用户名: 密码: 验证码:
非线性液压激振机理及其在成型机上的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
砌块成型机是生产砌块的关键设备,其振动密实成型技术决定了砌块质量的高低。我国生产的砌块存在密实度低的问题,导致抗压强度普遍较低,耐久性差。欧美等国的砌块成型技术先进,振动频率可达60Hz-85Hz,台振机加速度达到10g以上,模振机加速度可达20g左右,我国以台振机为主,频率在50Hz-65Hz,加速度一般不超过10g。与欧美等国相比,我国成型机振动系统频率低,加速度小,是导致密实度不高的主要原因。研究和开发具有自主知识产权的能够生产高强砌块的成型机,对打破国外高端成型机的技术垄断,提高我国砌块成型机技术力量具有重要意义。现有的振动密实大多采用偏心式惯性振动,受自身结构的制约,其振动频率很难再提高。本文提出利用液压激振作为振动输出源,结合分段非线性弹性力的振动系统来解决低频、小加速度问题。主要研究内容与结论如下:
     (1)分析混凝土密实成型影响因素,确定合理的振动参数,以此为设计依据,在分析了几种振动形式的基础上,提出了以两段不对称弹簧组成非线性力的双质体液压高频垂直定向振动系统。研究开发了转轴式高频激振器,并构建了整个液压调频激振系统。
     (2)分析激振器-液压缸组成的振动系统激振机理,针对系统参数时变性强的特点,建立基于瞬变流原理的带旋转流体液压振动系统的动力学模型,用有限差分法求得系统的动态特性。由仿真结果得,该液压激振系统的频率和振幅可控可调,在相同的系统压力下,输出激振力比直流液压振动系统大;外负载一定时,对物料加压工况下,振动系统输出激振力随之增大,有利于振动密实。
     (3)通过实验测定了弹性元件的载荷-变形曲线,得到了弹性力变化的滞回曲线,拟合了分段多项式的函数表达式。对成型机振动系统受力分析与运动过程分析,建立了具有五段非线性力的带双向间隙的双质体非线性振动模型,并用等价线性化法求得系统一次近似解,可得本文设计的振动系统从结构上保证了振动能量集中作用于模箱而不耗散于系统其他元件;用龙格-库塔法得到系统的数值模拟结果表明,频率70Hz-90Hz系统加速度可达15g以上,且产生混沌振动,实现以确定频率输入获得宽频响应,以低频激励获得高频谐响,大大提高混凝土颗粒的均匀性与密实度。
     (4)研制实验样机,搭建模箱工作模态测试系统,通过定阶得到系统模态参数。搭建振动参数采集系统并测取相关参数,分析频率、压力对系统振幅与加速度的影响规律。结合模态参数,实验结果表明砌块成型机在双频(70Hz,80Hz)激励下能产生多种共振同时存在的混沌振动,实现节能宽频振动密实,当在外激频率60Hz-90Hz范围内,系统振动加速度最大峰值达到甚至超过20g,指标超过国标的规定,与仿真结果一致,表明了本文所提出的非线性液压振动系统的正确性与合理性。
     (5)以实验所得输入输出数据为依据,采用支持向量机建立成型机实际振动系统整体实验模型。采用中值滤波和卷积滤波处理实验中的异常数据并进行数据光滑。利用5折交叉验证法确定支持向量机核函数最优参数,获得基于离散数据的实验模型;提出改进网格寻优方法并结合交叉验证法搜索核函数最优参数,获得基于时间序列的振动系统实验模型,以实验数据验证了两种模型响应预测的准确性,该实验模型是对理论模型的补充和完善。
     综上所述,本文的研究工作为开发能够生产高密实度砌块的成型机提供了理论支撑,对振动利用工程的发展以及建筑砌块行业的节能减排具有重要意义。
Concrete block machine is a key equipment of producing blocks. Its vibration compaction molding technology determines the quality of concrete blocks. Blocks produced in China have low compactness, which can lead to problembs of low compressive strength and poor durability. The block molding technology is advanced in Europe and America. The vibration frequency can be range up to60Hz-85Hz, the acceleration of table-shaking molding machine exceeds lOg and the one of mould-shaking molding machine reaches about20g. The table-shaking molding machine is the major type of block machine in our country, whose vibration frequency is in the range of50Hz to65Hz and acceleration is within10g. Compared with Europe and the United States, the vibration system of molding machine in China with low frequency and acceleration is the main cause of low compactness.There fore, it is significant to research and develop block machines in producing high strength blocks with independent intellectual property rights to break the monopoly of foreign technology. Eccentric inertia vibration is applied to most existing vibration compacting, whose frequency is hard to be improved because of restrictions of its own structure. In order to overcome the problems of low vibration frequency and acceleration, a vibration system combined hydraulic exciting as vibration source with piecewise nonlinear elastic force is presented in this dissertation.The main work can be summarized as follows:
     (1) The affecting factors of compacting molding of concrete is analyzed and the matching relationship among vibration parameters of compaction is determined, which will be as design basis of vibration system. After analyzing several kinds of vibration modes, a high-frequency hydraulic vertical vibration system composed of double plastid and two segment asymmetric nonlinear springs is put forward. A high frequency rotary vibration generator is studied and developed. An entire hydraulic vibration frequency modulation system is established.
     (2) The exciting mechanism of the hydraulic vibration system composed of the excitor and hydraulic cylinde is analysised. According to the characteristics of strong time-variant of the system parameters, a dynamic model with rotating flow of the hydraulic vibration system is established on the principle of transient flow. Dynamic characteristic of the system is obtained by finite difference method. The hydraulic vibration frequency and amplitude can be controlled and adjusted. When the system pressure is the same, it has characteristics that its output force is stronger than that of DC hydraulic vibration system, and the output force increases with the applied pressure to the material in the die box when the external load is in the reasonable range. These are very beneficial for compacting vibration.
     (3) The elastic force hysteresis loop is got through experimental determination of load-deformation curves of the clastic component. The expression of piecewise polynomial function is fitted from the hysteresis loop. Force analysis and motion process analysis of the machine vibration system are carried out. Then, a double masses nonlinear vibration model is established. Meanwhile it has five sections nonlinear force and biphasic gaps. The first approximate solution is obtained by applying the method of equivalent linearization. It achieves the impact that vibration energy focuses on die box, but not dissipate to other components in the system from a centralized structure. The numerical simulation results got from Runge-Kutta method shows that the system vibration accelerations can reach more than15g when the frequency is70Hz-90Hz. At the same time the system is led into chaotic vibration to realize that broadband response can be obtained from certainty frequency, while high frequency harmonic response can be obtained from low frequency excitation. All of these can greatly improve the uniformity and compaction of the concrete.
     (4) The operational modal testing system of die box is built on the experimental prototype. The system modal parameters are obtained through the method of lumping order determination after using peak selection method to exclude the advantages frequency. An acquisition system is built to collect the associated vibration parameters of the system. The rules how frequency and pressure influence the amplitude and acceleration are gained. Combined with the modal parameters, it also can be discovered from the experimental results that the block machine can produce a chaotic vibration with multiple resonances coexist under dual-band excitation (70Hz,80Hz). Under the chaotic vibration the energy saving compaction with broadband vibration can be achieved. When the external excitation frequency in the range of60Hz to90Hz, the maximum peak of the system's vibration acceleration will meet or even exceed20g, which has been exceeded the national standard requirements. Obviously, there can draw a conclusion that the block making machine having this vibration system will achieve a better performance and there also indicates the correctness and rationality of the nonlinear hydraulic vibration system proposed in this dissertation.
     (5) An experimental model for machine's vibration system is set up based on support vector machine (SVM) with input and output data of the experimental prototype. The experimental abnormal data is processed by using the methods of median filtering and convolution filtering. The optimal parameters of the kernel function in SVM are obtained by5-fold cross-validation method to establish an experimental model with discrete data. A secondary grid search technique in combination with cross-validation method is proposed to optimal parameters of kernel function, and then a time series experimental model of vibration system is established. The response prediction's accuracy of two models is verified through the experimental data. It is shown that the experimental models can be a supplement for the theoretical one.
     In conclusion, the research work provides theoretical support for developing molding machine with the capacity of producing high compactness blocks, as well as has great significance for the development of the vibration utilization project and energy saving in building blocks industry.
引文
[1]江登.低碳时代新型建材设备砌块砖机市场探析[J].科技创业月刊,2013(1):43-45.
    [2]张文洁,冯书涛.浅谈砌块在现代建筑中的节能降耗作用[J].建材发展导向(下),2011,09(5):106.
    [3]陈福广.对墙材革新的战略思考[J].新型建筑材料,2010,37(1):23-27.
    [4]王东升.建设工程新技术新工艺概论[M].北京市:中国海洋大学出版社,2008.
    [5]程慧强.我国墙材革新工作发展现状及十二五发展指导意见[J].砖瓦世界,2011(11):12-40.
    [6]李汉章.墙材革新面临的问题及思考[J].墙材革新与建筑节能,2007(3):23-24.
    [7]唐明贤.混凝土砌块成型机械的发展[J].建筑机械化,2011(S1):15-17.
    [8]曹映辉,胡漪.混凝土砌块成型机械的发展及市场展望[J].墙材革新与建筑节能,2012(6):56-58.
    [9]刘苏文.影响混凝土砌块抗压强度的因素分析[J].建筑砌块与砌块建筑,2007(5):14-18.
    [10]郭立凯.小型混凝土砌块的生产和应用[M].北京:金盾出版社,2003.
    [11]严理宽.混凝土砌块生产与应用[M].北京:中国建筑工业出版社,1999,7.
    [12]BIA(Brick Industry Association). Manufacturing,Classification,and Selection of Brick,Selection,Part 3[G/OL]. USA:2003[2013-3-2]. http://www.gobrick.com/Technical-Notes/Links-to-Technical-Notes.
    [13]金建交.砌块成型机振动机理的研究[D].太原:太原理工大学,2006.
    [14]付留根,张明莉.砌块成型的振动特点[J].建筑机械,2004(4):82-83.
    [15]Versatile Engineering You Can Count On.1400E [EB/OL]. http://www.columbiamachine.com/products/concrete-products-machines/big-board.
    [16]ZENITH Maschinenfabrik GmbH. http://www.zenith.de/lowres%20PDF/940%20CN.pdf.
    [17]The most modern vertical circulation production line for structural and architectural precast concrete in the Caribbean and possibly in the western world [J]. Concrete Plant Industry,2008(4):216-228.
    [18]TG-Series Concrete Products Machines [EB/OL]. http://tigermachine.com/english/products/machines/tg.html.
    [19]Open day 2011 [J]. Concrete Plant Industry,2011 (4):146-147.
    [20]Block machines [EB/OL]. http://www.kvm.com/Page-122. aspx.
    [21]陶有生.对我国建筑砌块发展的几点思考[J].建筑砌块与砌块建筑,2002(1):6-8.
    [22]付留根,姚金柯.QM4-12型砌块成型机及应用前景[J].建筑砌块与砌块建筑,2001(6):42-44.
    [23]QM4-12型砌块成型机生产应用技术[J].施工技术,2002,31(3):55
    [24]国产免托板混凝土砌块(砖)成型机在国内首次公开展示[J].建筑砌块与砌块建筑,2013(1):12.
    [25]施晶晶.高端砌块生产设备瑞图RT15-001混凝土砌块生产线[J].建筑机械化,2011,32(10):50-51.
    [26]胡漪.国产高端砌块成型机的研制[J].墙材革新与建筑节能,2002(3):47-49.
    [27]魏民.混凝土砌块生产线的先进控制技术[J].建筑机械化,2011(S1):26-27.
    [28]秦立群.一种垂直分层布料的砌块成型机[J].建筑机械化,2011(S1):58-60.
    [29]2006-11-The Importance of Synchronizing Vibration.pdf. http://www.besser.com/besserinfo.asp?Folder=/besser_tsb#Block_Machines.
    [30]New Vibration System [J]. Concrete Plant Industry,2009(2):105.
    [31]OMAG-Tronic S Vibration [EB/OL]. http://www.omag.biz/index.php/en/products/omag-tronic-s-vibration.
    [32]Columbia Vibration Technology [EB/OL]. http://www. columbiamachine. co m/products/c vt.
    [33]TG-Series Concrete Products Machines [EB/OL]. http://www.tigermachine.com/english/products/machines/tg.html.
    [34]Development of a new block makingmachine without shock vibration[J]. Concrete Plant Industry,2006(6):121-123.
    [35]Schwabe, Jorg-Henry.Betonsteinfertiger Mit Harmonischer Vibration Durch Formerregung,Sowie Verfahren Zur Formgebung Und Verdichtung Von Betongemengen[P]. Europasche Patentschrift:DE 102008011272,2009-02-25.
    [36]Takeover of patent for concrete block making machine with harmonic vibration by mould excitation[J]. Concrete Plant Industry,2012(4):118.
    [37]Innovation in Vibration-New Vibration Table in Aluminium[J]. Concrete Plant Industry, 2010(3):120.
    [38]Palzer, Ulrich. Concrete block machines parameters to describe the dynamic characteristics of production boards [J]. Betonwerk und Fertigteil-Technik/Concrete Plant and Precast Technology,2010,76 (9):4-18.
    [39]Schwabe Jorg-Henry, Dipl.-Ing. Jurgen Martin. Improving the quality of concrete products-Further developed concrete block machine with harmonic vibration [J]. Betonwerk und Fertigteil-Technik/Concrete Plant and Precast Technology,2009, 75(2):40-41.
    [40]Becker, Gunter. Study of a concrete block machine of the future[J]. Betonwerk und Fertigteil-Technik/Concrete Precasting Plant and Technology,2004,70(5):26-28.
    [41]李国强.德国施洛斯-非凡领先的技术知名的品牌[J].建筑砌块与砌块建筑,2001,(2):47.
    [42]李国强.德国施洛斯-非凡的振动密实技术与粉煤灰制品的生产[J].粉煤灰,2001,(4): 39.
    [43]姚金柯,付留根.新型砌块成型机械及应用[J].建筑机械化,2001(5):26-27.
    [44]刘曼兰,兰朋,陆念力.曲柄连杆式砌块成型机振动装置的动力分析[J].建筑机械,2001(5):34-37.
    [45]袁立强.钢渣砌块成型机电液控制系统的研制[J].液压与气动,2003,(10):39-40.
    [46]王黎,于心俊,臧海河.免烧砌块成型机的设计[J].新型建筑材料,2005,(5):41-42.
    [47]汪新军.方圆集团建材机械产品添新员OFT6-15固定式混凝土砌块成型机[J].工程机械,2007,38(5):35.
    [48]陈越千.一种用液压油缸作为振动器的砌块成型机[J].建筑砌块与砌块建筑,2007,(3): 46.
    [49]钱纪春.一种新颖的混凝土砌块均质小型成型机[J].建筑砌块与砌块建筑,2008,(3):39.
    [50]刘华章.振动器振动原理及缺陷改进[J].建筑砌块与砌块建筑,2005,(6):52-54.
    [51]奚楠钧,方锦辉,魏建华.砌块成型机的电液比例控制系统[J].流体传动与控制,2008(6):6-8.
    [52]Wu Qingming, Zhang Qiang, Zong Chi, et al. Vibration control of block forming machine based on an artificial neural network[C]. In:ISNN 2007,Part I,LNCS 4491,2007:231-240.
    [53]吴庆鸣,贾飞,杨威.砌块机振动装置动力学仿真分析[J].中国机械工程,2008,19(18):2185-2188.
    [54]张乐,姚平喜.振动条件下粒群孔隙度变化规律的仿真研究[J].建筑砌块与砌块建筑,2007,(6):38-42.
    [55]金建交,杨世春,何根旺等.砌块成型机的振动对砌块密实度的影响[J].机械工程与自动化,2006,(1):49-52.
    [56]张军,姚平喜.混凝土砌块(砖)振动成型的仿真分析[J].建筑砌块与砌块建筑,2008,(6):41-42.
    [57]姚平喜,杨世春.砌块成型机振动密实机理[J].砖瓦,2009,(2):52-55.
    [58]吴福森,黄宜坚.砌块成形机液压振动信号的AR双谱分析[J].中国机械工程,2011,22(16):1954-1959.
    [59]Jinsong Zhuang, Yijian Huang, Fusen Wu. AR Bispectrum Characteristics of Block Forming Machine's Vibration driven by Hydraulic Exciter [J]. Advanced Materials Research,2011,295-297:2249-2253.
    [60]Ohashi, H. (Hideo). Vibration and oscillation of hydraulic machinery[M]. M ichigan:Avebury Technical,1991.
    [61]Sasaki Y, Takahashi Y. Fundamental properties of oil hydraulic vibration cylinder [J]. In proceedings of the Third International Conference on Automation, Robotics and Computer Vision.1998(3), Pt.3:1928-32.
    [62]FENG Zheng-yi. Bearing capacity and load-deformation Characteristic of vibratory driven piles [D]. West Lafayette:Purdue University,1997.
    [63]Andrei Kisel et al. Hydraulic Hammer Drilling Technology:developments and Capabilities [J]. Journal of energy resources technology,2000, (9):122-125.
    [64]John Roley et al. Advanced drilling system for drilling geothermal wells-an estimate of cost savings[C]. Proceedings of world geothermal congress,2000,(8):2399-2404.
    [65]T.Wada at al. High Speed Casting of 3Meters/minute on the NKK FukuyamaWorks' No.5 Slab Caster[J]. Iron & Steel Maker.1987, (9):31-38.
    [66]Gerhard Bocher, Uwe Gohler, Uwe Hoffmann, Otto A, Schmidt and Horst von Wyl. Operational Experience with a Resonance Mould for Continuous Casting of Slab[J].2nd European Continuous Casting Conference.1993,141-147.
    [67]E.F Bertaut, M. P. Smith. Short Stroke High Frequeney Oseillation at Faster Stainless [J]. Steelmaking Conferenee Proeeedings.1992,75:223-226.
    [68]MTS.MTS Landmark 200 Hz Elastomer Test System[EB/OL]. http://mts.com/en/results/indes. htm?QueryText=Elastomer+Test+System&search_btn.x= 33&search_btn.y=8.
    [69]Team.Team vibration testing solutions[EB/OL]. http://www. Teamcorporation.com/mantis.php.
    [70]JP Boehler, S Demmerle, S Koss. A new direct biaxial testing machine for anisotropic materials[J]. Experimental Mechanics,1993, (1):1-9.
    [71]Zwick/Roell.Model HA:50 to 500 kN[EB/OL]. http://www.zwick.com/en/products/fatigue-strength-testing-machines/servohydraulic-testi ng-machines/ha-model-50-to-500-kn.html.
    [72]罗春雷,韩清凯.液压驱动控制的偏心回转系统同步特性[J].机械工程学报,2010,46(6):176-181.
    [73]李新强等.小方/圆坯连铸结晶器液压振动装置的应用研究[J].重型机械,2010(S1):203-207.
    [74]曹中一,刘永磊,吴万荣等.液压振动平板夯激振器的研究[J].现代制造工程,2009(03):109-111.
    [75]许步勤.液压激振器[P].中国专利:00102009.9,2000-07-19.
    [76]郝建功,张耀成.新型电液激振装置的性能研究[J].太原理工大学学报,2003,34(6):706-709.
    [77]王峰山,寇子明.液压激振技术在振动筛上的应用研究[J].煤炭加工与综合利用,2004(6):23-24.
    [78]廉红珍.液压波动激振机理及试验研究[D].太原:太原理工大学,2010.
    [79]郭志刚,李文选,冯继刚.基于人工神经网络的液压振动系统研究[J].河北工程大学学报,2012,29(2):78-80.
    [80]王素清,满军,李其朋,丁凡.基于高速开关阀的电液振动冲击系统的研究[J].机床与液压,2011,39(1):1-4.
    [81]张连朋,叶正茂,韩俊伟.离心机电液振动台液压系统设计[J].机床与液压,2013(1):82-85.
    [82]冯跃飞,赵黎明,苏慧.带液压振动器的沉管桩机[P].中国专利:201120265654.9,2012-03-21.
    [83]叶文军,阮健,贾文昂.2D阀控电液激振器的优化设计和实验研究[J].流体传动与控制,2012(1):15-18.
    [84]闻邦椿,李以农,徐培民.工程非线性振动[M].北京:科学出版社,2007.
    [85]闻邦椿,李以农,张义民.振动利用工程[M].北京:科学出版社,2005.
    [86]闻邦椿,刘树英,何勃.振动机械的理论与动态设计方法[M].北京:机械工业出版社,2001.
    [87]闻邦椿,刘树英,陈照波.机械振动理论及应用[M].北京:高等教育出版社,2009.
    [88]陈予恕,曹登庆,黄文虎.近代机械非线性动力学与优化设计技术的若干问题[J].机械工程学报,2007,43(11):17-26.
    [89]辛晓辉,曹树谦,陈予恕.双层非线性共振筛模态计算与动态性能评价[J].煤炭学报,2005,30(2):237-240.
    [90]陈予恕,金志胜,王继宗.大型双质量非线性共振筛的几个动力学问题[J].天津大学学报,1981,(3):1-16.
    [91]陈予恕,霍拳忠,马连福.大型双质量非线性共振筛振动实验研究[J].振动与冲击,1982,(4):11·18.
    [92]Chen YS, Ding Q. C-L Method and its Application to Engineering Nonlinear Dynamical Problems[J]. Applied Mathematics and Mechanics,2001,22(2):144-153.
    [93]Li XY, Chen YS. Bifurcation of Nonlinear Internal Resonant Normal Modes of a Class of Multi-Degree-of Freedom Systems[J]. Mechanics Research Communications.2002,29(5):299-306.
    [94]Albert C.J. Luo. The mapping dynamics of periodic motions for a three-piecewise linear system under a periodic excitation [J]. Journal of Sound and Vibration,2005, 283(3-5):723-748.
    [95]Albert C.J. Luo, Lidi Chen. Periodic motions and grazing in a harmonically forced, piecewise, linear oscillator with impacts [J]. Chaos, Solitons & Fractals,2005,24(2): 567-578.
    [96]JC Ji, Colin H. Hansen. Approximate solutions and chaotic motions of a piecewise nonlinear-linear oscillator [J]. Chaos, Solitons & Fractals,2004,20(5):1121-1133.
    [97]J. C. Ji, Colin H. Hansen. Analytical approximation of the primary resonance response of a periodically excited piecewise non-linear-linear oscillator [J]. Journal of Sound and Vibration,2004,278(1-2):327-342.
    [98]ANDEREGG R, KAUFMANN K. Intelligent Compaction with Vibratory milers-Feedback Control Systems in Automatic Compaction and Compaction Control[J]. Journal of the Transportation Research Record,2004:124-134.
    [99]SANDSTROM A. Numerical Simulation of a Vibratory Roller on Cohesionless Soil [M]. Stockholm:Geodynamik AB,1994.
    [100]PETERSEN D L. Continuous Compaction Control Mnroad Demonstration[R]. Minnesota:Minnesota Department of Transportation Office of Research Services, 2005.
    [101]GRADE J. Continuous Invers Calculation of Soil Stiffness from the Dynamic Behaviour of a Driving Vibratory Roller [J].Archive of Applied Mechanics,1993, (63):472-478.
    [102]江晶,王锋,王磊.振动压实系统的动力学特性分析[J].筑路机械与施工机械化,2010,27(4):39-41.
    [103]管迪,陈乐生.振动压实中的次谐波振动与混沌[J].筑路机械与施工机械化,2007,24(6):59-61.
    [104]管迪,陈乐生.迟滞非线性振荡压实系统动态响应分析[J].机械科学与技术,2008,27(2):257-259.
    [105]龙运佳.混沌激振器[P].中国专利:95217738.2,1996-03-20.
    [106]龙运佳.混沌振动压路机的能耗效益分析[J].中国工程机械学报,2008,6(1):111-113,117.
    [107]侯风岭,张兆柱,闫仲存.板坯连铸结晶器振动伺服阀故障诊断与排除[J]..冶金设备,2011,s1:101-103,68.
    [108]张友坡.连铸机结晶器液压振动停振现象分析[J].山东冶金,2007,29(4):78-79.
    [109]聂崇瑞.连铸结晶器液压振动停振现象的探讨[J].液压气动与密封,2006,(4):63-64.
    [110]韩全卫.混凝土脱模剂和相关工程材料的应用[M].北京:中国建材工业出版社,2008.
    [111]管学茂,杨雷.混凝土材料学[M].北京:化学工业出版社,2011.
    [112]姚嵘,马小娥.混凝土材料及制品生产工艺[M].北京:煤炭工业出版,2002.
    [113]孔人英.凝土制品工艺及设备[M].武汉:武汉工业大学出版社,1995.
    [114]孙业志,熊正朋,周健.黏弹性散体介质中波的传播和耗散[J].南方冶金学院学报,2003,24(1):1-6.
    [115]王世茂.砌块成型机的振动密实原理[J].建筑机械,1983,(2):19-23.
    [116]秦厚慈,刘超英,周山.论零坍落度混凝土振动衰减规律[J].合肥工业大学学报,1998,21(1):96-99.
    [117]同济大学.混凝土制品工艺学[M].北京:中国建筑工业出版,1981.
    [118]何曾平.振动密实成型工艺原理[J].混凝土及建筑构件,1981,(4):55-63.
    [119]Pearce Chris.Belton Tim.Understanding effective concrete compaction[J]. Concrete, 2004,38(4):8-9.
    [120]刘苏文.混凝土砌块成型机理及振动参数计算[J].建材发展导向,2008,6(3):50-54.
    [121]刘苏文.砌块成型机理和工艺参数设计[J].墙材革新与建筑节能,2009(9):54-57.
    [122]Lu Chunyue, Kou Ziming. An Active Control Study of the 1Cr18Ni9 Steel Plate Multipoint Excitation [J]. Journal of Wuhan University of Techno logy(Materials Science Edition),2012(04):721-724.
    [123]E.B.怀利,V.L.斯特里特瞬变流[M].北京:水利水电出版社,1983.
    [124]J. D Jin. G. S. Zou. Bifurcations and chaotic motions in the autonomous system of a restrained pipe conveying fluid[J]. Journal of Sound and Vibration,2003,260:783-805.
    [125]Kou Ziming, Lu Chunyue. A new hydraulic excitation mode with liquid-filled pipe [J]. Advanced Materials Research, Trans Tech Publications,2011:280-286.
    [126]陆春月,寇子明,吴娟等.液压波动激励下的充液管道动力学特性[J].华中科技大学学报(自然科学版),2013,41(5):17-22.
    [127]Kou Ziming, Lu Chunyue. The vibration controllability of 20(#) steel pipe excited by unsteady flow[J]. Journal of Wuhan University of Techno logy-Materials Science Edition,2011,26(6):1222-1226.
    [128]张国忠.管道瞬变流动分析[M].东营:中国石油大学出版社,1994.
    [129]张紫龙.耦合输流管系统的非线性动力学行为研究[D].武汉:华中科技大学,2012.
    [130]曹亮.输流管道流固耦合振动特性分析[D].昆明:昆明理工大学,2004.
    [131]李家星,赵振兴.水力学(上册)[M].南京:河海大学出版社,2001.
    [132]陆春月,寇子明,吴娟等.以管路为振动输出源的液压激振系统研究[J].液压与气动,2013(2):32-34.
    [133]E.John Finnemore, Joseph B. Franzini. Fluid Mechanics with Engineering Applications(Tenth Edition)[M].北京:清华大学出版社,2003.
    [134]L.N. Panda, R.C. Kar. Nonlinear dynamics of a pipe conveying combination, principal parametric and pulsating fluid with internal resonances[J]. Journal of Sound and Vibration,2008,309:375-406.
    [135]张文生.科学计算中的偏微分方程有限差分法[M].北京:高等教育出版社,2006.
    [136]法特.基于高阶有限差分法的管道瞬态特性研究[D].武汉:华中科技大学,2011.
    [137]张鸣远.流体力学[M].北京:高等教育出版社,2010.
    [138]R Bouc. Forced vibration of mechanical systems with hysteresis[C], Proceedings of the Fourth Conference on Non-Linear Oscillation, Prague, Czechoslovakia,1967,315.
    [139]WENYK. Equival linearisalfor hysteretic systems under random excitation[J].Journal of Applied Mechanics,1980,47:150-154.
    [140]李韶华,杨绍普.具有滞后非线性的汽车悬架中的混沌[J].振动、测试与诊断,2003,23(2):86-89.
    [141]陈予恕.非线性振动[M].北京:高等教育出版社,2002.
    [142]GB/T 8533-2008,小型砌块成型机[S].北京:中国标准出版社,2008.
    [143]唐江凌.基于支持向量回归机的燃料电池研究[D].重庆:重庆大学,2012.
    [144]陈果.一种实现结构风险最小化思想的结构自适应神经网络模型[J].仪器仪表 学报,2007,28(10):1874-1879.
    [145]李元诚,方廷健,于尔铿.短期负荷预测的支持向量机方法研究[J].中国电机工程学报,2003,23(6):
    [146]Z. Lu, J. Sun. Non-Mercer hybrid kernel for linear programming support vector regression in nonlinear systems identification [J]. App. Soft. Comput,2009,9(1):94-99.
    [147]G. Camps-Valls, L. Bruzzone, J. L. Rojo-Alvarez, F. Melgani, Robust support vector regression for biophysical variable estimation from remotely sensed images [J].2006, IEEE Geoscience and Remote Sensing LettersS,3(3):339-343.
    [148]K. W. Lau, Q. H. Wu, Local prediction of non-linear time series using support vector regression [J]. Pattern Recog,2008,41(5):1539-1547.
    [149]B. Scholkopf, A. J. Smola, Learning with kernels [M].1st edition. London:The MIT press,2002.
    [150]C. Cortes, V. N. Vapnik, Support Vector Networks [M]. USA:Machine Learning,1995.
    [151]J. A. K. Suykens, Support Vector Machines:A nonlinear modeling and control perspective [J].Eur. J. Control., Special Issue on Fundamental Issues in Control,2001, 7(2-3):311-327.
    [152]左磊,侯立刚,张旺等.基于粒子群-支持向量机的模拟电路故障诊断[J].系统工程与电子技术,2010,32(7):1553-1556.
    [153]刘斌,潘绍北.实用经济预测方法[M].吉林:吉林大学出版社,1991.
    [154]田铮译.时间序列的理论与方法[M].北京:高等教育出版社,2001.
    [155]张万宏.非平稳时间序列的预测方法[D].甘肃:兰州理工大学,2007.
    [156]陈顺才.基于支持向量机的时间序列预测研究[D].甘肃:兰州理工大学,2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700