伏昌,李铎.矿山环境研究理论与实践[M].北京:地质出版社,2005:16-25
    [3]叶镇杰.矿山环境工程[M].长沙:中南工业大学出版社,1986:26-36
    [4] Kang Lixun. Different Roof Behavior under Different upper Mining Boundary Condition in Datong [J].Journal of Coal Science and Engineering,1997,3(2):36-40
    [5]曹金亮,王润福,张建萍等.山西省矿山环境地质问题及其研究现状[J].地质通报,2004,23(11):112-1126
    [6]马逸麟,唐春花,赵赣.江西省矿产资源开发与环境保护[J].资源开发与市场,2005,21(2):113-116
    [7]徐友宁,何芳,袁汉春等.中国西北地区矿山环境地质问题调查与评价[M].北京:地质出版社,2006:10-20
    [8]武强,薛东,连会青.矿山环境评价方法综述[J].水文地质工程地质,2005,(3):84-88
    [9] Kirzhner, F.M. Influence of Tectonic Conditions in Coal-mining. Proceedings of the7thInternationalCongress International Association of Engineering Geology. Part6(of6).1994:4429
    [10]李宝贵,沈玉玲,王红英等.宁夏回族自治区矿山地质环境调查与评估报告[R].银川:夏国土资源调查监测院.2005:55-78
    [11]陆彦俊,倪万魁,尚慧等.宁夏矿山环境评价、整治与监测技术方法研究[R].银川:宁夏国土资源调查监测院.2012:1-4
    [12]宁夏回族自治区统计局,国家统计局宁夏调查总队.宁夏回族自治区2010年国民经济和社会发展统计公报[N].宁夏日报,2011-03-24
    [13]何兴江.地下采矿与地质环境互馈机理及矿山地质环境治理研究[D].成都:成都理工大学,2008:1-13
    [14]付标.矿山生态环境遥感调查与环境影响定量评价研究-以新安县正村煤矿(新建)为例[D].郑州:河南农业大学,2005
    [15] Aydinalp C, Fizpatrick E A, Cresser M S. Heavy Metal Pollution in Some Soil and Water Resources ofBursa Province, Tukey. Communication in Soil Science and Plant Analysis,2005,36(13-14):1691-1716
    [16]张金月.矿山地质环境影响程度评价及保护与治理研究[D].西安:长安大学,2010
    [17] Kirzhner, F.M. Influence of Tectonic Conditions in Coal-mining. Proceedings of the7th InternationalCongress International Association of Engineering Geology. Part6(of6).1994:4429
    [18] W. R. Cowan. Mine Rehabilitation in Ontario, Canada: Ten Years of Progress [A]. Mining and theEnvironment Conference Proceedings [C].2000:1037
    [19]黄于新.广东省矿山地质环境质量综合分区评价研究[D].长春:吉林大学,2005
    [20]徐友宁.矿山地质环境调查研究现状及展望[J].地质通报,2008,27(8):1235-1243
    [21] Bodle W W, Schora F C. Coal Gasification Technology Overview. Paper Presented at Advances inCoal Utilization Technology Symposium, Louisville, KY.1979:790-807
    [22]陈玉华,陈守余.基于MAPGIS的矿山环境评价分析软件开发[J].安全与环境工程,2003,10(3):50-53
    [23]李艳,王恩德,沈丽霞.矿山环境影响评价内容和程序探讨[J].环境保护科学,2005,31(130):67-70
    [24]杨梅忠,刘亮,高让礼.模糊综合评判在矿山环境影响评价中的应用[J].西安科技大学学报,2006,26(4):439-442
    [25]江松林,孙世群,王辉.安徽省矿山环境质量综合评价研究[J].合肥工业大学学报,2008,31(1):112-115
    [26]王海庆.基于GIS和RS的矿山地质环境评价方法比选[J].国土资源遥感,2010,(3):92-96
    [27]孟庆凯,朱丹,张婷,等.模糊ISODATA聚类分析算法在矿山地质环境评价中应用[J].长江大学学报,2012,(7):35-38
    [28]冯彦平.矿山开采影响下的环境遥感监测与评价[D].青岛:山东科技大学,2010
    [29] Kuehn F., King T., Hoerig B., et al. Remote Sensing for Site Characterization [M]. Springer,2000:10-20
    [30]吴德礼,朱申红,王铮.国内外矿山尾矿综合利用现状与思考[J].青岛建筑工程学院学报,2001,(4):84-88
    [31] Stanislaw C Mularz.Satellite and Airborne Remote Sensing Data for Monitoring of An Open-cast Mine
    [32] Asseing and Monitoring the Environmental Impace of Mining Activities in Europe Using MostAdvanced Earth Observation Techniques [EB/OL]. http://www.brgm.fr/mineo,2003-09-23/2009-10-12
    [33] Cloutis E A. Hyperspectral Geological Remote Sensing: Evaluation of Analytical Techniques [J].Remote Sensing,1996,17(12):2215-2242
    [34]赵汀.基于遥感和GIS的矿山环境监测与评价-以江西德兴铜矿为例[D].北京:中国地质科学院,2008
    [35] M. G. Culshaw, C. P. N., G. J. L. Leeks, et al. The Role of Web-based Environmental Information inUrban Planning-the Environmental Information System for Planners [J]. Science of The TotalEnvironment,2006,360:58-63
    [36]雷国静.赣州市龙南地区稀土矿矿山开采现状与动态监测遥感研究[D].北京:中国地质大学,2009
    [37]卓宝熙.遥感在灾害调查中产生的社会经济效益-以北京市门头沟洪水、地质灾害遥感调查为例[J].地球信息科学,2001,(4):48-52
    [38]朱思才,吴家齐,刘和发. GSI技术在区域矿产资源勘察评价中的应用[J].有色金属矿产与勘查,1999,8(6):615-618
    [39]雷利卿,岳燕珍,孙九林,等.遥感技术在矿区环境污染监测中的应用研究[J].环境监测,2002,(2):33-36
    [40]杨忠义,白中科,张前进等.矿区生态破坏阶段的土地利用/覆被变化研究-以平朔安家岭矿为例[J].山西农业大学学报,23(4):367-370
    [41]陈华丽,陈刚,郭金柱. Landsat TM在矿区生态环境动态监测中的应[J].2004,(1):31-34
    [42]陈旭.遥感解译分析矿山开发对生态环境的影响[J].资源调查与环境,25(1):13-17
    [43]王逊,陈伟涛.遥感技术在黑龙江省矿山地质环境监测中的应用[J].安全与环境工程,2009,16(6):20-25
    [44]杨博,陈建平,刁明光.北京市矿山环境遥感监测与综合评价系统的设计[J].地质通报,2011,30(5):750-755
    [45]张焜,马世斌,刘丽萍.基于SPOT5数据的盐湖矿产开发及矿山环境遥感监测[J].国土资源遥感,2012,(3):146-153
    [46]皱友峰,邓喀中,马伟民.矿山开采沉陷工程[M].徐州:中国矿业大学出版社,2003:365-381
    [47] Chamine, H.l., Bravo Silva, P.. Geological Contribution Towards the Study of Mining Subsidence atthe Germunde Coal Mine (NW Portugal)[J]. Cuadernos do Laboratorio Xeologico de Laxe,1993,18:281-287
    [48]孙超,薄景山,孙有为.采空区沉陷研究历史及现状[J].防灾科技学院学报,2008,10(4):128-131
    [49]纪万斌,林景星,齐文同,等.塌陷与灾害[M].北京:地震出版社,1998:162-180
    [50]纪万斌.塌陷学概论[M].北京:中国城市出版社,1994:13-39
    [51] Torano J, Rodriguez R, Cudeiro O, et al. Ground Movement Srelated to Mining Steeply Dipping CoalSeams. MPES. IJSM[A]. Proceeding Ⅶ International Symposium on Mine Planing and EquipmentSelection[C]. Dnipropetrovsk, Ukraine,Section5,1999:289-195
    [52]王金庄.开采沉陷若干理论与技术问题研究[J].矿山测量,2003,(3):1-5
    [53]何国清,杨伦,凌赓娣,等.矿山开采沉陷学[M].徐州:中国矿业大学出版社,1991:45-50
    [54]赵静波,高谦,李莉.地下采动岩层移动预测理论分析与研究[J].矿冶工程,2004,(3):1-4
    [55]煤炭科学研究院北京开采研究所.煤矿地表移动与覆岩破坏规律及其应用[M].北京:煤炭工业出版社,1981:82-112
    [56]王树元.岩层与地表移动预计方法[M].北京:煤炭工业出版社,1989:14-55
    [57]杨帆,麻凤海.急倾斜煤层采动覆岩移动模式及其应用[M].北京:科学出版社,2007:1-10
    [58]邓喀中,马伟民.开采沉陷中的层面滑移三维模型[J].岩土工程学报,1997,19(5):28-34
    [59]王悦汉,邓喀中,张东至,等.重复采动条件下覆岩下沉特性的研究[J].煤炭学报,1998,23(5):470-475
    [60]蔡怀恩.开采沉陷预计及发展趋势[J].露天采矿技术,2007,(4):43-45
    [61]谷金峰,高振森.概率积分法在矿区开采沉陷预测中的应用[J].矿山测量,2011,(2):47-50
    [62]孙凤余,郑伟,郭新华.概率积分法在矿山环境开采沉陷预测评估中的应用[J].四川环境,2009,28(1):90-93
    [63]何国清.威布尔分布在地表预计中的应用[D].北京:中国矿业大学,1981
    [64]何国清,马伟民,王金庄.威布尔型影响函数在地表移动计算中的应用[J].中国矿业学院学报,1982,11(1):25-29
    [65]麻凤海,杨帆.地层沉陷的数值模拟应用研究[J].辽宁工程技术大学学报,2001,20(3):257-261
    [66]唐又驰,曹再学,朱建军.有限元法在开采沉陷中的应用[J].辽宁工程技术大学学报,2003,22(2):196-198
    [67]邓喀中.开采沉陷中岩体结构效应的研究[D].北京:中国矿业大学,1993
    [68]王泳嘉,邢纪波.离散元法及其与边界元法的耦合[A].边界元法在岩石力学和工程中的应用会议论文集[C].天津,1987:1-10
    [69]王泳嘉,宋文洲.关于岩石力学有限元程序发展的若干思考[J].岩石力学与工程学报,1998,17(增):940-947
    [70]宁夏回族自治区统计局.宁夏统计年鉴(2010)[M].北京:中国统计出版社,2004:2-5
    [71]宁夏回族自治区地质矿产局.宁夏回族自治区岩石地层[M].武汉:中国地质大学出版社,1996:10-40
    [72]宁夏回族自治区国土资源厅.宁夏回族自治区矿产资源年报(2010)[R].银川,2010:5-25
    [73] Eung Seok Lee, Noel C. Krothe. A Four-component Mixing Model for Water in A Karst Terrain inSouth-central Indiana[J]. Using Solute Concentration and Stable Isotopes as Tracers ChemicalGeology,2001,(179):129-143
    [74] Georg K.. A Model Comparison of Karst Aquifer Evolution for Different Matrix-flow Formulations [J].Journal of Hydrology.2003,(283):281-89
    [75] Georg K.. Modelling Unsaturated Flow in An Evolving Karst Aquifer [J], Journal of Hydrology.2003,(276):53-70
    [76] Jerome Perrin, Pierre–Yves Jeannin, Francois Zwahlen Epikarst. Storage in A Karst Aquifer: AConeeptual Model Based on Isotopic Data, Milandre Test Site [Jl. Switzerland Journal of Hydrology,2003,279:106-124
    [77]崔立昌.矿山生态环境影响评价及恢复对策研究-以石灰石矿山开采为例[D].石家庄,河北师范大学,2003
    [78]杨青华,李艺,杜军.基于GIS和RS的黄石市矿山地质环境定量评价[J].长江科学院院报,2010:70-73
    [79]杨毅.神木县矿山地质环境影响评价研究[D].西安:西安科技大学,2008
    [80]莫时雄.典型金属矿山岩土工程环境评价体系与预警系统研究[D].长沙:中南大学,2008
    [81]庞靖鹏.我国环境影响评价发展展望[J].哈尔滨师范大学自然科学学报,2003,19(6):96-99
    [82]黄淑芳.主成分分析及MAPINOF在生态环境脆弱性评价中的应用[J].福建地质,2002,17(1):47-49
    [83]许英霞,甘德清.多层次多级模糊数学在金属矿山地质灾害评估中的应用[J].河北理工学院学报,2005,27(1):146-151
    [84]兰文辉.灰色聚类法在大气环境评价中的应用及其它方法的比较[J].干旱环境监测,1995.3:147-149
    [85]刘洪,张宏斌.江苏省矿山地质环境质量的模糊评判[J].中国地质灾害与防治学报,2007,18(4):82-87
    [86]张连文,汪培庄.基于信息理论的综合评判模型[J].系统工程学报,1986,(1):63-73
    [87]宋之杰,高晓红.一种多指标综合评价中确定指标权重的方法[J].燕山大学学报,2002,26(1):20-23
    [88]陈善雄,徐海滨,秦尚林等.层次分析法在斜坡失稳灾害预测评估中的应用[J].土工基础,2005,19(4):33-35
    [89]范文,刘雪梅,高德彬.主成分分析法在地质灾害危险性综合评价中的应用[J].西安工程学院学报,2001,23(4):53-57
    [90]蒋慧峰,朱文杰.一种最优组合赋权算法[J].湖北工业大学学报,2007:78-80
    [91]尚慧,倪万魁,王慧妮.石嘴山市矿山地质环境综合评价[J].西安科技大学学报,2011,31(6):836-841
    [92]国巧真,鲁明星,等.采煤塌陷区动态监测系统的研制及应用[J].矿业安全与环保,2005,32(3):5-11
    [93]马玲.遥感与GIS技术在矿山环境监测与质量评价中的应用-以攀枝花钒钛磁铁矿-宝鼎煤矿区为例[D].成都:成都理工大学,2008
    [94]刘美玲.基于GIS和RS的矿产资源开发生态环境效应监测与评价[D].武汉:中国地质大学,2006
    [95]张进德,田磊,赵慧.我国矿山地质环境监测工作方法初探[J].水文地质工程地质,2008,(2):4-7
    [96]刘沛,况顺达,姚智. RS、GIS在贵州省环境地质综合调查中的应用[J].贵州地质,2004,21(3):161-164
    [97] Shepran V. Heavy metal removal mechanism of acid mine drainage in Wetlands: A Critical review.Minerals Engineering,2006,19(2),105-116
    [98]韩雁.基于GIS的矿山环境信息系统的研究[D].辽宁技术工程大学,2003:4-15
    [99]牛国元,易静华,刘艳华.资源枯竭型城市石嘴山市产业发展方向选择[J].矿业研究与开发,2009:88-91
    [100]候鹏.基于遥感和地理信息系统的矿区环境监测与评价[D].青岛:山东科技大学,2004
    [101] Venkataraman G, Kumar S.P, Ratha D. S. Open Cast Mine Monitoring and Environmental ImpactStudies through Remote Sensing A Case Study from Goa, India, Geocarto International,1997,12(2):39-53
    [102] John J. Lewis, Robert J. O’ Callaghan, Stavri G. Nikolov, et al. Pixel and Region-based Image Fusionwith Complex Wavelets [J]. Information Fusion,18(2):119-130
    [103] Legg.C. Application of remote sensing to environment aspects of Surface operations in the UnitedKingdom. Remote sensing: an operational technology for the mining and petroleum industries [A].Conference, JMM [C], London,1999:159-164
    [104]王虹.基于RS、GIS的资源与生态环境动态监测一以内蒙古阿鲁科尔沁旗为例[D].山东科技大学,2004
    [105] Christian F., Wolfgang B.. Monitoring of Environmental Changes Caused by Hard Coal Mining,Remoting, GIS Application, and Geology [A], Proceeding of SPIE [C],2002:45-54
    [106]孙蓉桦,郭德方. SPOT-5全色与多光谱数据融合方法的比较研究[J].遥感技术与应用,2005,20(3):365-370
    [107]王晓红,聂洪峰,等.不同遥感数据源在矿山开发状况及环境调查中的应用[J].国土资源遥感,2006,(2):69-71
    [108] S. K. Pal, T. J. Majumdar and Amit K. Bhattacharya. ERS-2SAR and IRS-1C LISS Ⅲ Data Fusion:A PCA Approach to Improve Remote Sensing Based Gelolgical Interpretation [J].2007,61(5):281-297
    [109] Steven E. Franklin, Clayton F. Blodgett. An Example of Satellite Multisensor Data Fusion [J].Computers and Geosciences,2000,19(4):577-583
    [110]潘卫华.遥感监测的城市扩展分析-以泉州市为例[J].福建地理,2005,20(1):16-19
    [111]党安荣,王晓栋,陈晓峰等.遥感图像处理方法[M].北京:清华大学出版社,2003:192-209
    [112]国家煤炭工业局.建筑物、水体、铁路及主要井巷煤柱留设与压煤开采规程[M].北京:煤炭工业出版社,2000:78-116
    [113]王泳嘉,宋文洲,赵艳娟.离散单元法软件系统2D-Block的现代化特点[J].岩石力学与工程学报,2000,19(增):1057-1060
    [114]麻凤海,王泳嘉.地层沉降控制的可变形离散单元模拟[J].岩石力学与工程学报,1999,18(2):176-179
    [115] Bridget R. Scanlon, Robert E. Mace, Michael E. Barrett, et al. Can we simulate regional groundwaterflow in a karst system using equivalent porous media models case study, Barton Springs Edwardsaquifer [J]. USA Journal of Hydrology,2003,(276):13-158
    [116]高明中,余忠林.煤矿开采沉陷预测的数值模拟[J].安徽理工大学学报,2003,23(1):11-15
    [117]沈明荣.岩体力学[M].上海:同济大学出版社,2000:40-41

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700