用户名: 密码: 验证码:
深层块状稠油油藏转重力火驱研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文针对辽河油田蒸汽吞吐后的深层块状稠油油藏,平面和纵向动用程度已经较高、稠油井面临低产、低油气比、低效和剩余油分布零散的开发局面,还没有实现真正的开采方式转换的状况,提出应用重力火驱作为下一步转换的开发方式。
     本文通过对世界上火烧油层和重力火驱开发技术调研分析,目前重力火驱—THAI技术主要应用在块状浅层超稠油油藏上。而对辽河油田已经经过多轮次吞吐开发的深层块状普通稠油藏,储层非均质性都很严重,所以重力火驱是否适合以及参数设置如何优化都是需要面临的问题。本文通过对重力火驱油藏适应性研究,从油层厚度、油藏类型、油藏物性以及油藏非均质性和隔夹层特征方面,论述了适合重力火驱的稠油油藏特征,并最终得到适合重力火驱稠油油藏筛选标准。在火驱室内试验研究基础上,应用物模和热采数值模拟相结合的方法,建立了重力火驱数模模型,对重力火驱的参数优化和调整进行研究。研究结果指出侧向重力火驱较THAI技术更适应于已吞吐开发的块状稠油油藏,并且根据跟踪数模研究结果,指出对重力火驱过程中湿烧段塞是比干烧更好的燃烧模式,同时证实重力火驱的焦炭模式燃烧更充分。
     通过对多轮次吞吐后厚层块状稠油油藏直井火烧油层先导试验的评价,指出在火烧过程中油层内燃烧前缘推进沿着井距小、储层物性好、地层亏空大的方向推进速度快。火线平面上推进速度不均匀,纵向上气窜、气体超覆导致火线波及效率低。进一步为重力火驱在该类油藏实施指明方向。
     通过对侧向重力火驱先导实验井组实施分析,水平井平均日产液7.3t,平均日产油4.4t,见到良好效果并对重力火驱监测技术进行分析研究。说明高轮次蒸汽吞吐后厚层块状稠油油藏转重力火驱是一个有效的开发方式,它可以提高油井产量和区块采收率。
     综上所述本文在对现有重力火驱技术分析基础上,建立了适合重力火驱的稠油油藏筛选标准,并应用物理模拟和热采数值模拟方法对重力火驱参数优化调整进行研究,为已吞吐开发的厚层块状稠油藏转侧向重力火驱奠定基础,必将为下一步辽河油田稠油藏转换开发方式做出贡献。
In this paper for the deep and massive heavy oil reservoirs of Liaohe oilfield afterCSS(cycle steam stimulation) development, the reservoir development condition was faced withthe high developed ratios in the plane and vertical oil zones and the existing heavy oil well withlow production, low OSR, low effect and high dispersed remaining oil,and moreover in theheavy oil reservoir the converted development pattern was not made true really, So the GravityFire Flooding(GFF) was put forward as the next development pattern converted.
     In this paper by the technology survey of the in-situ combustion and the GFF, the gravityfire flooding-THAI was mainly used in the matrix shallow ultra heavy oil reservoirs. So there aremany issues faced that the GFF was suitable or not for the deep and massive heavy oil reservoirsin Liaohe oilfield after CSS development which have very heavy heterogeneity in the reservoirsand how to optimize the development parameters was done in the DFF.In this paper by thereservoir adaptability study of the GFF, the property of the heavy oil reservoirs that was suitablefor the GFF was discussed from the oil zones thickness,the type of the reservoirs,the physicsproperty and heterogeneity of the reservoirs,the characteristics of the interlayers in the oil zones,and the screening criterion of the heavy oil reservoirs for the GFF was obtained. The numericalmodel of the GFF was build up by use of the methods of physics model and the thermalnumerical modeling combined,and the parameters optimimum and adjustment of the GFF wasstudied on basis of the indoors lab test research on the fire flooding. The result of the study wasshowed that the lateral GFF was more suitable than THAI technology for the deep and massiveheavy oil reservoirs after CSS development and furthermore in terms of the methods used bytrailing research of the numerical modeling, it was pointed out that the wet combustion sectionwas a better burning pattern than the dry combustion and at same time it was convinced that thehard coke combustion pattern could make the oil zones burned more completely during theheavy oil combustion.
     In term of the vertical wells fire flooding pilot evaluation on the deep and massive heavy oilreservoirs after CSS development, it was pointed that in the high heterogeneity heavy reservoirconverted to fire flooding development, the combustion front was pushed quickly along thedirection of good reservoir property, low well space and the lower formation pressure.The firefront pushed non uniform in the plane and the gas channeling and gas overlapped made the volume sweep coefficient lower which was showed that the GFF could be further utilized in thiskind of the heavy oil reservoirs.
     By the analysis on the lateral GFF pilot well group, the GFF pilot well groups got goodeffect in Gao3-6-18block with the average daily liquids7.3t and the average daily oil rate4.4tfor the horizontal production well and the monitoring technique of the GFF was studied. It wasconviced that it was a good development pattern for the deep and massive heavy oil reservoirsafter CSS development converted to the GFF development and it could improve oil wellsproduction and the block recovery.
     In general on the basis of the analysis on the existing technology of the GFF, the screeningcriterion of the heavy oil reservoirs for the GFF was bulid up and the parameters optimimumand adjustment of the GFF was studied by use of the methods of physics model and the thermalnumerical modeling combined which would be set on basis of the thick and massive heavy oilreservoir converted to the GFF after CSS development, and it would give more contribution onthe next heavy oil reservoir converted development pattern in Liaohe oil field.
引文
[1] A.A.Mailybaev, J.Bruining, D.Marchesin.Analysis of in situ combustion of oil with pyrolysis andvaporization. Combustion and Flame158(2011)1097-110
    [2] A.A.Mailybaev, J.Bruining, D.Marchesin.Analytic formulae for in-situ combustion. in: Processing-17thSPE Symposium on Improved Oil recovery symposium, vol.2,2010, pp.1120-1135, SPE129904
    [3] A.Bar-Ilan, G.Rein, A.C.Fernandez-Pello, etc. Forced forward smoldering experiments in microgravity.Experimental Thermal and Fluid Science28(2004)743-751
    [4] Adela Khor, Changkook Ryu, Yao-bin Yang, etc.Straw combustion in a fixed bed combustor. Fuel86(2007)152-160
    [5] Al-Saffara H, Priceb D, Soufia A, Hughesa R. Distinguishing between overlapping low temperature andhigh temperature oxidation data obtained from a pressured flow reactor system using consolidated corematerial. Fuel200079(7):723–32
    [6] Allica H, Mitre AJ, Gonzalex BJA, Itoiz C, Blanco F, Alkorta I, et al.Straw quality for its combustion in astraw-fired power plant. Biomass Bioenergy2001,21-249
    [7] Butler R M, Stephens D J.The gravity drainage of steam heavy oil to parallel horizontal well [J]. JCPT,1981,20(2)90-96
    [8] Butler RM. A new approach to the modeling of steam assisted gravity drainage [J]. JCPT,1985,24(3)42–51
    [9] BURGER J G. Laboratory research on wet combustion [J]. Journal of Petroleum Technology,1993,25(10):1130~1136
    [10] C. Lu, Y.C. Yortsos. A Pore-Network Model of In Situ Combustion in Porous Media, Presented at theSociety of Petroleum Engineers (International) Thermal Operations and Heavy Oil Symposium. Paper SPE69705(2001)
    [11] Chu C. A Study of fireflood field projects. JPT, February1977
    [12] Debenest G, Mourzenko VV, Thovert J-F.Smoldering in fixed beds of oil shale. Combust Theory Model2005,9:113–35
    [13] G.Debenest, V.V.Mourzenko, J.F.Thovert. Combust Theory Model,9(2)(2005)301-321
    [14]Greaves, M., El-Sakr, A., Xia, T.X., Ayasse, A. and Turta, A.T.,2000.Thai—new air injection technologyfor heavy oil recovery and in situ upgrading. Journal of Canadian Petroleum Technology,40(3):1–10
    [15]Greaves.M.and Al-Honi.M.,2000. Three dimensional studies of in-situ combustion-horozontal wellsprocess with reservoir heteroneitirs. J Can Pet Technol,39(10),25-32
    [16] Guan Wenlong, WU Shuhong, Wang Shihu, et al. Physical simulation of in situ combustion of sensitiveheavy oil reservoir[C]. SPE110374,2007
    [17] Greaves M,王玉华,裴东旗,等. THAI-稠油开采和就地升温的注空气新技术[J].国外油田工程,2001,17(9):14-19
    [18] H. Zhou, A.D. Jensen, P. Glarborg, P.A. Jensen, etc.Numerical modeling of straw combustion in a fixedbed. Fuel84(2005)389–403
    [19] I.Y. Akkutlu. Dynamics of Combustion Fronts in Porous Media, Ph.D. Dissertation, U. of SouthernCalifornia, Los Angeles (2002)
    [20] I.Y. Akkutlu, Y.C. Yortsos.The Effect of Heterogeneity on In-situ Combustion: The Propagation ofCombustion Fronts in Layered Porous Media. Presented at the SPE/DOE Thirteenth Symposium on ImprovedOil Recovery held in Tulsa, Oklahoma SPE75128(2002)
    [21] I.Yucel Akkutlu, Yanis C. Yortsos. The Dynamic of in situ combustion fronts on porous media.Combustion and Flame134(2003)229-247
    [22] Jayasekera A T and Goodyear S G. The Development of heavy oil fields in the United KingdomContinented Shelf: past, present, and future. SPE Reservoir Evaluation&Eng.(2000),3:(5), pp.371-379
    [23] J.H. Wang, C.Y.H. Chao, W.J. Kong. Experimental study and asymptotic analysis of horizontally forcedforward smoldering combustion. Combustion and Flame135(2003)405-419
    [24] J.H. Wang, C.Y.H. Chao, W.J. Kong. J. of Fire Sci.20(2002)113–131
    [25] Jiang, Q., Butler, R.M. and Yee, C.-T.,2000.Steam gas push (SAGP)—4: Recent theoreticaldevelopments and laboratory results using layered methods. Paper2000-51, presented at the PetroleumSociety’s Canadian International Petroleum Conference, Calgary, Canada,4–8June
    [26] Javier E. Sanmiguel, S.A. Mehta.An experimental study of controlled gas-phase combustion in porousmedia recovery of oil and gas.2001Engineering Technology Conference on Energy(ETCE2001), Part A,Houston, Texas,USA, February5~7,2001
    [27] Kaer S K.Numerical modeling of straw-fired grate boiler. Fuel2004,83-1183
    [28] Kavaliauskas A, Jensen, AD, Jensen PA, Zhou H. Effect of inlet conditions on the straw combustion in apacked bed.2004(submitted for publication)
    [29] Kisman K E. A new combustion process utilizing horizontal wells and gravity drainage [J].JCPT,1994,33(3):39-45
    [30] Kuhlman, M.,2000.The Benefits of In Situ Upgrading Reactions to the Integrated Operations of theOrinoco Heavy-Oil Fields and Downstream Facilities. SPE62560. Paper presented at the2000SPE/AAPGWestern Regional Meeting, Stavanger, Norway June19–23
    [31] L.M.Castanier, W.E.Brigham.Upgrading of crude oil via in situ combustion.Journal of Petroleum Scienceand Engineering.39(2003)125-136
    [32]Liu Qicheng, Ma Desheng, Liu Baoliang. Experiment study of formation variationin heavy oil thermal recovery (2006-649). The Proceedings of the Technical Sessions of the First WorldHeavy Oil Conference.200612-15th, Nov.2006Beijing, China.China Modern Economic Publishing House
    [33] L IN C Y, CHEN W H, CULHAM W E. New kinetic models for thermal cracking of crude oils in in-situcombustion processes [R].SPE13074,1987
    [34] Martins MF, Salvador S, Thovert J-F, Debenest G. Co-current combustion of oil shale–part1:characteristic of the solid and gaseous products. Fuel2009,89(1):144–51
    [35] McDaniel. Petrobank's THAI Technology Expands Exploitable Bitumen in Place CALGARY, Alta.2010-03-12
    [36] Moore, R.G., Xu, H.H., Okazawa, N.E., Mehta, S.A., Laureshen, C.J, Ursenbach, J., Mallory, D.H.,2001.In-situ upgrading of heavy oils. JCPT (August)
    [37] ONYEKONWU M O, PANDE K, RAMEY HJ, et al.Experimental and simulation studies of laboratoryin-situ combustion recovery [R].SPE15090,1986
    [38] Pujol L, Boberg T C. Scaling accuracy of laboratory steam flooding models[C]. SPE4191,1972
    [39] R.Gordon Moore, Catherine J.Laureshen, John D.M.Belgrave etc. In situ combustion in Canadian heavyoil reservoirs.Fuel vol.74no.8.pp.1169-1175,1995
    [40] Rogaume T, Auzanneau M, Jabouille F, Goudeau JC, Torero JL.The effects of different air flows on theformation of pollutants during waste incineration. Fuel2002;81:2277
    [41] Ro“nnba”ck M, Axell M, Gustavsson L, Thunman H, Leckner B. Combustion processes in a biomassfuel bed–experimental results. Progress in thermochemical biomass conversion17–22September, Tyrol,Austria,2000
    [42] Ryu C, Yang YB, Khor A, Nasserzadeh V, Swithenbank J. Effect of fuel properties on biomasscombustion: Part1experiments–fuel type, equivalence ratio and particle size. Fuel2006,85:1039
    [43] Singhal, A.K. and Turta, A.T.,2000. Overview of horizontal well assisted short-distance oil displacementtechnologies. Paper SPE66791/PS2000-184, presented at4th International Conference and Exhibition onHorizontal Well Technology, Calgary, Alberta, Canada6–8November
    [44] Stegemeier G L, Laumbach D D, Volek C W. Representing steam processes with vacuum models [C].SPE6787,1980
    [45] Saastamoinen JJ, Taipale R, Horttanainen M, Sarkomaa P. Combust Flame2000,123-214
    [46] Thunman H. Principles and models of solid fuel combustion.PhD Thesis, Department of EnergyConversion, Chalmers University of Technology, Goteborg, Sweden;2001
    [47] Taber J.J.&Martin F.D.Technical Screening Guides for the Enhanced Recovery of Oil.SPE12069,1983
    [48] T. X. XIA, M.Greaves.In situ upgrading of Athabasca Tar sand bitumen using THAI. Chemicalengineering research and design,84(A9):856-864,2006.9
    [49] Van der Lans RP, Pedersen LT, Jensen A, Glarborg P, Dam-Johansen K. Modeling and experiments ofstraw combustion in a grate furnace.Biomass Bioenergy.2000,19:199
    [50] Xia, T.X. and Greaves, M.,2002. Upgrading Athabasca Tar Sand using toe-to-heel air injection.Journal ofCanadian Petroleum Technology,41(8):51–58
    [51] Xia, T.X., Greaves, M., Turta, A. and Ayasse, C.,2003. THAI—a “short distance displacement” in situcombustion process for the recovery and upgrading of heavy oil.Trans IChemE, Part A,81:295–304
    [52] Xia, T.X., Greaves, M.,2001.Downhole upgrading Athabasca tar sand bitumen using THAI-SARAanalysis. SPE69693. Paper presented at the Heavy Oil Operation Symposium, Porlamar, Venezuela March
    [53] Xia T X, Greaves M. Upgrading Athabasca tar sand using toe to heel air injection[C].SPE65524,2000
    [54] Xia T X, Greaves M,Turta A T. Injection well producer well combinations in THAI “toe-to-heel airinjection”[C].SPE75137,2002
    [55] Xia T X, Greaves M. Downhole conversion of lioydminster heavy oil using THAI CAPRI process [C].SPE78998,2002
    [56] Yang YB, Goh YR, Nasserzadeh V, Switthenbank J. Third International Symposium on Incineration andFlue Gas Treatment. Brussels, July1–4,2001
    [57] Yang YB, Nasserzadeh V, Goodfellow J, Goh YR, Swithenbank J. Parameter study on the incineration ofmunicipal solid waste fuels in packed beds [J]. J Inst Energy2002,75:66
    [58] Yang YB, Ryu C, Khor A, Sharifi VN, Swithenbank J. Fuel size effect on pinewood combustion in apacked bed [J]. Fuel2005,84:2026
    [59] Zhou H, Jensen AD, Glarborg P, Jensen PA, Kavaliauskas A. Numerical modelling of straw combustionin a fixed bed[J]. Fuel2005,84:389
    [60]布尔热J,等.热力法提高石油采收率[M].北京:石油工业出版社,1997:59
    [61]崔玉峰,杨德伟,陈玉丽,等.火烧油层热力采油过程的数值模拟[J].石油学报,2004,25(5):992103
    [62]蔡文斌,李友兰,李淑兰.火烧油层技术在胜利油田的应用[J].石油钻探技术, Vol.32No.2,2004.3
    [63]陈军斌,肖述琴,周芳德,等.火烧油层驱油特征的参数敏感性分析[J].应用力学学报,第20卷第一期,2003年3月
    [64]陈新民,李淑兰,李友平,等.火烧油层点火参数计算模型的建立与应用[J].石油机械,第32卷第6期,2004年
    [65]柴利文,金兆勋.中深层稠油油藏火烧油层实验研究[J].特种油气藏2010:第17卷第3期
    [66]柴利文.深层块状厚层稠油油藏火烧油层开发技术研究与应用[D].中国石油大学博士论文,2012年
    [67]杜殿发,姚军.乐安油田注汽后火烧油层开发参数敏感性研究[J].石油大学学报(自然科学版),2003,27(2):47-50
    [68]关文龙,吴淑红,梁金中,等.从室内试验看火驱辅助重力泄油技术风险[J].西南石油大学学报(自然科学版)2009:第31卷,第4期
    [69]关文龙,田利,郑南方.水平裂缝-蒸汽辅助重力泄油物理模拟试验研究[J].石油大学学报(自然科学版),2003,27(3):50-54
    [70]关文龙,王世虎,蔡文斌,等.新型火烧油层物理模型的研制与应用[J].石油仪器第19卷第4期,2005
    [71]关文龙,王世虎,曹钧合,等.郑408块火驱物理模拟结果与模型解析解差异分析[J].油气地质与采收率,2006,13(1):87-89
    [72]关文龙,蔡文斌,王世虎等.郑408块火烧油层物理模拟研究[J].石油大学学报(自然科学版),2005,29(5):58-61
    [73]关文龙,马德胜,梁金中,等.火驱储层区带特征实验研究[J].石油学报,2010,31(1):0253-2697
    [74]郭秀文,许宁.翻译文章.水平井的火烧油层技术[J].加拿大石油技术杂志,1996.4
    [75]胡士清,白国斌,赵春梅.火烧油层技术在庙5块低渗透稠油油藏中的应用[J].特种油气藏,第5卷第4期,1998年
    [76]海东明.厚层块状超稠油油藏火驱辅助重力泄油可行性研究[D].内蒙古石油化工,2012年第12期
    [77]洪K C.蒸汽驱油藏管理[M].北京:石油工业出版社,1996:37
    [78]韩国庆,吴晓东,李伟超,等. THAI技术及其在稠油开发中的应用[J].油气田地面工程,2007,26(5):17-18
    [79]霍广荣,李献民,张广卿.胜利油田稠油油藏热力开采技术[M].北京:石油工业出版社,1999
    [80]蒋海岩,张琪,袁士宝,等.火烧油层干式燃烧数值模拟及参数敏感性分析[J].石油大学学报(自然科学版),Vol.29No.52005
    [81]蒋海岩.蒸汽吞吐后转火烧油层开采试验研究[J].油气田地面工程,第25卷第9期,2006.9
    [82]蒋海岩,赵东伟,张琪,等.辽河油田欢127块火烧油层可行性研究[J].中国力学学会学术大会2005(CCTAM2005)
    [83]李伟超,吴晓东,刘平.从端部到跟部注空气提高采收率的新方法[J].西南石油大学学报(自然科学版),2008,30(1):78-80
    [84]雷占祥,蒋海岩,张琪等.火烧油层传热特性室内试验研究[J].油气地质与采收率,2006:第13卷第6期
    [85]李少池,沈燮泉,王艳辉.火烧油层物理模拟的研究[J].石油勘探与开发,1997,22(2):73-79
    [86]李迎春,邱国清,袁明琦,等.乐安油田南区火烧驱油提高采收率试验[J].油气地质与采收率,2002,9(4):72-74
    [87]李淑兰,李友平,范海涛,等.3DR-Ⅰ型火烧驱油电点火器的研制与应用[J].石油机械,2004,32(1):28-30
    [88]刘慧卿,范玉平,等.热力采油技术原理与方法[M].东营:石油大学出版社,2000:55-56
    [89]刘应忠,胡士清.高3-6-18块火烧油层跟踪效果评价[J].长江大学学报(自然科学版)理工卷,2009年第01期
    [90]刘尚奇,王晓春,高永荣,等.超稠油油藏直井与水平井组合SAGD技术研究[J].石油勘探与开发,2007,34(2):234-23891]刘安源.含油多孔介质热气流点火临界着火温度的理论研究[J].石油大学学报(自然科学版),2000,24(2):76-78
    [92]刘其成,张勇,张鹰.多功能高温高压三维比例物理模拟试验装置[J].石油仪器,2006,20(1):17~20
    [93]刘其成.火烧油层室内实验及驱油机理研究[D].东北石油大学博士论文,2011年
    [94]刘文章.稠油注蒸汽热采技术[M].北京:石油工业出版社,1997:41
    [95] M. Greaves.高益桁,张冰,马雁编译.开采稠油并原地提高原油品位的新技术[J].特种油气藏,2002,9(1):75~77
    [96]马德胜,赵春梅等.中国辽河油田稠油开发实践与认识[M],辽河油田研究院文集,2002.2
    [97]马代鑫,刘慧卿,邵连鹏,等.火烧油层注气井试井分析理论模型[J].油气地质与采收率,第3卷第5期,2006.9
    [98][美]波特曼FH,等.提高原油采收率技术.北京:石油工业出版社,1985:273
    [99]马德胜,关文龙,张霞林,等.用热失重分析法计算火驱实验油层饱和度.新疆石油地质,2009,30(6):1001-3873
    [100]孙洪军,马凤,等.曙光油田火驱采油技术研究与应用[M].辽河油田研究院文集,2010.10
    [101]孙永杰.火驱辅助重力泄油合理燃烧方式研究[D].中国石油大学,2011年
    [102]王世虎.水敏性稠油油藏火烧驱油机理研究[D].山东东营:中国石油大学,2007
    [103]王弥康,张毅,黄善波,等.火烧油层热力采油[M].东营:石油大学出版社,1998
    [104]王选茹,程林松,刘双全,等.蒸汽辅助重力泄油对油藏及流体适应性研究[J].西南石油学院学报,2006,28(3):57-60
    [105]王选茹,程林松,刘双全,等.蒸汽辅助重力泄油渗流机理研究[J].西南石油学院学报,2006,28(2):44-47,96
    [106]王弥康,张毅.火烧油层热采的筛选标准和经济指标[J].油气采收率技术,1998:第6卷,第1期
    [107]汪子昊,李治平,赵志花.火烧油层采油技术的应用前景探讨[J].内蒙古石油化工,2008:第7期
    [108]王艳辉,陈亚平,李少池,火烧驱油特征的实验研究[J].石油勘探与开发,2000,27(1):69-71
    [109]王史文,刘艳波,孙明磊,等.草南95-2井组火烧油层矿场试验[J].西安石油大学学报(自然科学版)Vol.19No.6,2004年11月
    [110]王艳辉,朱志宏,李桂霞.克拉玛依油田火驱开发参数的数值模拟研究[J].油气采收率技术,2000,7(1):10-12
    [111]王史文,刘东亮,刘艳波,等.应用多种示踪剂监测火烧油层动态特征[J].石油钻采工艺,第25卷第6期,2003.12
    [112]万仁溥等编译,王鸿勋审校.水平井开采技术[M].北京:石油工业出版社,1995.3
    [113]谢晓庆,丁美爱,姜汉桥,等.复杂断块油藏水平井井网开发效果研究[J].西南石油大学(自然科学版),2008,30(3):102-105
    [114]邢景奎,苗崇良.高3-6-18块火驱采油数值模拟研究[J].特种油气藏,2009,16(3):62-64
    [115]谢志勤,贾庆升,蔡文斌,等.火烧驱油物理模型的研究及应用[J].石油机械,2002,30(8)
    [116]杨玉梅.套保稠油油田火烧油层可行性分析[J].特种油气藏.第13卷第2期,2006.4
    [117]杨立强,陈月明,王宏远,等.超稠油直井-水平井组合蒸汽辅助重力泄油物理和数值模拟[J].石油大学学报(自然科学版),2007,31(4):64–69
    [118]杨德伟,王世虎,王弥康,等.火烧油层的室内实验研究[J].石油大学学报(自然科学版),2003,27(2):24~29,51~54
    [119]于光亮.电点火技术在高3-6-18块的应用研究[J].现代商贸工业,2010年第15期
    [120]岳清山,王艳辉.火烧驱油采油方法的应用[M].北京:石油工业出版社,2000
    [121]余刚,刘岩,张辉.砂砾油层的着火与燃烧特性[J].上海交通大学学报2004:第38卷,第10期
    [122]周燕,李迎春.敏感性稠油油藏火烧驱油油藏工程设计——以王庄-宁海地区郑408块为例[J].海洋石油,2004,24(1):67~70
    [123]张方礼,张丽萍,鲍君刚,等.蒸汽辅助重力泄油技术在超稠油开发中的应用[J].特种油气藏,2007,14(2):70-72
    [124]张敬华,杨双虎,王庆林.火烧油层采油[M].北京:石油工业出版社,2000:627
    [125]张宗源,谬体义.一种可靠的火烧油层点火工艺[J].油气井测试,1998,7(4):51-54
    [126]张毅,周志齐,谢志勤.火烧油层湿式燃烧的室内研究[J].西安石油学院学报(自然科学版),2000年9月,第15卷第5期
    [127]赵东伟,蒋海岩,张琪.火烧油层干式燃烧物理模拟研究[J].石油钻采工艺,2005,27(1):36-39
    [128]周校平,张晓男.燃烧理论基础[M].上海:上海交通大学出版社,2001
    [129]张毅,谢志勤,王弥康,等.预测火烧油层开发参数的工程计算法[J].油气地质与采收率,2001,8(1):48–50
    [130]张方礼,刘其成,赵庆辉,等.火烧油层燃烧反应数学模型研究.特种油气藏[J].2012年第5期

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700