用户名: 密码: 验证码:
耐溶胀PTFPMS气体分离复合膜的制备及其性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
气体分离膜具有低耗高效的特点,在节能减排和能源利用方面具有广泛的应用前景。作为气体分离膜的核心部件,目前广泛使用的选择性涂层材料聚二甲基硅氧烷(PDMS)易被有机气体溶胀,存在选择性下降的问题。设计开发具有耐溶胀选择性涂层材料以及与之匹配的支撑膜结构是解决这一难题的关键,对拓宽气体分离膜的应用范围具有重要的理论和社会意义。聚三氟丙基甲基硅氧烷(PTFPMS)具有与PDMS类似的硅氧主链结构,其独特的三氟丙基甲基不对称结构赋予其一定的耐溶胀性。本论文选用PTFPMS作为选择层材料,在使用分子模拟研究聚硅氧烷与气体分子相互作用的基础上,制备了一系列气体分离复合膜,并考察其分离性能和耐溶胀性。
     首先选择具有相同的硅氧主链结构而侧基体积不同的PDMS、PPMS、PTFPMS和POMS(侧基体积从小到大)为目标涂层材料,利用分子模拟工具计算聚硅氧烷与不同溶剂、气体和聚合物的混合自由能。相比其它三种全烷基侧链的聚硅氧烷,PTFPMS与溶剂、气体的二元体系具有较高的混合自由能,说明耐溶胀性较好;PTFPMS与PEG聚合物的混合自由能较低,说明二者可能具有较好的共混相容性。进一步以PDMS和PTFPMS为代表性聚硅氧烷,采用MD方法进行小分子气体、PDMS和PTFPMS主链的均方位移模拟计算,结果表明小分子气体扩散方向与PDMS主链运动方向具有一致性,其在PTFPMS中的扩散与主链不具有一致性,导致其在PTFPMS中的扩散系数低。采用GCMC方法模拟计算CH4、CO2、C3H8三种气体在四种聚硅氧烷中的溶解度,与实验报道值吻合良好,模拟结果表明由于PTFPMS侧基扭曲严重,难以形成较大的孔体积,导致有机气体在其中的溶解度相对较低。
     其次,根据上述分子模拟计算确定出PTFPMS为选择层材料。通过实验确定了PTFPMS温和可控(交联温度≤80。C,交联反应时间0.5h)的加成型交联体系和室温溶液涂覆条件。将其滚涂在多孔聚醚酰亚胺(PEI)支撑膜上制备成PTFPMS/PEI复合膜,其C02渗透速率为193.7GPU,相应的O2/N2和CO2/N2的选择性分别为2.25和16.38,比PDMS/PEI复合膜分别提高了12.5%和48%。建立了基于改进Henis阻力模型预测了PTFPMS选择性涂层的最小临界厚度。理论计算表明,只有当PTFPMS涂层厚度达到15μm时,能够保证PTFPMS/PEI复合膜的性能,与实验观测到的厚度一致,表明模型具有实际指导意义。考察了涂覆次数、涂膜液中PTFPMS浓度和分子量、支撑膜预处理对PTFPMS/PEI复合膜气体分离性能的影响。以PTFPMS-Ⅲ (分子量1100K)为涂膜材料,水为预处理溶液,一次滚涂(浓度10wt.%)比其低浓度5wt.%的2次滚涂可以减轻嵌入层厚度的65%,CO2渗透速率提高43%。相同操作压差下(0.3MPa),PTFPMS/PEI复合膜C3H6/N2的理想选择性较PDMS/PEI复合膜提高了18%,经过异辛烷和正戊烷48小时连续浸泡后测试,PTFPMS复合膜对C3H6/N2的理想选择性下降变化率为1.4和2.3%,远低于PDMS复合膜的24.5%和27.8%,显示了PTFPMS复合膜良好的耐溶胀性。
     为进一步提高对C02的分离性能,将系列聚乙二醇(PEG)与PTFPMS共混制备了复合膜。红外谱图显示PEG和PTFPMS无明显基团偏移,DSC测试显示无新的放热峰,表明二者相容性良好。PEG-400/PTFPMS共混复合膜的CO2渗透速率为65.6GPU,高于相同共混比(0.2)下的PEG-600/PTFPMS和PEG-1000/PTFPMS共混复合膜,02/N2和CO2/N2的选择性分别为2.73和19.24,较PTFPMS/PEI复合膜分别提高22%和17%,显示了PEG的存在对提高C02分离性能的作用。气体渗透性能实验值分布在基于Maxwell's方程得到的PEG和PTFPMS的理论计算值之间,表明气体的传质路径为PEG和PTFPMS的双连续相。
     最后,为提高膜对有机气体的耐溶胀性,以疏水Si02为无机相,采用先共混后交联的方法制备了疏水SiO2/PTPMFS杂化共混膜,考察了疏水Si02对共混膜形态、溶胀性能和气体分离性能的影响。当疏水SiO2/PTPMFS共混比低于0.018时,杂化膜在非极性溶剂异辛烷中的溶胀度一直保持不变,在极性溶剂乙酸乙酯中的溶胀度较PTFPMS均质膜下降了11.9%,表明疏水SiO2/PTFPMS均质膜的耐溶胀性提高。对于疏水SiO2/PTFPMS杂化复合膜,简单气体渗透速率随着Si02共混比的增加呈平缓的单调下降趋势,而C02渗透速率先增大后减小。当Si02共混比为0.012时,C02的渗透速率可达到156.1GPU, CO2/N2和C3H6/N2的选择性较PTFPMS/PEI复合膜分别提高28%和25%。
Gas separation membranes with their low cost characteristics have broad application prospects in terms of energy conservation. As the core component of gas separation membrane, material used for selective layer and support along with their structure determine the performance of composite membrane. Nowadays, polydimethylsiloxane (PDMS) is widely used as selective layer material but it can be swollen heavily by organic gases, which leads to huge selectivity loss. Therefore, developing material of high solvent resistance is the key to fabricate composite membranes used for gas separation, which will widen their application fields also. Polyfluoropropylmethylsiloxane (PTFPMS) has similar backbone structure to PDMS and its unique trifluoropropyl group exhibits outstanding solvent resistance property. The main work of this dissertation was to fabricate a series of PTFPMS compoiste membranes and investigate their performance on simple and organic gas seperation, on the basis of molecular simulation which studies the interaction between polysiloxanes and gases.
     Firstly, polysiloxanes (PDMS, PPMS, PTFPMS and POMS) with same main chain but different side groups were selected as target coating materials. The interaction between polysiloxanes, solvents and gases were analyzed through free energy of mixing of the binary systems which were calculated by Materials Studio4.0software. Free energies of PTFPMS and different solvents was the largest among the four kinds of polysiloxanes, reflecting its highest resistance to non-polar solvents. Besides, the free energy of mixing between PTFPMS and PEG was low, indicating their good compatibility. Further, the diffusion coefficients of O2and N2molecules in PDMS and PTFPMS were calculated by molecular dynamic (MD) simulations. The diffusion of small molecules in PTFPMS showed inconsistency with main chains, which was different with the case of PDMS. The reason of this difference was the bulky trifluoropropyl hindered the diffusion of gases and the side groups in PTFPMS distributed asymmetrically which led to lower diffusion coefficients of gases. GCMC method was used to calculate solubilities of CH4, CO2, and C3H8in polysiloxanes and the results were in good agreement with reported experimental values. Also, the simulation revealed large pore volume can not be obtained in PTFPMS for its heavy distortion of side groups, which resulted in lower solubilities of organic gases.
     Secondly, PTFPMS was selected as selective coating material according to the simulation study. Cross-linking of PTFPMS was controlled in mild condition (crosslink temperature at80℃, crosslink time at0.5h) and coating parameters were determined through experiments. The CO2permeance of prepared PTFPMS/PEI composite membrane was193.7GPU. The selectivity of O2/N2and CO2/N2were2.25and16.38, respectively, which was enhanced by12.5%and48%compared with PDMS/PEI composite membrane. Based on the improved Henis transport model, the minimum thickness of coating layer was predicted. The calculation revealed that the thickness larger than15μm was necessary to guarantee a satisfied performance. For PTFPMS-Ⅲ(1100K g/mol), with water as pre-treatment solvent, one step coating at the concentration of10wt.%could decrease the thickness of insert layer by65%and increase the CO2permeance by43%compared to coating twice (5wt%). The selectivity for C3H6/N2of PTFPMS/PEI composite membrane is larger than that of PDMS/PEI composite membrane by18%. After soaking in isooctane and pentane for48h, ideal selectivities of C3He/N2for PTFPMS composite membrane decreased by1.4and2.3%, which were quite lower than that for PDMS composite membrane (24.5and27.8%), showing better solvent resistance of PTFPMS membrane.
     To further enhance the separation performance of CO2, polyethylene glycol (PEG) with different molecular weights were introduced into PTFPMS network to form a blend selective layer. FTIR spectrum of PEG/PTFPMS blend membrane showed no shift for functional groups and no new peak appeared in DSC result, whichmeant a good compatability between PEG and PTFPMS. The CO2permeation rate of the PEG-400/PTFPMS blend composite membrane with a blend ratio of0.2is65.6GPU, while the O2/N2and CO2/N2selectivities are improved by22%and17%, respectively. Maxwell's model was applied to investigate the transport behavior of blend membrane and results indicated the transport path of gases consist of binary phase of PEG and PTFPMS.
     Finally, to improve the solvent resistance property of gas separation membrane, hydrophobic SiO2/PTFPMS hybrid composite membrane was fabricated by solution blending-crosslinking method. The effects of blend ratio of SiO2to PTFPMS in mass on the membrane morphology, solvent resistance, and gas separation performance of the hydrophobic SiO2/PTFPMS hybrid composite membrane were investigated. The swelling degree of hybrid membrane was0in isooctane and decreases by11.9%in ethyl acetate when the blend ratio is lower than0.018. Permeances of simple gases (H2, N2, O2) decrease with increased SiO2blend ratio, while permeance of CO2increases till the blend ratio of SiO2is0.012. The CO2gas permeation rate can reach as high as156.1GPU while selectivities of CO2/N2and were increased by28%and25%, respectively.
引文
[1]NGUYEN P T, WIESENAUER E F, GIN D L, et al. Effect of composition and nanostructure on CO2/N2 transport properties of supported alkyl-imidazolium block copolymer membranes [J]. J. Membr. Sci.,2013,430(0):312-320.
    [2]LINNEEN N, PFEFFER R, LIN Y S. CO2 capture using particulate silica aerogel immobilized with tetraethylenepentamine [J]. Microporous Mesoporous Mater.,2013,176:123-131.
    [3]日立公司.电力的稳定供应与C02减排[J].2009.
    [4]蔡博峰.中国城市温室气体清单研究[J].中国人口.资源与环境,2012(01):21-27.
    [5]DU N, PARK H B, DAL-CIN M M, et al. Advances in high permeability polymeric membrane materials for CO2 separations [J]. Energy & Environmental Science,2012,5(6):7306-7322.
    [6]DENG L, H GG M-B. Techno-economic evaluation of biogas upgrading process using CO2 facilitated transport membrane [J]. International Journal of Greenhouse Gas Control,2010,4(4): 638-646.
    [7]于剑昆.温室气体六氟化硫的替代技术进展[J].化学推进剂与高分子材料,2012(04):41-48.
    [8]刘冬梅,陈颖,时进钢.我国温室气体环境影响评价CO_2排放量估算方法研究.2012中国环境科学学会学术年会,中国广西南宁,2012.
    [9]XIAO YUAN C, KALIAGUINE S. Mixed gas and pure gas transport properties of copolyimide membranes [J]. J. Appl. Polym. Sci.,2013,128(1):380-389.
    [10]SAGEHASHI M, NOMURA T, SHISHIDO H, et al. Separation of phenols and furfural by pervaporation and reverse osmosis membranes from biomass-superheated steam pyrolysis-derived aqueous solution [J]. Bioresour. Technol.,2007,98(10):2018-2026.
    [11]URAGAMI T,2.11-Selective Membranes for Purification and Separation of Organic Liquid Mixtures, in Comprehensive Membrane Science and Engineering, Editor-in-Chief:Enrico D, Lidietta G, Editors.2010, Elsevier:Oxford, p.273-324.
    [12]HENIS J M S, TRIPODI M K. Composite hollow fiber membranes for gas separation:the resistance model approach [J]. J. Membr. Sci.,1981,8(3):233-246.
    [13]HUANG R Y M, FENG X. Resistance model approach to asymmetric polyetherimide membranes for pervaporation of isopropanol/water mixtures [J]. J. Membr. Sci.,1993,84(1-2):15-27.
    [14]KARODE S K, KULKARNI S S. Analysis of transport through thin film composite membranes using an improved Wheatstone bridge resistance model [J]. J. Membr. Sci.,1997,127(2):131-140.
    [15]GAOHONG H, XIANGYANG H, RENXIAN X, et al. An improved resistance model for gas permeation in composite membranes [J]. J. Membr. Sci.,1996,118(1):1-7.
    [16]PENG F, LIU J, LI J. Analysis of the gas transport performance through PDMS/PS composite membranes using the resistances-in-series model [J]. J. Membr. Sci.,2003,222(1-2):225-234.
    [17]LIU L, JIANG N, BURNS C M, et al. Substrate resistance in composite membranes for organic vapour/gas separations [J]. J. Membr. Sci.,2009,338(1-2):153-160.
    [18]张玲玲,聚醚酰亚胺阻力复合膜的制备及其性能研究[D].大连理工大学,2010.
    [19]PATEL A, GAHARWAR A K, IVIGLIA G, et al. Highly elastomeric poly(glycerol sebacate)-co-poly(ethylene glycol) amphiphilic block copolymers [J]. Biomaterials,2013,34(16): 3970-3983.
    [20]ZHANG Q G, FAN B C, LIU Q L, et al. A novel poly(dimethyl siloxane)/poly(oligosilsesquioxanes) composite membrane for pervaporation desulfurization [J]. J. Membr. Sci.,2011,366(1-2): 335-341.
    [21]WONG C K, CHEUNG O C T, XU B, et al. Using PDMS microtransfer molding (mu TM) for polymer flip chip [J].53rd Electronic Components & Technology Conference,2003 Proceedings, 2003:652-6571880.
    [22]ZHAO-LLZAGHHW, CHEMISTRY BJSZAMTAASKLOF, SCIENCE D C O M, et al. Effect of Coating Conditions on Gas Separation Membrane Performance of PEI/PDMS Composite.中国辽宁大连,2008.
    [23]CAI Y, WANG Z, YI C, et al. Gas transport property of polyallylamine-poly(vinyl alcohol)/polysulfone composite membranes [J]. J. Membr. Sci.,2008,310(1-2):184-196.
    [24]MATSUSYAMA T, YAMAMOTO H. Impact charging of particulate materials.2006.
    [25]ZHOU J H, YAN H, ZHENG Y Z, et al. Highly Fluorescent Poly(dimethylsiloxane) for On-Chip Temperature Measurements [J]. Adv. Funct. Mater.,2009,19(2):324-329.
    [26]HOSSEINI S S, PENG N, CHUNG T S. Gas separation membranes developed through integration of polymer blending and dual-layer hollow fiber spinning process for hydrogen and natural gas enrichments [J]. J. Membr. Sci.,2010,349(1-2):156-166.
    [27]张妍,中空纤维复合膜回收正庚烷的研究[D].天津大学,2005.
    [28]赵婵,气体分离复合膜涂层材料[D].大连理工大学,2007.
    [29]KIM H J, NAH S S, MIN B R. A new technique for preparation of PDMS pervaporation membrane for VOC removal [J]. Adv. Environ. Res.,2002,6(3):255-264.
    [30]TAN S, LI L, ZHANG Z, et al. The influence of support layer structure on mass transfer in pervaporation of composite PDMS-PSF membranes [J]. Chem. Eng. J., In Press, Corrected Proof.
    [31]MOHAMMADI T, AROUJALIAN A, BAKHSHI A. Pervaporation of dilute alcoholic mixtures using PDMS membrane [J]. Chem. Eng. Sci.,2005,60(7):1875-1880.
    [32]LI L, XIAO Z, TAN S, et al. Composite PDMS membrane with high flux for the separation of organics from water by pervaporation [J]. J. Membr. Sci.,2004,243(1-2):177-187.
    [33]MOHAMMED M, MAJOR J, ZHANG Z Q, et al. PDMS surface modification for application on thermally responsive hydrogel microvalves [J]. Icnmm2007:Proceedings of the 5th International Conference on Nanochannels, Microchannels, and Minichannels,2007:561-568 1164.
    [34]YEOW M L F, R. W.; LI, K.; TEO, W. K. Preparation of divinyl-PDMS/PVDF composite hollow fibre membranes for BTX removal [J]. J. Membr. Sci.,2002,203(1-2):127-143.
    [35]QUINTANILLA MAS, VALVERDE J M. Use of silica nanopowder to accelerate CO2 sorption by Ca(OH)(2) [J]. Particuology,2013,11(4):448-453.
    [36]KANEHASHI S, GU H, SHINDO R, et al. Gas permeation and separation properties of polyimide/ZSM-5 zeolite composite membranes containing liquid sulfolane [J]. J. Appl. Polym. Sci., 2013,128(6):3814-3823.
    [37]OSTWAL M, SINGH R P, DEC S F, et al.3-Aminopropyltriethoxysilane functionalized inorganic membranes for high temperature CO2/N2 separation [J]. J. Membr. Sci.,2011,369(1-2):139-147.
    [38]TRIPATHI B P, SHAHI V K. Organic-inorganic nanocomposite polymer electrolyte membranes for fuel cell applications [J]. Prog. Polym. Sci.,2011,36(7):945-979.
    [39]SUZUKI T, MIKI M, YAMADA Y. Gas transport properties of hyperbranched polyimide/hydroxy polyimide blend membranes [J]. Eur. Polym. J.,2012,48(8):1504-1512.
    [40]CLAYDON K, ROPER K G, OWENS L. Attempts at producing a hybridised Penaeus mondon cell line by cellular fusion [J]. Fish Shellfish Immunol.,2010,29(3):539-543.
    [41]SHAO L, CHUNG T-S. In situ fabrication of cross-linked PEO/silica reverse-selective membranes for hydrogen purification [J]. Int. J. Hydrogen Energy,2009,34(15):6492-6504.
    [42]KOH J H, KANG S W, PARK J T, et al. Synthesis of silver halide nanocomposites templated by amphiphilic graft copolymer and their use as olefin carrier for facilitated transport membranes [J]. J. Membr. Sci.,2009,339(1-2):49-56.
    [43]郝继华,王世昌.致密皮层非对称气体分离膜的制备[J].高分子学报,1997(05).
    [44]HAMAD F, KHULBE K C, MATSUURA T. Comparison of gas separation performance and morphology of homogeneous and composite PPO membranes [J]. J. Membr. Sci.,2005,256(1-2): 29-37.
    [45]韩少卿,陶汝胜,彭奇均.聚砜超滤膜制备工艺的优化[J].江南大学学报(自然科学版),2004(04).
    [46]HAN B, ZHANG D, SHAO Z, et al. Preparation and characterization of cellulose acetate/carboxymethyl cellulose acetate blend ultrafiltration membranes [J]. Desalination,2013, 311(0):80-89
    [47]HOU D, WANG J, SUN X, et al. Preparation and properties of PVDF composite hollow fiber membranes for desalination through direct contact membrane distillation [J]. J. Membr. Sci.,2012, 405-406(0):185-200.
    [48]ABED M R M, KUMBHARKAR S C, GROTH A M, et al. Ultrafiltration PVDF hollow fibre membranes with interconnected bicontinuous structures produced via a single-step phase inversion technique [J]. J. Membr. Sci.,2012,407-408(0):145-154.
    [49]PADAKI M, ISLOOR A M, WANICHAPICHART P. Polysulfone/N-phthaloylchitosan novel composite membranes for salt rejection application [J]. Desalination,2011,279(1-3):409-414
    [50]MA Y, SHI F, MA J, et al. Effect of PEG additive on the morphology and performance of polysulfone ultrafiltration membranes [J]. Desalination,2011,272(1-3):51-58.
    [51]CHEN X, SU Y, SHEN F, et al. Antifouling ultrafiltration membranes made from PAN-b-PEG copolymers:Effect of copolymer composition and PEG chain length [J]. J. Membr. Sci.,2011, 384(1-2):44-51.
    [52]邱恒,聚醚砜/聚丙烯腈共混膜的制备及其在MBR中抗污染性能的研究[D].东华大学,
    [53]刘子琪,聚醚酰亚胺多孔支撑膜的涂覆与富氧性能研究[D].暨南大学,2006.
    [54]林立刚,渗透汽化膜分离法脱除汽油中有机硫化物的研究[D].中国石油大学,2008
    [55]王建黎,聚烯烃中空纤维膜结构及其气体分离性能的研究[D].浙江大学,2002
    [56]ZHANG L, XIAO Y, CHUNG T-S, et al. Mechanistic understanding of CO2-induced plasticization of a polyimide membrane:A combination of experiment and simulation study [J]. Polymer,2010, 51(19):4439-4447.
    [57]VANKELECOM I F J, MOERMANS B, VERSCHUEREN G, et al. Intrusion of PDMS top layers in porous supports [J]. J. Membr. Sci.,1999,158(1-2):289-297.
    [58]JIANG L H, GUAN Y G. Pore structure and its effect on strength of high-volume fly ash paste [J]. Cem. Concr. Res.,1999,29(4):631-633.
    [59]鲁胜,操建华,李继定,et al. PDMS/PVDF复合膜的制备及其对C-3H-8/N_2体系的分离[J].膜科学与技术,2009(03):18-22+38.
    [60]彭福兵,中空纤维复合膜回收氢气分离过程研究[D].天津大学,2003.
    [61]RAO H X, LIU F N, ZHANG Z Y. Preparation and oxygen/nitrogen permeability of PDMS crosslinked membrane and PDMS/tetraethoxysilicone hybrid membrane [J]. J. Membr. Sci.,2007, 303(1-2):132-139.
    [62]BABARAO R, DAI S, JIANG D-E. Functionalizing Porous Aromatic Frameworks with Polar Organic Groups for High-Capacity and Selective CO2 Separation:A Molecular Simulation Study [J]. Langmuir,2011,27(7):3451-3460.
    [63]LI C, STRACHAN A. Molecular simulations of crosslinking process of thermosetting polymers [J]. Polymer,2010,51(25):6058-6070.
    [64]LIU B, SUN C, CHEN G. Molecular simulation studies of separation of CH4/H2 mixture in metal-organic frameworks with interpenetration and mixed-ligand [J]. Chem. Eng. Sci.,2011, 66(13):3012-3019.
    [65]HUANG H, ZHANG W, LIU D, et al. Effect of temperature on gas adsorption and separation in ZIF-8:A combined experimental and molecular simulation study [J]. Chem. Eng. Sci.,2011,66(23): 6297-6305.
    [66]IYER J, MENDENHALL J D, BLANKSCHTEIN D. Computer simulation-molecular-thermodynamic framework to predict the micellization behavior of mixtures of surfactants:application to binary surfactant mixtures [J]. The journal of physical chemistry. B, 2013,117(21):6430-6442.
    [67]PERCEC S, GRAY J. Molecular Modeling of Interchain Nonbonding Interactions in Blends of Polyacrylonitrile with Poly(Ethylene-alt-Maleic Anhydride) [J]. Journal of Macromolecular Science, Part A,1995,32(8-9).
    [68]余敏强,周持兴,陈德铨.SMA与PMMA共混物相容性的分子模拟研究[J].计算机与应用化学,2000(03):198-204.
    [69]崔莉,PVA-PAA共混膜丙烯脱湿分子模拟与实验研究[D].天津大学,2008.
    [70]CHEN J, WANG J, XU B, et al. Insight into mechanism of small molecule inhibitors of the MDM2-p53 interaction:Molecular dynamics simulation and free energy analysis [J]. J. Mol. Graphics Model.,2011,30:46-53.
    [71]CHEN J-Z, YANG M-Y, YI C-H, et al. Molecular dynamics simulation and free energy calculations of symmetric fluoro-substituted diol-based H1V-1 protease inhibitors [J]. Journal of Molecular Structure:THEOCHEM,2009,899(1-3):1-8.
    [72]WOOD C D T, B.; TREWIN, A.; NIU, H. J.; BRADSHAW, D.; ROSSEINSKY, M. J.; KHIMYAK, Y. Z.; CAMPBELL, N. L.; KIRK, R.; ST CKEL, E.; COOPER, A. I. Hydrogen storage in microporous hypercrosslinked organic polymer networks [J]. Chem. Mater.,2007,19(8): 2034-2048.
    [73]SURBLE S, MILLANGE F, SERRE C, et al. Synthesis of MIL-102, a chromium carboxylate metal-organic framework, with gas sorption analysis [J]. J. Am. Chem. Soc,2006,128(46): 14889-14896.
    [74]VARNAVSKI O. P.; RANASINGHE M Y, X.; BAUER, C. A.; CHUNG S.; PERRY J. W.; MARDER, S. R.; GOODSON, T.. Ultrafast energy migration in chromophore shell-metal nanoparticle assemblies [J]. J. Am. Chem. Soc,2006,128(34):10988-10989.
    [75]WANG X-Y, WILLMORE F T, RAHARJO R D, et al. Molecular Simulations of Physical Aging in Polymer Membrane Materials [J]. The Journal of Physical Chemistry B,2006,110(33): 16685-16693.
    [76]CHARATI S G, STERN S A. Diffusion of gases in silicone polymers:Molecular dynamics simulations [J]. Macromolecules,1998,31(16):5529-5535.
    [77]KARANIKAS S, ECONOMOU I G. Molecular simulation of structure, thermodynamic and transport properties of polyacrylonitrile, polystyrene and their alternating copolymers in high temperatures [J]. Eur. Polym. J.,2011,47(4):735-745.
    [78]CHANG K-S, HUANG Y-H, LEE K-R, et al. Free volume and polymeric structure analyses of aromatic polyamide membranes:A molecular simulation and experimental study [J]. J. Membr. Sci., 2010,354(1-2):93-100.
    [79]FRIED J R, SADAT-AKHAVI M, MARK J E. Molecular simulation of gas permeability: poly(2,6-dimethy1-1,4-phenylene oxide) [J]. J. Membr. Sci.,1998,149(1):115-126.
    [80]TOCCI E, BELLACCHIO E, RUSSO N, et al. Diffusion of gases in PEEKs membranes:molecular dynamics simulations [J]. J. Membr. Sci.,2002,206(1-2):389-398.
    [81]POZUELO J, L 髉 EZ-GONZ 醠 EZ M, TLENKOPATCHEV M, et al. Simulations of gas transport in membranes based on polynorbornenes functionalized with substituted imide side groups [J]. J. Membr. Sci.,2008,310(1-2):474-483.
    [82]WANG X-Y, HILL A J, FREEMAN B D, et al. Structural, sorption and transport characteristics of an ultrapermeable polymer [J]. J. Membr. Sci.,2008,314(1-2):15-23.
    [83]XU M, CHEN J, ZHANG C, et al. A theoretical study of structure-solubility correlations of carbon dioxide in polymers containing ether and carbonyl groups [J]. PCCP,2011,13(47):21084-21092.
    [84]MEMARI P, LACHET V, ROUSSEAU B. Molecular simulations of the solubility of gases in polyethylene below its melting temperature [J]. Polymer,2010,51(21):4978-4984.
    [85]TSOLOU G M, V. G.; MAKRODIMITRI, Z. A.; ECONOMOU, I. G.; GANI, R. Atomistic simulation of the sorption of small gas molecules in polyisobutylene [J]. Macromolecules,2008, 41(16):6628-6638.
    [86]FU Y-J, HU C-C, QUI H-Z, et al. Effects of residual solvent on gas separation properties of polyimide membranes [J]. Sep. Purif. Technol.,2008,62(1):175-182.
    [87]ZU Y, ZHANG Y, ZHAO X, et al. Preparation and characterization of chitosan-polyvinyl alcohol blend hydrogels for the controlled release of nano-insulin [J]. Int. J. Biol. Macromol.,2012,50(1): 82-87.
    [88]ZAFAR M, ALI M, KHAN S M, et al. Effect of additives on the properties and performance of cellulose acetate derivative membranes in the separation of isopropanol/water mixtures [J]. Desalination,2012,285(0):359-365.
    [89]赵德禄.聚合物共混体系的混合自由能[J].科学通报,1994,39(7):615-618.
    [90]赵孝彬,杜磊,张小平,郑剑.聚合物共混物的相容性及分离[J].高分子通报,2001,8(4):75-82.
    [91]SEMSARZADEH M A, GHALEI B. Characterization and gas permeability of polyurethane and polyvinyl acetate blend membranes with polyethylene oxide-polypropylene oxide block copolymer [J]. J. Membr. Sci.,2012,401-402(0):97-108.
    [92]SCHAUER J, HN T J, BROZOV L, et al. Heterogeneous anion-selective membranes:Influence of a water-soluble component in the membrane on the morphology and ionic conductivity [J]. J. Membr. Sci.,2012,401-402(0):83-88.
    [93]FLORY P J, ed. Principles of Polymer Chemistry.1953, Cornell University:New York.
    [94]YI C, WANG Z, LI M, et al. Facilitated transport of CO2 through polyvinylamine/polyethlene glycol blend membranes [J]. Desalination,2006,193(1-3):90-96.
    [95]DENG L, KIM T-J, H 鋑 G M-B. Facilitated transport of CO2 in novel PVAm/PVA blend membrane [J]. J. Membr. Sci.,2009,340(1-2):154-163.
    [96]BEN HAMOUDA S, NGUYEN Q T, LANGEVIN D, et al. Poly(vinylalcohol)/poly(ethyleneglycol)/poly(ethyleneimine) blend membranes-structure and CO2 facilitated transport [J]. Comptes Rendus Chimie,2009,13(3):372-379.
    [97]LI J, WANG S, NAGAI K, et al. Effect of polyethyleneglycol (PEG) on gas permeabilities and permselectivities in its cellulose acetate (CA) blend membranes [J]. J. Membr. Sci.,1998,138(2): 143-152.
    [98]HU X, TANG J, BLASIG A, et al. CO2 permeability, diffusivity and solubility in polyethylene glycol-grafted poly ionic membranes and their CO2 selectivity relative to methane and nitrogen [J]. J. Membr. Sci.,2006,281(1-2):130-138.
    [99]JAWALKAR S S, AMINABHAVI T M. Molecular modeling simulations and thermodynamic approaches to investigate compatibility/incompatibility of poly(l-lactide) and poly(vinyl alcohol) blends [J]. Polymer,2006,47(23):8061-8071.
    [100]AHMADI A, FREIRE J J. Molecular dynamics simulation of miscibility in several polymer blends [J]. Polymer,2009,50(20):4973-4978.
    [101]FU Y, LIAO L, YANG L, et al. Molecular dynamics and dissipative particle dynamics simulations for prediction of miscibility in polyethylene terephthalate/polylactide blends [J]. Molecular Simulation,2013,39(5):415-422.
    [102]LUO Z, JIANG J. Molecular dynamics and dissipative particle dynamics simulations for the miscibility of poly(ethylene oxide)/poly(vinyl chloride) blends [J]. Polymer,2010,51(1):291-299.
    [103]HEUCHEL M, FRITSCH D, BUDD P M, et al. Atomistic packing model and free volume distribution of a polymer with intrinsic microporosity (PIM-1) [J]. J. Membr. Sci.,2008,318(1-2): 84-99.
    [104]YALIN D, QUNYANG L, MARTINI A. Molecular dynamics simulation of atomic friction:A review and guide [J]. Journal of Vacuum Science & Technology A (Vacuum, Surfaces, and Films), 2013,31(3):030801 (030824 pp.)-030801 (030824 pp.).
    [105]TSAI H-A, YE Y-L, LEE K-R, et al. Characterization and pervaporation dehydration of heat-treatment PAN hollow fiber membranes [J]. J. Membr. Sci.,2011,368(1-2):254-263.
    [106]FU Y-J, HU C-C, LEE K-R, et al. The correlation between free volume and gas separation properties in high molecular weight poly(methyl methacrylate) membranes [J]. Eur. Polym. J.,2007, 43(3):959-967.
    [107]HOOPER J B, BEDROV D, SMITH G D, et al. A molecular dynamics simulation study of the pressure-volume-temperature behavior of polymers under high pressure [J]. J. Chem. Phys.,2009, 130(14):-
    [108]HEUCHEL M H, D.; PULLUMBI, P. Molecular modeling of small-molecule permeation in polyimides and its correlation to free-volume distributions [J]. Macromolecules,2004,37(1): 201-214.
    [109]PAN F, PENG F, JIANG Z. Diffusion behavior of benzene/cyclohexane molecules in poly(vinyl alcohol)-graphite hybrid membranes by molecular dynamics simulation [J]. Chem. Eng. Sci.,2007, 62(3):703-710.
    [110]KANDI A I A W, G. G.; WINDLE, A. H. Molecular modeling of the intermediate smectic mesophase in polyethylene terephthalate [J]. Macromolecules,2007,40(18):6448-6453.
    [111]王喜魁,陈正举,洪广欢,et a1.高梯度强磁场聚氧集氮机理与实验方案研究[J].沈阳工程学院学报(自然科学版),2005(Z1):25-29.
    [112]BAKKER W J W, VAN DEN BROEKE L J P, KAPTEIJN F, et al., Temperature dependence of one-component permeation through a silicalite-1 membrane.1997, American Institute of Chemical Engineers, p.2203-2214.
    [113]ZHANG L, HE G, ZHAO W, et al. Studies on the coating layer in a PTFPMS/PEI composite membrane for gaseous separation [J]. J. Membr. Sci.,2011,371(1-2):141-147.
    [114]ZHANG X K, POOJARI Y, DRECHSLER L E, et al. Pervaporation of organic liquids from binary aqueous mixtures using poly(trifluoropropylmethylsiloxane) and poly(dimethylsiloxane) dense membranes [J]. Journal of Inorganic and Organometallic Polymers and Materials,2008,18(2): 246-252.
    [115]肖通虎,施孝通,葛俊豪,et a1.多孔支撑复合气体分离膜的涂层模型及工艺探讨[J].膜科学与技术,2001(05):36-41.
    [116]STERN S A S, V. M.; HARDY, B. J.. Structure-permeability relationships in silicone polymers [J]. J. Polym. Sci., Part B:Polym. Phys.,1987,25(6):1263-1298.
    [117]MCKEEN L W. [J]. Permeability Properties of Plastics and Elastomers,2012.
    [118]李翠娜,PVDF-PEG共混膜的制备及CO_2分离性能研究[D].大连理工大学,2011.
    [119]CECOPIERI-GOEZ M L, PALACIOS-ALQUISIRA J, DOMINGUEZ J M. On the limits of gas separation in CO2/CH4, N2/CH4 and CO2/N2 binary mixtures using polyimide membranes [J]. J. Membr. Sci.,2007,293(1-2):53-65.
    [120]REIJERKERK S R, KNOEF M H, NIJMEIJER K, et al. Polyethylene glycol) and poly(dimethyl siloxane):Combining their advantages into efficient CO2 gas separation membranes [J]. J. Membr. Sci.,2010,352(1-2):126-135.
    [121]HASHEMIFARD S A, ISMAIL A F, MATSUURA T. Prediction of gas permeability in mixed matrix membranes using theoretical models [J]. J. Membr. Sci.,347(1-2):53-61.
    [122]HOURSTON A K H A D J. Gas permeability of latex interpenetrating polymer network films [J]. Advances in Chemistry,1994:13.
    [123]LIN H, FREEMAN B D. Gas solubility, diffusivity and permeability in polyethylene oxide) [J]. J. Membr. Sci.,2004,239(1):105-117.
    [124]SU T, WANG G Y, HU C P. Preparation and properties of well-defined waterborne polyurethaneurea with fluorinated siloxane units in hard or soft segments [J]. Journal of Polymer Science Part a-Polymer Chemistry,2007,45(21):5005-5016.
    [125]FRIED J R, HU N. The molecular basis of CO2 interaction with polymers containing fluorinated groups:computational chemistry of model compounds and molecular simulation of poly[bis(2,2,2-trifluoroethoxy)phosphazene] [J]. Polymer,2003,44(15):4363-4372.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700