用户名: 密码: 验证码:
体积拉伸作用下聚合物熔融过程形态演变及其分散混合特性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚合物的成型加工设备和其成型加工方法对于聚合物在塑化输运过程中由固体相到熔体相的形态演变和聚合物的宏观性能的表现有着密切的关系。不同于螺杆挤出,瞿金平教授发明的体积拉伸形变塑化挤出机的塑化输运过程中聚合物由固体相到熔体相的形态演变具有自身特点,这种特点和规律影响着聚合物的分散混合效果,并最终决定着挤出制品的性能。因此,体积拉伸形变作用下物料熔融过程形态演变及其分散混合特性具有重要的价值和意义。这对于深化理解体积拉伸形变控制的高分子材料塑化输运方法具有重要的意义,为进一步完善物料在塑化输运过程中的机理和模型奠定了基础。
     从单组分物料和双组分不相容共混物两个角度系统地分析了体积拉伸形变下聚合物形态演变过程和规律。利用冷却实验分析多种单组分聚合物熔融过程中的形态演变,并且深入研究了加工工艺参数对于HDPE形态演变过程的影响。对双组分不相容共混物,一方面利用冷却实验分析了共混物的形态演变过程,另一方面分析了每组塑化输运单元内完全熔融的共混物微观形貌变化和分散混合特性。此外,对PA/TPO和PP/PA共混物微观形貌进行了分析,统计了分散相的粒径分布情况;分析了纳米粒子CaSO_4和TiO_2填充PBS体系共混物的微观形态、结晶、力学、热学等性能。
     研究结果表明,体积拉伸形变作用下熔融过程聚合物形态演变依次出现:多熔膜,蜂窝,熔池固体床和悬浮液等四个特征,其对多组分共混体系的分散混合特性具有很好的促进作用;体积拉伸形变作用下聚合物物料颗粒的塑性变形、熔融和形态演变过程、以及界面变化和演变过程产生了大量的塑性耗散能(PED)、摩擦耗散能(FED)和黏性耗散能(VED),这些能量是聚合物形态演变过程重要的热量来源;转速对于体积拉伸形变作用下物料熔融过程形态演变具有重要影响;体积拉伸形变塑化挤出机对于物料的挤出加工具有正位移输送的特性,停留时间和熔融时间短,熔融塑化效率高,热机械历程短。
     对挤出PA/TPO和PP/PA共混物的微观形貌研究发现,体积拉伸形变塑化输运过程对于不相容体系共混物具有良好的分散混合效果,分散相主要呈现液滴的形式;塑化输送单元容腔容积的体积拉伸形变作用能够促使共混物中分散相液滴的破碎和均匀分布;体积拉伸形变塑化挤出机在加工黏度比大的不相容体系共混物时具有较好的分散混合效果,物料黏度特性依赖小;当基体为高黏度物料,分散相为低黏度物料时,分散相液滴尺寸更小,分散混合效果更好。
     对挤出CaSO_4和TiO_2填充PBS体系共混物的分析测试表明,体积拉伸形变支配的塑化输运过程对于纳米粒子填充PBS共混物具有较好的分散混合效果,纳米粒子作为刚性粒子对于PBS的力学性能有了一定的提升,同时纳米粒子的加入起到热屏障的作用,提升共混物热稳定性。
Polymer processing equipment and processing method have a close relationship withpolymer’s performance and morphological evolution from solid state to melt state. Unlikescrew extrusion, the morphological evolution has its own characteristics in volumeelongational deformation plasticizing transporting process invented by Professor Qu, whichinfluencing the dispersion and mixing effect and determining the performance of extrusionproducts. Therefore, the research on polymer morphological evolution in melting process anddispersion and mixing characteristics have important value and significance. It is significantto deepen the understanding of polymer material plasticizing conveying method under volumeelongational deformation, and it laid the foundation to further improve mechanism and modelon the process of plasticizing and conveying polymer.
     The morphological evolution was systematically analyzed under volume elongationaldeformation from the perspective of single component polymer and two componentimmiscible blends. Through the cooling experiment we analyzed the morphological evolutionin melting process form several kinds of single component polymer, and further researchedthe influence of process parameters for HDPE morphological evolution. For two componentimmiscible blends, on the one hand, using cooling experiment we analyzed the blendmorphological evolution, on the other hand, we analyzed completely melt blend’smicromorphology change and dispersion and mixing characteristics. In addition, PA/TPO andPP/PA blends’ micromorphology were analyzed, and the size distribution of the dispersedphase was estimated; micromorphology, crystal structure, mechanical and thermal propertiesof PBS filled with CaSO_4and TiO_2nanoparticles were analyzed.
     It was shown that under volume elongational deformation polymer’s morphologicalevolution have four characteristics sequentially including multi melt film, honeycomb, moltenpool solid bed and suspension, promoting the dispersion and mixing characteristics for themulticomponent blend system. Under volume elongational deformation much plastic energydissipation, friction energy dissipation and viscous energy dissipation were produced bypolymer’s plastic deformation, melting and morphological evolution, and interface changesand evolution process, which are important heat resources for polymer’s morphologicalevolution. The rotation speed is important for polymer’s morphological evolution undervolume elongational deformation. And the characteristics of positive displacement conveying,short residence time, short melting time, high molten plasticizing efficiency, short thermalmechanical process were shown in the volume elongational deformation plasticizing extruder.
     It was found that the volume elongational deformation plasticizing and conveyingprocess has good dispersion and mixing effect for the immiscible blends from the study on thePA/TPO and PP/PA blends’ micromorphology. Dispersed phase was mainly presented in theform of droplets. Dispersed phase in the form of droplets was easily broken and evenlydistributed under volume elongational deformation of the cavity volume in the plasticizingand conveying unit. Volume elongational deformation plasticizing extruder has gooddispersion and mixing effect on the immiscible blends with large viscosity ratio, and littledependence on the viscosity of material. The droplet size of the dispersed phase is smaller andthe dispersion and mixing effect is better with the matrix of high viscosity and the dispersedphase of low viscosity.
     It was shown that the volume elongational deformation plasticizing and conveyingprocess has good dispersion and mixing effect for PBS filled with nanoparticles from theanalysis and test of CaSO_4/PBS and TiO_2/PBS. The nanoparticles acted as rigid filler toenhance the mechanical properties and thermal barrier to promote the thermal stability.
引文
[1] Yang H.S., Wolcott M.P., Kim H.S., et al. Properties of lingo-cellulosic material filledpolypropylene bio-composites made with different manufacturing processes [J]. PolymerTesting,2006,25(5):668-676
    [2]伍波,张求慧,李建章.木塑复合材料的研究进展及发展趋势[J].材料导报,2009,23(7):62-64
    [3]王伟宏,李春桃,王清文.木塑复合材料产业化现状及制造关键技术[J].现代化工,2010,30(1):6-10
    [4]李坚.我国塑料机械行业“十一五”期间发展概况和“十二五”期间发展趋势浅析[J],中国塑料.2011,25(1):1-7
    [5]张友根.“十二五”塑料机械产品结构调整与绿色技术应用的分析研究(1)[J].饮料工业,2011,14(6):40-52
    [6]吴大鸣.国内外节能塑料机械的研发与应用进展[J].塑料,2007,36(2):30-36
    [7] Tadmor Z., Gogos C.G.. Priciples of polymer processing (second edition)[M]. New Jersey:John Wiley&Sons, Inc.,2006:1-17
    [8]许政仓.我国塑料机械制造工业概况及展望[J].工程塑料应用,2002,30(7):51-53
    [9]吴大鸣,李晓林,刘颖.单螺杆精密挤出成型技术进展[J].中国塑料,2003,17(2):1-8
    [10]朱复华.螺杆设计及其基础理论[M]北京:中国轻工业出版社,1984:1-17
    [11] C.劳温代尔,陈文瑛等译.塑料挤出[M].北京:轻工业出版社,1996:1-20
    [12]瞿金平.聚合物塑化挤出新概念[J].华南理工大学学报(自然科学版).1992,20(4):1-8
    [13] Qu Jinping, Shi Baoshan, Feng Yanhong, et al. Dependence of solids conveying onscrew axial vibration in single screw extruders[J]. Journal of Applied Polymer Science,2006,102(3):2998-3007
    [14] Qu Jinping, Feng Yanhong, He Hezhi, et al. Effects of the axial vibration of screw onresidence time distribution in single-screw extruders [J]. Polymer Engineering andScience,2006,46(2):198-204
    [15] Zeng Guangsheng, Qu Jinping, Feng Yanhong. Melting process and mechanism forvibration induced single-screw extruder [J]. Journal of Applied Polymer Science,2007,104(4):2504-2514
    [16] Zeng Guangsheng, Qu Jinping. Vibrational force field effect on the melting process of apolymer solid against a sliding wall [J].Polymer composites,2008,29(11):1252-1257
    [17] Qu Jinping, Zeng Guangsheng, Feng Yanhong, et al. Effect of screw axial vibration onpolymer melting process in single-screw extruders [J]. Journal of Applied PolymerScience,2006,100(5):3860-3876
    [18] Zeng Guangsheng, Qu Jinping. Rheological behavior of a polymer melt under the impactof a vibration force field [J]. Journal of Applied Polymer Science,2007,106(2):1152-1159
    [19]曾广胜,瞿金平.振动场作用下聚合物新型动态塑化熔融模型的研究[J].材料研究学报.2006,20(1):59~64
    [20]瞿金平,曾广胜.聚合物振动诱导单螺杆熔融塑化过程(1)—熔融机理及熔融速率[J].化工学报,2006,57(2):414~424
    [21]瞿金平.聚合物动态塑化成型加工理论与技术[M].北京:科学出版社,2006:30~100
    [22] Qu Jinping, Shi Baoshan, He Hezhi. Influence of vibration on density of polymer solidgranules in single screw extruder [J]. Polymer-Plastics Technology and Engineering,2007,46(3):233-237
    [23]瞿金平.塑料加工成型技术的最新研究进展[J].中国工程科学,2011,13(10):58-68
    [24] Qu Jinping. A method for plasticating and conveying macromolecular materials based onelongational flow [P]. U.S.A, Europe, Japan, Russia, Canada, Australia, etc.:PCT/CN2008/000643,2008
    [25]瞿金平.基于拉伸流变的高分子材料塑化输运方法及设备[P].中国:2008100260254,2008.1.25
    [26] Qu Jinping, Yang Zhitao, Yin Xiaochun, et al. Characteristics study of polymer meltconveying capacity in vane plasticization extruder[J].Polymer-Plastics Technology andEngineering,2009,48(2):1269-1274
    [27] Qu Jinping, Wei Baohua, Yang Zhitao, et al. Predictability of apparent viscosity in avibratory shearing flow field [J]. Journal of Applied Polymer Science,2009,113(3):1560-1565
    [28] Qu Jinping. Polymer dynamic plasticating processing: Theory and technology [M].Cambridge: Woodhead Publishing Ltd.,2010
    [29] Qu Jinping, Cai Yonghong. Experimental studies and mathematical modeling ofmelt-pulsed conveying in screw extruders [J]. Polymer-Plastics Technology andEngineering,2006,45(10):1137-1142
    [30]瞿金平,胡汉杰.聚合物成型原理及成型技术[M].北京:科学出版社,2001:52~100
    [31] Hovey V.M.. History of extrusion equipment for rubber and plastics [J]. Wire and wireProd,1961,36(1):192-195
    [32] Schenkel G.. Plastics extrusion technology and theory[M]. London: Iliffe Books, Ltd.,1966:15-90
    [33] White J.L.. Elastomer rheology and processing [J]. Rubber Chemistry and Technology,1969,42(1):256-438
    [34] Tadmor Z., Gogos C.G..聚合物加工原理[M].北京:化学工业出版社,2008:1-10
    [35] Ambrogio G., Gagliardi F.. Design of an optimized procedure to predict oppositeperformances in porthole die extrusion [J]. Neural Computing and Applications,2013,23(1):195-206
    [36] Tadmor Z., Machine invention, innovation and elementary steps [J]. Advances inPolymer Technology,2002,21:87-97
    [37] Darnell W.H., J Mol E.A.. Solids conveying in extruders [J]. Soc. Plast. Eng. J.,1956,12:20-28
    [38] Tadmor Z.. Screw elements having shearing and scraping devices [P]. U.S. patent:5356208,1994
    [39]北京化工大学,华南理工大学合编.塑料机械设计[M].第2版.北京:中国轻工业出版社,1995:1
    [40] Tadmor E., Miller R.. Modeling materials: continuum, atomistic, and multi scaletechniques [M]. New York: Cambridge University Press,2011:1-30
    [41]刘延华.聚合物成型机械[M].北京:中国轻工业出版社,2005.7:98-108.
    [42] Rauwendaal C.. Recent advances in barrier screw design [J]. Plastics, Additives andCompounding,2005,7(5):36-39
    [43] Barr R.A., Warren N.J.. Extruder, or extruder-like melting apparatus [P]. U.S. patent:3698541,1972
    [44] Elbirli B., Lindt J.T., Gottgetreu S.R., et al. Mathematical modeling of melting ofpolymers in barrier-screw extruders [J]. Polymer Engineering and Science,1983,23(2):86-94
    [45] Amellal K., Elbirli B.. Performance study of barrier screws in the transition zone[J]. Polymer Engineering and Science,1988,28(5):311-320
    [46] Han C.D., Lee K.Y., Wheeler N.C.. A study on the performance of barrier-screwextruders [J]. Polymer Engineering and Science,1991,31(11):831-841
    [47] Rauwendaal C.. Extruder screws with barrier sections [J]. Polymer Engineering andScience,1986,26(18):1245-1253
    [48] Rwei S.P.. Distributive mixing in a single-screw extruder—evaluation in the flowdirection [J]. Polymer Engineering and Science,2001,41(10):1665-1673
    [49] Rauwendaal C.. Polymer Extrusion [M]. Cincinnati: Hanser Gardner Publications,inc.,2001:425-536
    [50] Yao W.G., Takahashi K., Koyama K., et al. Design of a new type of pin mixing sectionfor a screw extruder based on analysis of flow and distributive mixing performance [J].Chemical Engineering Science,1997,52(1):13-21
    [51] Jana S.C., Tjahjadi M., Ottino J.M.. Chaotic mixing of viscous fluids by periodic changesin geometry: baffled cavity flow [J]. AIChE Journal,1994,40:1769-1781
    [52] Hwang W.R., Kang K.W., Kwon T.H.. Dynamical systems in pin mixers of single screwextruders [J]. AIChE Journal,2004,50(7):1372-1385
    [53] Rauwendaal C.. Mixing in polymer processing [M]. New York: Marcel Dekker, Inc.,1991:129-240
    [54] Rauwendaal C.. Scale-up of single screw extruders [J]. Polymer Engineering&Science,1987,27(14):1059-1068
    [55] Erwin L.. Theory of mixing sections in single screw extruders [J]. Polymer Engineeringand Science,1978,18(7):572-576
    [56] Chella R., Ottino J.M.. Fluid mechanics of mixing in a single-screw extruder [J]. Ind.Eng. Chem. Fundamen.,1985,24(2):170–180
    [57] Kelly A.L., Brown E.C., Coates P.D.. The effect of screw geometry on melt temperatureprofile in single screw extrusion [J]. Polymer Engineering and Science,2006,46(12):1706-1714
    [58] Kim S.J., Kwon T.H.. Enhancement of mixing performance of single-screw extrusionprocess via chaotic flows: Part I, basic concept and experimental study [J]. Advances inPolymer Techenology,1996,15(1):41-54
    [59] Rauwendaal C.. Comparison of two melting models [J]. Advances in PolymerTechnology,1996,15(2):135-144
    [60] Verbraak C.P.J.M., Meijer H.E.H.. Screw design in injection molding [J]. PolymerEngineering and Science,1989,29(7):479-487
    [61] Markaria J.. New mixing developments move single screw compounding forward [J].Plastics, Additives and Compounding,2004,6(5):50-53
    [62] Rauwendaal C.. Analysis and experimental evaluation of twin screw extruders [J].Polymer Engineering&Science,1981,21(16):1092-1100
    [63] Rauwendaal C.. The geometry of self-cleaning twin-screw extruders [J]. Advances inPolymer Techenology,1996,15(2):127-133
    [64] Denson C.D., Hwang Jr.B.K.. The influence of the axial pressure gradient on flow ratefor Newtonian liquids in a self-wiping, co-rotating twin screw extruder [J]. PolymerEngineering&Science,1980,20(14):965-971
    [65] Vainio T.P., Harlin A., Seppala J.V.. Screw optimization of a co-rotating twin-screwextruder for a binary immiscible blend [J]. Polymer Engineering&Science,1995,35(3):225-232
    [66] Tang H., Wrobelb L.C., Fan Z.. Numerical analysis of the hydrodynamic behaviour ofimmiscible metallic alloys in twin-screw rheomixing process [J]. Materials&Design,2006,27(10):1065-1075
    [67] Eise K., Curry J., Nangeroni J.F.. Compounding extruders for improved polyblends [J].Polymer Engineering&Science,1983,23(11):642-646
    [68] Bigg D.M.. On mixing in polymer flow systems [J]. Polymer Engineering&Science,1975,15(9):684-689
    [69] Kao S.V., Allison G.R.. Residence time distribution in a twin screw extruder [J]. PolymerEngineering&Science,1984,24(9):645-651
    [70]姜南,朱常委.浅析三螺杆挤出机的混合作用[J].中国塑料,2001,15(8):87-90
    [71]朱常委.三螺杆挤出机螺纹元件及混合机理研究[D].北京:北京化工大学,2002.
    [72]何和智.聚合物复合材料三螺杆动态挤出过程及其结构性能研究[D].广州:华南理工大学机械与汽车工程学院,2012
    [73] Mekkaoui A.M., Valsamis L.N.. Enhancement of melting through corotating diskprocessors [J]. Polymer Engineering&Science,1984,24(16):1260-1269
    [74] Shaw M.T.. Processing and commercial application of polymer blends [J]. Advances inPolymer Technology,1982,22(2):115-123
    [75] Tadmor Z.. Machine invention, innovation, and elementary steps [J]. Advances inPolymer Technology,2002,21(2):87-97
    [76] Valsamis L.N., Donoian G.S.. The diskpack plastics compounder [J]. Advances inPolymer Technology,1984,4(2):131-146
    [77] Meijer H.E.H., Verbraak C. P. J. M.. Modeling of extrusion with slip boundary conditions[J]. Polymer Engineering&Science,1988,28(11):758-772
    [78] Beloshenko V.A., Beygelzimer Ya.E., Varyukhin V.N.. Thermal shrinkage of polymermixtures obtained by solid-state extrusion [J]. Polymer,2000,41(10):3837-3840
    [79] Alderson K.L., Evans K.E.. The fabrication of microporous polyethylene having anegative Poisson's ratio [J]. Polymer,1992,33(20):4435-4438
    [80] Vasic I., deMan J.M.. Measurement of some rheological properties of plastic fats with anextrusion modification of the shear press [J]. Journal of the American Oil ChemistsSociety,1967,44(4):225-228
    [81] Morita T., Adachi M., Kato J.. Study of the coagulated structure and fiber strength withwet spinning of aliphatic polyketone with aqueous composite metal salt solutions [J].Journal of Applied Polymer Science,2005,96(4):1250-1258
    [82] Morita T., Adachi M., Kato J.. Study on fiber structure formation in wet spinning ofaliphatic polyketone using aqueous solution of complex metal salts—Characteristics ofsolid structure formation in drying step and its effects on superdrawing step [J]. Journalof Applied Polymer Science,2005,96(2):446-452
    [83] Beloshenko V.A., Kozlov G.V., Varyukhin V.N., et al. Slobodina. Properties ofultra-high-molecular polyethylene and related polymerization-filled compositesproduced by solid-state extrusion [J]. Acta Polymerica,1997,48(5-6):181-187
    [84] Ananthakumar S., Menon A.R.R., Prabhakaran K., et al. Rheology and packingcharacteristics of alumina extrusion using boehmite gel as a binder [J]. CeramicsInternational,2001,27(2):231-237
    [85] Pawlikowski G.T., Mitchell D.J., Porter R.S.. Coextrusion drawing of reactor powder ofultrahigh molecular weight polyethylene [J]. Journal of Polymer Science Part B:Polymer Physics,1988,26(9):1865-1870
    [86] Maddock B.H.. A Visual analysis of flow and mixing in extruder screw [J]. PolymerEngineering&Science,1959,15:383-385
    [87] Street L.F.. Intern melting of thermoplastics in single screw extruders [J]. Plastics Eng.,1961,1:289-291
    [88] Tadmor Z.. Fundamentals of plasticating extrusion. I. A theoretical model for melting [J].Polymer Engineering&Science,1966,6(3):185-190
    [89] Marshall D.I., Klein I.. Fundamentals of plasticating extrusion. II. Experiments [J].Polymer Engineering&Science,1966,6(3):191-197
    [90] Klein I., Marshall D.I.. Fundamentals of plasticating extrusion. III. Development of amathematical model [J]. Polymer Engineering&Science,1966,6(3):198-202
    [91] Tadmor Z., Duvdevani I., Klein I.. Melting in plasticating extuders theory andexperiments [J]. Polymer Engineering&Science,1967,7(3):198-217
    [92] Lidor G., Tadmor Z.. Theoretical analysis of residence time distribution functions andstrain distribution functions in plasticating screw extruders [J]. Polymer Engineering&Science,1967,16(6):450-462
    [93] Tadmor Z., Klein I.. The effect of design and operating conditions on melting inplasticating extruders [J]. Polymer Engineering&Science,1969,9(1):1-10
    [94] Klein I., Tadmor Z.. The simulation of the plasticating screw extrusion process with acomputer programmed theoretical model [J]. Polymer Engineering&Science,1969,9(1):11-21
    [95] Menges G., Klenk P.. Aufschelzund plastiziervorgange beim verarbeiten von PVChart-pulveraufeinem einschecken extruder.Teil2[J]. Kunststoffe,1967,57:677-688
    [96] Dekker J.. Verbesserte schneckenkonstruktion fur das extru-dieren von polypropylene [J].Kunststoffe,1976,66:130-138
    [97] Lindt J.T.. A dynamic melting model for a single screw extruder [J]. PolymerEngineering&Science,1976,16:284-291
    [98] Lindt J.T.. Pressure development in the melting zone of a single screw extruder[J].Polymer Engineering&Science,1981,21:1162-1166
    [99]朱复华.单螺杆塑化挤出理论的研究[J].高分子材料科学与工程,1986,3:1-7
    [100]朱复华,郭奕崇,袁明君等.聚合物挤出理论与结构形态研究的有机结合[J].中国塑料,1998,5,94~102
    [101]朱复华.挤出理论及应用[M].北京:中国轻工业出版社,2001
    [102] Wong A.C., Zhu F., Liu W.. Breakup of solid bed in melting zone of single screwextruder [J]. Plastics rubber and composites processing,1997,26(2):78~88
    [103] Zhu F., Wong A.C., Liu R., et al. Breakup of solid bed in melting zone of single screwextruder part2: strength of solid bed and experimental results [J]. Plastics rubber andcomposites processing,,1997,26(8):343~352
    [104] Wong A.C., Zhu F., Liu R., et al. Breakup of solid bed in melting zone of single screwextruder part1: mathematical model [J]. Plastics rubber and composites processing,1997,26(8):336~342.
    [105] Zhu Fuhua, Chen Liqin. Studies on the theory of single screw plasticating extrusion.Part I: A new experimental method for extrusion [J]. Polymer Engineering&Science,1991,31(15):1113-1116
    [106] Yee A.F.. Mechanical properties of mixtures of two compatible polymers [J]. PolymerEngineering&Science,1977,17(3):213-219
    [107] Bhattacharya S., Gupta R.K., Bhattacharya S.N.. Role of clay in compatibilization ofimmiscible high melt strength polypropylene and ethylene vinyl acetate copolymerblends [J]. Polymer Engineering&Science,2010,50(7):1350-1357
    [108] Soulé E.R., Fine T., Borrajo J., et al. Phase diagrams of blends of poly(phenylene ether),polystyrene, and diglycidyl ether of bisphenol A: Influence of the molar mass ofpoly(phenylene ether)[J]. Journal of Applied Polymer Science,2006,100(3):1742-1747
    [109] Gogos C.G., Esseghir M., Todd D.B., et al.. Dispersive mixing in immiscible polymerblends [J]. Macromolecular Symposia,1996,101(1):185-198
    [110] Wenig W., Fiedel H.W.. Dispersion of trans-polyoctenylene in isotactic poly(propylene),2Crystallization behavior [J]. Die Makromolekulare Chemie,1991,192(2):191-199
    [111] Adewole A.A., Denicola A., Gogos C.G., et al.. Compatibilization ofpolypropylene–polystyrene blends: Part2, crystallization behavior and mechanicalproperties [J]. Advances in Polymer Technology,2000,19(3):180-193
    [112] Kim D.S., Lee B.K., Kim H.S., et al. A study of size and frictional effects on theevolution of melting; Part II: Twin screw extruder [J]. Korea-Australia RheologyJournal,2001,13(2):89-95
    [113]李彦辉,马秀清,武学伟等.啮合异向双螺杆挤出机中捏合块元件对PE-HD/PS不相容体系混合效果的研究[J].中国塑料,2010,24(9):94-98
    [114]张洁,吴德峰,周卫东等.聚乳酸/乙烯-醋酸乙烯酯共聚物共混物的形态与黏弹行为[J].高分子学报,2011,2:139-144
    [115] Sumita M., Ookuma T., Miyasaka K., et al. Effect of ultrafine particles on the elasticproperties of oriented low-density polyethylene composites [J]. Journal of AppliedPolymer Science,1982,27(8):3059-3066
    [116] Sumita M., Tsukuma Y., Miyasaka K., et al.Tensile yield stress of polypropylenecomposites filled with ultrafine particles [J]. Journal of Materials Science,1983,18(6):1758-1764
    [117] Sumita M., Tsukihi H., Miyasaka K., et al. Dynamic mechanical properties ofpolypropylene composites filled with ultrafine particles [J]. Journal of AppliedPolymer Science,1984,29(5):1523-1530
    [118] Sumita M., Okuma T., Miyasaka K., et al. Mechanical properties of orientedpolyvinylchloride composites filled with ultrafine particles [J]. Colloid and PolymerScience,1984,262(2):103-109
    [119]罗忠富,黄锐.无机纳米粒子填充聚合物的研究进展[J].功能高分子学报,1988,11(4):555-560
    [120]王平,赵建青,蒋智杰等. SiO2纳米粒子改性填充PC的力学性能研究[J].中国粉体技术,2009,15:186-190
    [121] Lange F. F., Radford K.C.. Fracture energy of an epoxy composite system [J]. Journal ofMaterials Science,1971,6(9):1197-1203
    [122]李强,赵竹第,欧玉春等.尼龙6/蒙脱土纳米复合材料的结晶行为[J].高分子学报,1997,2:188-193
    [123] Cebe P., Hong S.D.. Crystallization behavior of poly(ether-ether-ketone)[J]. Polymer,1986,27(8):1183-1192
    [124] Ray S.S., Maiti P., Okamoto K.. New polylactide/layered silicate nanocomposites.1.preparation, characterization, and properties [J]. Macromolecules,2002,35(8):3104-3110
    [125] Ray S.S., Okamoto M.. Polymer/layered silicate nanocomposites: a review frompreparation to processing [J]. Progress in Polymer Science,2003,28(11):1539-1641
    [126] Ray S.S., Okamoto M. Biodegradable polylactide and its nanocomposites: Opening anew dimension for plastics and composites [J]. Macromolecular RapidCommunications,2003,24(14):815-840
    [127] Okamoto K.; Ray S.S.; Okamoto M..New poly(butylene succinate)/layered silicatenanocomposites. II. Effect of organically modified layered silicates on structure,properties, melt rheology, and biodegradability [J]. Journal of Polymer Science Part B:Polymer Physics,2003,41(24):3160-3172
    [128] Bian Junjia, Han Lijing, Wang Xuemei, et al. Nonisothermal crystallization behaviorand mechanical properties of poly(butylene succinate)/silica nanocomposites [J].Journal of Applied Polymer Science,2010,116(2):902-912
    [129]杨智韬.聚合物叶片挤出机熔体正位移输送与混合特性研究[D].广州:华南理工大学博士学位论文,2010
    [130]彭仕杰.聚合物熔体叶片正位移输送特性研究[D].广州:华南理工大学硕士学位论文,2007
    [131]刘泽.聚合物固体叶片正位移输送特性研究[D].广州:华南理工大学硕士学位论文,2007
    [132]朱振轩.单轴叶片挤出机能耗特性的模拟研究[D].广州:华南理工大学硕士学位论文,2010
    [133]谭斌.叶片塑化输运过程中转子转矩特性测量与表征研究[D].广州:华南理工大学硕士学位论文,2012
    [134] Kim M.H., Gogos C.G.. Melting phenomena and mechanism in co-rotating twin screwextruder [C]. SPE ANTEC Tech. Papers,2001,47:134-138
    [135] Gogos C.G., Qian B.. Plastics energy dissipation during compressive deformation ofindividual polymer pellets and polymer particulate assemblies [J]. Advances inPolymer Technology,2002,21(4):287-298
    [136] Potente H., Melish U.. Theoretical and experimental investigation of the melting ofpellets in co-rotating twin-screw extruders [J]. International Polymer Processing,1996,11(2):101-108
    [137] Vergnes B., Souveton G., Delacour M.L., et al. Experimental and theoretical study ofpolymer melting in a co-rotating twin screw extruder [J]. International PolymerProcessing,2001,16(4):351-362
    [138] Bawiskar S., White J.L.. Melting model for modular self wiping co-rotating twin screwextruders [J]. Polymer Engineering&Science,1998,38(5):727-740
    [139] Zhu L., Narh K.A., Geng X.. Modeling of particle-dispersed melting mechanism and itsapplication in corotating twin-screw extrusion [J].Journal of Polymer Science Part B:Polymer Physics,2001,39(20):2461-2468
    [140] Jung H., White J.L.. Investigations of melting phenomena in modular co-rotating twinscrew extrusion [J]. International Polymer Processing,2003,18(2):127-132
    [141] Bawiskar S., White J.L.. A composite model for solid conveying, melting, pressure andfill factor profiles in modular co-rotating twin screw extruders [J]. InternationalPolymer Processing,1997,12(4):331-340
    [142] Gogos C.C., Tadmor Z., Kim M.H.. Melting phenomena and mechanisms in polymerprocessing equipment [J]. Advances in Polymer Technology,1998,17(4):285-305
    [143] Qu Jinping, Zhang Guizhen, Chen Huizhuo, et al. Solid conveying in vane extruder forpolymer processing: Effects on pressure establishment [J]. Polymer Engineering&Science,2012,52(10):2147-2456
    [144]蔡思琪.叶片挤出机固体物料的压实过程和机理研究[D].广州:华南理工大学硕士学位论文,2011
    [145] Tan Bin, Qu Jinping, Liu Liming, et al. Non-isothermal crystallization kinetics anddynamic mechanical thermal properties of poly(butylene succinate) compositesreinforced with cotton stalk bast fibers [J]. Thermochimica Acta,2011,141-149
    [146] Phua Y.J., Chow W.S., Ishak Z.A.M.. The hydrolytic effect of moisture andhygrothermal aging on poly (butylene succinate)/organo-montmorillonitenanocomposites [J]. Polymer Degradation and Stability,2011,96(7):1194-1203
    [147] Uddin A.J., Araki J., Gotoh Y.. Extremely oriented tunicin whiskers in poly(vinylalcohol) nanocomposites [J]. Polymer International,2011,60(8):1230-1239
    [148] Ning Nanying, Deng Hua, Luo Feng, et al. The interfacial enhancement ofLLDPE/whisker composites via interfacial crystallization [J]. Polymers for AdvancedTechnologies,2012,23(3):431-440
    [149] Ojijo V., Cele H., Ray S.S.. Morphology and properties of polymer composites based onbiodegradable polylactide/poly[(butylene succinate)-co-adipate] blend and nanoclay[J]. Macromolecular Materials and Engineering,2011,296(9):865-877

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700