用户名: 密码: 验证码:
水泥回转窑和篦冷机内气固两相流及换热过程的数值研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
回转窑是一种具有燃烧、换热、化学反应以及物料输送等主要功能的生产设备。具有容积大、能耗高、物料长滞留、燃料适应性强等特性。但回转窑与其它热工设备相比热效率低。如何促进物料与空气的混合,强化气固换热,减少热损失是亟待解决的问题。为此,必须对回转窑内物料、煤粉和空气的流动和传热特性开展深入研究,用以指导回转窑技术和结构改进,从而实现提高运转效率和降低能耗的目的。同时,由于问题的复杂性与典型性,该项研究对稠密气固两相流学科领域也具有重要理论意义。本文以一台Φ4.3×64m水泥回转窑为工程背景,对包括燃烧器和篦冷机在内的完整的回转窑系统进行了多维数值模拟研究。
     性能优良的燃烧器能够保证为水泥回转窑提供最佳的热工条件。本文首先对一台四通道旋流燃烧器内的气固两相流进行了模拟研究,应用欧拉-拉格朗日计算方法,对窑内煤粉-空气两相湍流流场进行模拟,系统地研究了各风道不同送风量及旋流叶片角度对燃烧器出口流场中的速度分布的影响,详尽的分析了不同工况下冷态射流湍流场的流态变化规律。计算结果表明,燃烧器的中心回流区对实现快速点火和稳定燃烧具有重要作用,内旋流风和高速外风使得煤粉和空气充分混合,并卷吸了高温二次风,促进了煤粉燃烧。提高外风风速会促进煤粉颗粒的运动,但风速需要控制在适宜的范围内。
     其次,基于欧拉-欧拉法,建立了回转窑内物料与气体的两相流动模型,分别对其二维横截面与三维窑体内的流动和传热特性进行数值研究。把颗粒流体的动理学理论引入该项研究,将物料颗粒的随机运动比拟为分子热运动,引入颗粒温度作为描述颗粒随机运动动能的变量,建立颗粒的本构方程,从而封闭固相动量方程。考虑了物料反应、辐射传热及窑壁间接式传热等诸多因素。讨论横截面内物料、壁面和自由空间气体之间的换热机理,应用热量源项在二维模型中考虑轴向温度梯度的影响,分析物料、壁面和自由空间气体三相间的换热机制。通过计算得到了颗粒物料在回转窑内随窑壁回转的复杂运动特性及其空间分布规律,获得了回转窑内温度分布曲线,及不同区域气体、物料和窑壁之间的换热量。计算结果与文献试验值相吻合,说明该计算模型具有较好的预测能力,可以为改进与优化回转窑的工艺操作流程提供指导。
     最后,针对熟料在篦冷机内的输运与冷却换热过程,应用欧拉-欧拉两相流计算方法及多孔介质模型,进行了二维数值模拟,主要分析了熟料的输运、熟料与气体的换热特性。计算结果表明,颗粒增大会使熟料床的厚度明显增厚,直径为20mm的熟料与空气换热最好,空气温度升高最大。
Rotary kiln is a critical equipment for cement production in which complex processes,e.g. material transportation, combustion, thermal exchange and chemical reaction occur simultaneously. The kiln has features like large volume, high energy consumption, long processing time, excellent fuel adaptability and etc. However, the rotary kiln is facing the shortage that its thermal efficiency is much lower than other thermal equipment. Therefore, the optimization of the mixing material and air, enhancing thermal exchange between phases and reducing heat loss is an urgent problem to be solved. To fully understand the mechanism of the multiphase flow and heat transfer in the kiln and, accordingly, improve its operating efficiency and reduce energy consumption, it is necessary to conduct deep investigation on the working processes in the kiln. Moreover, due to the complexity and typicalness of the problem, the research on kiln simulation has important theoretical significance to the discipline of dense gas-particle two-phase flow. In this thesis, taking a Φ4.3×64m cement rotary kiln as the engineering background, the complete kiln system, including a burner and a grate cooler, is numerically investigated based on multi-dimensional models.
     A burner with excellent performance could offer the best thermal condition for cement production. Hence, a research on a4-channel swirling burner is presented firstly, in which an Eulerian-Lagrangian approach is applied to simulate the turbulent field in the burner. Velocity distribution in the burner outlet area is analyzed at various inlet air flow conditions and various angles of the swirling blade, also, the characteristics of the turbulent jet flow field are studied under different cold conditions. The result shows that the central recirculation zone is important for a quick ignition and stable combustion; both the internal swirling flow and the high speed external flow contribute to an adequate mixing ofair and coal particles, and entrain the hot secondary air flow to enhance combustion. Increasing the high speed external flow can also promote the movement of the coal particles, however, it should be controlled in a reasonable range.
     Moreover, based on the Eulerian-Eulerian approach, a particle-air two-phase flow model is built for the rotary kiln to investigate the flow and heat transfer characteristics in a two-dimensional cross section and three-dimensional space, respectively. The kinetic theory for "particle fluid" is introduced in which an analogy between the random motion of particles and the thermal motion of molecules is adopted. A concept of granular temperature is used as a random parameter for describing particle kinetic energy, and the constitutive equation for the particle phase is established, which closes the solid momentum equation. A detailed discussion is presented for the heat exchange among the material, the wall and the air flow in free space where a heat source term is applied to calculating the temperature gradient in the axial direction. The mechanism of heat exchange between phases is discussed. Temperature distribution is obtained by numerical calculation to determine the heat quantity exchanged among phases, and between the material and the kiln wall. The result shows satisfactory agreement with experimental data, indicating that the model has a good prediction ability, and can provide useful guidance for the improvement and optimization of the operating process in the rotary kiln.
     Finally, focusing on the processes of the material transportation and heat exchange in the grate cooler and employing the Eulerian-Eulerian two-phase method and a porous medium model,2-D numerical simulation was carried out, to analyze heat exchange characteristics between various medium in the cooler. The calculation results show that the thickness of material bed increases significant with particle size increasing. Specifically, when the particle diameter reaches20mm, the best heat exchange efficiency and the highest temperature raise can be obtained.
引文
[1]马爱纯,周孑民,李旺兴.氧化铝熟料窑喷射干燥段参数的仿真优化[J].中国有色金属学报,2004,14(1):138-141.
    [2]赵振宙,赵振宇,孙辉.旋流燃烧器数值模拟和优化改造[J].锅炉技术,2006,37(4):49-54.
    [3]彭家强,宋丹路,宗营营.基于Fluent四通道煤粉燃烧器流场数值模拟[J].机械科学与技术,2012,31(1):63-66.
    [4]Jiaqing Peng, Danlu Song, Yingying Zong. Numerical simulation on the flow field of a four-channel coal burner[J]. International Jounal of Plant Engineering and Management, 2011,16(2):113-118.
    [5]Cangialosi F, Canio F D, Intini G, et al. Experimental and theoretical investigation on unburned coal char burnout in a pilot-scale rotary kiln[J]. Fuel,2006,85(16): 2294-2300.
    [6]Liqiao Jiang, Enjian Chen. Experimental study on cold-condition flow and hot-condition in a novel coal pulverized combustor [J]. Journal of combustion science and technology, 2002,8(4):293-296.
    [7]叶旭初,胡道和.窑内多通道喷煤燃烧器的旋流射流场的数值模拟[J].南京化工大学学报,1998,20(1):36-39.
    [8]周力行,李力,李荣先,等.炉内两相流动和煤粉燃烧的双流体-轨道模型[J].工程热物理学报,2001,22(6):771-774.
    [9]侯凌云,张拥军,傅维标.回转水泥窑燃烧段混煤燃烧数值研究[J].燃烧科学与技术,2001,7(1):77-80.
    [10]杨潘.回转窑内传热传质数学模型及其优化[D].陕西:西安建筑科技大学材料学专业,2011.
    [11]腾汜颖,李永光.气固两相流动测量技术的现状与展望[J].上海电力学院学报,2002,4(18):39-43.
    [12]Shen Y S, Guo B Y, Yu A B, et al. A three-dimensional numerical study of the combustion of coal blends in blast furnace[J]. Fuel,2009,88(2):255-263.
    [13]Peng He, Hongyu Gu, et al. Numerical simulation research on pulverized coal combustion mechanism in rotary kiln[J]. Cement Guide for New Epoch,2009, (5):29-32.
    [14]Chingwen Chen. Numerical analysis for the multi-phase flow of pulverized coal injection inside blast furnace tuyere [J]. Applied Mathematical Modelling,2005, (29):871-884.
    [15]Li Z Q, Wei F, Jin Y. Numerical simulation of pulverized coal combustion and NO formation[J]. Chemical Engineering Science,2003,58(23):5161-5171.
    [16]Cristian H, Peter A M, Graham J. The influences of particle mass loading on mean and instaneous particle distributions in processing jet flows[J]. International Journal of Multiphase Flow,2012, (41):13-22.
    [17]Changdong Sheng, Behdad Moghtaderi, Rajender Gupta, et al. A computational fluid dynamics based study of the combustion characteristics of coal blends in pulverized coal-fired furnace[J]. Fuel,2004, (83):1543-1552.
    [18]Aichun Ma, Jiemin Zhou, Jianping Ou, et al. CED prediction of physical field for multi-air channel pulverized coal burner in rotary kiln[J]. Journal, CSUT,2006,13(1):75-79.
    [19]Hao Zhou, Guiyuan Mo, Jiapei Zhao, et al. DEM-CFD simulation of the particle dispersion in a gas-solid two-phase flow for a fuel-rich/lean burner[J]. Fuel,2011, (90): 1584-1590.
    [20]刘升,郝英立Texaco气流床煤气化炉内气固两相流动的数值模拟[J].东南大学学报,2009,4(39):803-807.
    [21]Jianping Jing, Zhengqi Li, Qunyi Zhu, et al. Influence of the outer secondary air vane angle on the gas/particle flow characteristics near the double swirl flow burner region [J]. Energy,2011,(36):258-267.
    [22]陈智超,李争起,靖剑平,等.中心给粉旋流燃烧器其固两相流动的数值模拟[J].机械工程学报,2009,12(45):305-310.
    [23]刘阳,路慧林,刘文铁,等.循环流化床组分颗粒气固两相流动模型和数值模拟[J].化工学报,2003,8(54):1065-1071.
    [24]Mbouana N L,王帅,孙立岩,等.双大涡模拟方法模拟提升管内气固两相流动[J].工程热物理学报,2011,8:018.
    [25]Chao Lu. Numerical value simulation and study of coal dust burning in rotary kiln and gas distribution[J]. Refractory and Lime,2012,37(5):18-23.
    [26]王磊.煤粉燃烧器出口旋转气固两相流长的数值模拟[J].2001,9(37):9-17.
    [27]Chengpeng Yeh, Shanwen Du, Chien Hsiung Tsai, et al. Numerical analysis flow and combustion behavior in tuyere and raceway of blast furnace fueled with pulverized coal and recycled top gas[J]. Energy,2012, (42):233-240.
    [28]朱博,王强,郭慧军,等.基于双欧拉模型的流化床其固两相流场数值模拟[J].大庆石油学院学报,2011,3(35):104-108.
    [29]Peng He, Hongyu Gu. Numerical simulation research on pulverized coal combustion mechanism in rotary ki In [J]. Cement Guide for New Epoch,2009, (5):29-32.
    [30]周明哲.鼓泡流化床气固两相流动特性的数值模拟[J].节能技术,2012,4(30):327-329,334.
    [31]Chen Yun. Numerical test research of gas-solid two-phase flow in swirl burner[D]. Zhejiang:Zhejiang University,2002.
    [32]刘英杰,蓝兴英,徐春明,等.高温鼓泡床内气固两相流动的数值模拟[J].石油化工,2011,1(40):55-59.
    [33]郑建祥,刘文铁,赵云华,等.分解炉内气固两相流动特性的数值模拟[J].硅酸盐学报,2005,7(33):854-858.
    [34]Lookwood F C, Mahmud T, Yehia M A. Simulation of pulverized coal test furnace performance[J]. Fuel,1998,77(12) 1329-1337.
    [35]王迎慧,归柯庭,刘利,等.磁流化床气固两相流动的数值模拟及实验验证[J].东南大学学报,2002,6(32):936-940.
    [36]Boateng A A, Barr P V. Modeling of Particle Mixing and Segregation in the Transverse Plane of a Rotary Kiln[J]. Chemical Engineering Science,1996,51(17):4167-4181.
    [37]Mellmann J. The transverse motion of solids in rotating cylinders-forms of motion and transition behavior[J]. Powder Technoligy,2001,118:251-270.
    [38]Renouf M, Bonamy D, Dubois F, et al. Numerical simulation of two-dimensional steady granular flows in rotating drum:On surface flow rheology[J]. Physics of fluids,2005, 17(10):103303-103303-12.
    [39]王汇,刘训良,温治.回转窑内颗粒表面滚落过程数学模型及仿真分析[J].烧结球团,2008,33(6):1-6.
    [40]Huang A N, Kuo H P. A study of the three-dimensional particle size segregation structure in a rotating drum[J]. AIChE Journal,2012,58(4):1076-1083.
    [41]Spurling R J, Davidson J F, Scott D M. The no-flow problem for granular material rotating kins and dish granulators[J]. Chemical Engineering Science,2000,55(12):2303-2313.
    [42]张云波.回转窑冷热态实验研究与石油焦煅烧数值模拟[D].湖北:华中科技大学热能工程,2009.
    [43]He M, Zhang J, Liu X Y. Determination of the repose angle of stuff in rotary kiln based on imaging processing[C]//Electronic Measurement & Instruments,2009. ICEMI'09.9th International Conference on. IEEE,2009:4-97-4-101.
    [44]Wenzhong Chen, Chunhua Wang, Tie Liu, et. al. Residence time and mass flow rate of particles in carbon rotary kilns[J]. Chemical Engineering and Processing,2009,48:995-960.
    [45]Sullivan J D, Maier C G, Ralston 0 C. Passage of Solid Particles Through Rotary Cylindrical Kilns, by John D. Sullivan, Charles G. Macer and Oliver C. Ralston[M]. US Government Printing Office,1927.
    [46]Jain N, Ottino J M, Lueptow R M. An experimental study of the flowing granular layer in a rotating tumbler[J]. PHYSICS OF FLUIDS,2002,14(2):572-582.
    [47]Seman W C. Passage of solid through rotary kilns [J]. Chemical Engineering Progress,1951, 47(10):508-514.
    [48]Kramers H, Croockewit P. The passage of granular solids through inclined rotary kilns[J]. Chemical Engineering Science,1952,1(6):259-265.
    [49]Jop P, Forterre Y, Pouliquen O. Initiation of granular surface flows in a narrow channel[J]. Physics of Fluids,2007,19:1-4.
    [50]Li S Q, Yan J H, Li R D, et al. Axial transport and residence time of MSW in rotary kilns Part I. Experimental[J]. Powder Technology,2002,126:217-227.
    [51]刘刚,池涌,蒋旭光,等.颗粒物料在回转窑内的运动特性模型[J].浙江大学学报,2007,41(7):1195-1200.
    [52]Kohav T, Richardson J T, Luss D. Axial dispersion of solid particles in a continuous rotary kiln[J]. AIChE Journal,1995,41(11):2465-2475.
    [53]Ding Y L.Seville J P K, Forster R, et al. Solids motion in rolling mode rotating drums operated at low to medium rotational speeds[J]. Chemical engineering science,2001, 56(5):1769-1780.
    [54]彭思众,马晓茜,赵绪新.回转窑内物料流动模型研究[J].工业炉,2004,24(4):6-9.
    [55]Chatterjee A, Sathe A V, Mukhopadhyay P K. Flow of materials in rotary kilns used for sponge iron manufacture:part Ⅱ. effect of kiln geometry [J]. Metallurgical Transaction B,1938,14B:383-392.
    [56]Xiaoyan Liu, Eckehard Specht. Mean residence time and hold-up of solids in rotary kilns[J]. Chemical Engineering Science,2006,61 (15):5176-5181.
    [57]Xiaoyan Liu, Eckehard Specht. Predicting the fraction of the mixing zone of a rolling bed in rotary kilns[J]. Chemical Engineering Science,2010,65:3059-3063.
    [58]Bonamy D, Daviaud F, Laurent L. Experimental study of granular surface flows via a fast camera:A continuous description[J]. Physics of fluids,2002,14(5):1666-1673.
    [59]Boateng A A, Barr P V. Granular flow behaviour in the transverse plane[J]. Fluid Mech, 1997(330):233-249.
    [60]马爱纯,周孑民,孙志强,等.氧化铝熟料窑内一维传热模型[J].冶金能源,2004,23(1):23-26.
    [61]邱夏陶,韩小良.回转窑传热数学模型及优化[J].钢铁,1994,29(6):66-70.
    [62]张志霄,池涌,李水清,等.回转窑传热模型与数值模拟[J].化学工程,2003,31(4):27-32.
    [63]Demagh Y, Ben Moussa H, Lachi M, et al. Surface particle motions in rotating cylinders: Validation and similarity for an industrial scale kiln[J]. Powder Technology,2012, 224:260-272.
    [64]J Mellmann, Eckehard Specht, Xiaoyan Liu. Prediction of rolling bed motion in rotating cylinders[J]. AIChE Journal,2004,50 (11):2783-2793.
    [65]Nielsen A R, Aniol R W, Larsen M B, et al. Mixing large and small particles in a pilot scale rotary kiln[J]. Powder Technology.2011,210:273-280.
    [66]Sri Silvia Agustini, Andreas Queck, Eckehard Specht. Modeling of the Regenerative Heat Flow of the Wall in Direct Fired Rotary Kilns[J]. Heat Transfer Engineering,2008,29(1):57-66.
    [67]Deliang S, Watson L, McCarthy J J. Heat transfer in rotary kilns with interstitial gases[J]. Chemical Engineering Science,2008,63:4506-4516.
    [68]Tscheng S H, Watkinson A P. Convective heat transfer in a rotary kiln[J].Can J Chem Eng,1979,57 (8):433-441.
    [69]Chaudhuri B, Muzzio F J, Tomassone M S. Experimentally validated computations of heat transfer in granular materials in rotary calciners[J]. Powder Technology,2010,198:6-15.
    [70]雷先明,肖友刚.物料与窑壁间歇接触对回转窑传热过程的强化效应[J].中国工程科学,2006,8(8):39-44.
    [71]Chunchung Liao, Shusan Hsiau, Wenjeng Yu. The influence of driving conditions on flow behavior in sheared granular flows[J]. International Journal of Multiphase Flow 46(2012):22-31.
    [72]Gorog J P, Adams T N, Brimacobe J K. Heat Transfer from Flames in a Rotary Kiln[J]. METALLURGICAL TRANSACTIONS B,1983,14:411-424.
    [73]Ginsberg T, Modigell M. Dynamic modeling of a rotary kiln for calcination of titanium dioxide white pigment[J]. Computers and Chemical Engineering.2011,35:2437-2446.
    [74]Barr P V, Brimacombe J K, Watkinson A P. A heat-transfer model for the rotary kiln:part I.Pilot kiln trials[J]. Metallurgical Transactions B,1989,20:391-402.
    [75]Boateng A A, Barr P V. A thermal model for the rotary kiln including heat transfer within the bed[J]. International Journal of Heat and Mass Transfer,1996,39(10):2131-2147.
    [76]MariasF, Roustan H, Pichat A. Modelling of a rotary kiln for the pyrolysis of aluminium waste[J]. Chemical Engineering Science,2005,60:4609 4622.
    [77]Nan Gui, Jinsen Gao, Zhongli Ji. Numerical Study of Mixing and Thermal Conduction of Granular Particles in Rotating Tumblers[J]. American Institute of Chemical Engineers, 2013,0(0):1-13.
    [78]Mujumdar K S, Ranade V V. CFD modeling of rotary cement kilns[J]. Asia-Pacific Journal of Chemical Engineering,2008,3:106-118.
    [79]Manju M S, Savithri S. Three dimensional CFD simulation of pneumatic coal injection in a direct reduction rotary kiln[J]. Fuel,2012:1-11.
    [80]刘强.新型干法水泥烧成系统数值模拟研究[D].湖北:武汉理工大学机电工程学院,2011.
    [81]Kwapinska M, Saage G, Tsotsas E. Mixing of particles in rotary drums:a comparison of discrete element simulations with experimental results and penetration models for thermal processes[J]. Powder Technology,2006,161:69-78.
    [82]Dhanjal S K, Barr P V, Watkinson A P. The Rotary Kiln:An Investigation of Bed Heat Transfer in the Transverse Plane[J]. METALLURGICAL AND MATERIALS TRANSACTIONS B,2004:1059-1070.
    [83]Xiaoyan Liu, Eckehard Specht. Temperature distribution within the moving bed of rotary kilns:Measurement, and analysis [J]. Chemical Engineering and Processing,2010,49: 147-150.
    [84]Isabel F, Watson L, Joseph J. Mixing and heat conduction in rotating tumblers [J]. Chemical Engineering Science,2010,65:1045-1054.
    [85]范晓慧,李俊,陈许玲,等.铁矿氧化球团回转窑三维温度场仿真模型[J],中南大学学报(自然科学版),2012,43(8):2896-2899.
    [86]Robin S, Petr A. Nikrityuk. Numerical Simulation of the Transient Temperature Distribution Inside Moving Particles[J]. THE CANADIAN JOURNAL OF CHEMICAL ENGINEERING,2012,90:246-262.
    [87]Brimacombe J K, Watkinson A P. Heat transfer in a direct-fired rotary kiln:I. Pilot plant and experimentation[J]. Metallurgical transaction B,1978(9B):201-208.
    [88]Brimacombe J K, Watkinson A P. Heat transfer in a direct-fired rotary kiln:II.Heat flow results and their interpretation[J]. Metallurgical transaction B,1978(9B): 209-219.
    [89]Gorog J P, Brimacombe J K, Adams T N. Radiative heat transfer in rotary kilns[J]. Metallurgical Transaction B,1981(12B):55-70.
    [90]Barr P V, Brimacombe J K, Watkinson A P. A heat transfer model for the Rotary Kiln:Part Ⅱ. Development of the cross section model[J]. Metallurgical transaction B,1989(20B):403-419.
    [91]Marcio A, Leandro S, Adriana S. Modeling andsimulation of petroleum coke calcinations in rotary kilns[J]. Fuel,2001(80):1611-1622.
    [92]马光柏.氧化铝回转窑热工仿真的研究及应用[D].中南大学,2006.
    [93]]Mastorakos E, Massias A. CFD predictions for cement kilns including flame model ing, heat transfer and clinker chemistry[J]. Applied Mathematical Modeling,1999(23):55-76.
    [94]Boateng A A. Boundary Layer Modeling of Granular Flow in the Transverse Plane of a Partially Filled Rotary Cylinder[J]. Int.. J. Multiphase flow,1998,24 (3):499-521.
    [95]Van Puyvelde D R, Young B R, Wilson M A, et al. Experimenal Determination of Transverse Mixing Kinetics in a Rolling Drum by Image Analysis[J]. Powder Technology,1999(106):183-191.
    [96]Descoins N, Dirion J L, Howes T. Solid Transport in a Pyrolysis Pilot-Scale Rotary Kiln Preliminary Results-Stationary and Dynamic Results[J]. Chemical Engineering and Processing,2005(44):315-321.
    [97]肖兴国,曹同友,肖泽强.生产石灰粉剂用回转窑操作过程的数学模型及其应用[J].辽宁冶金,1990(4):30-37.
    [98]Ribeiro B M, Correia A D. Lime kiln simulation and control by neural networks[C]. Neural networks for chemical engineers,1995:163-191.
    [99]Marias F. A model of a rotary kiln incinerator including processes occurring within the solid and the gaseous phases[J]. Computers and Chemical Engineering,2003, (27): 813-825.
    [100]Fan Geng, Yimin Li, Xinyong Wang. Simulation of dynamic processes on flexible filamentous particles in the transverse section of a rotary dryer and its comparison with ideo-imaging experiments[J]. Powder Technology,2011,207:175-182.
    [101]Wang M H, Yang R Y, Yu A B. DEM investigation of energy distribution and particle breakage in tumbling ball mills[J]. Powder Technology,2012,223:83-91.
    [102]Wachs A, Girolami L, Vinay G, et al. Grains3D, a flexible DEM approach for particles of arbitrary convex shape — Part I:Numerical model and validations[J]. Powder Technology,2012,224:374-389.
    [103]Chavarro A, Patel K, et al, Clinker cooler bydraulic drives [J]. Cement Industry Technical Conference,2003, (5):57-73.
    [104]李海滨,张文明,刘彬.CCD比色测温系统在水泥篦冷机中的应用[J].中国测试技术,2005,31(6):17-19.
    [105]Saumitra P, Mathcement P. A mathematical model to establish heat, gas and mass balance in the pyro processing section of modern cement plants [D]. University of Pune, India, 2003.
    [106]Locher G. Mathematical models for the cement clinker burning process, Part 4. Grate cooler[J]. ZKG-international.2002(6):46-57.
    [107]闻岩,李娜,刘彬.水泥熟料换热模型的研究[J].硅酸盐通报,2011,30(6):1381-1385.
    [108]Tahsin E, Vedat A. Energy auditing and recovery for dry type cement rotary kiln systems-A case study[J]. Energy Conversion and Management,2005,46:551-562.
    [109]陈益兰,廖孙启,谢松林,等.干法水泥窑冷却机系统的热工分析及参数优化[J].广西大学学报(自然科学版),2003,28(3):190-193.
    [110]姜滦生,孙皆宜,刘爽.基于CCD比色原理的熟料温度场测量[J].仪器仪表学报(增刊),2006,27(6):52-54.
    [111]孙皆宜,苏占远.基于比色法测量高温水泥熟料的温度场[J].硅酸盐通报,2006,1:72-75.
    [112]王晓霞.基于CCD比色法的篦冷机熟料温度场检测技术的研究[D].秦皇岛:燕山大学,2004.
    [113]Alazmi B, Vafai K. Analysis of fluid flow and heat transfer interfacial conditions between a porous medium and a fluid layer[J]. International Jounal of Heat and Mass Transfer,2001,44(9):1735-1749.
    [114]冯绍航.篦式冷却机的换热理论研究[D].西安:西安建筑科技大学,2004.
    [115]冯邵航,徐德龙,李辉,等.篦冷机中气固两相换热过程的模拟研究[J].西安建筑科技大学学报,2007,39(2):224-229,234.
    [116]刘彬,郝晓辰.篦冷机熟料多通道冷却气固热交换模型研究[J].硅酸盐通报,2008,27(2):248-253.
    [117]刘浩然,徐刚,张文明.水泥熟料冷却过程换热模型的研究[J].科技资讯,2009,31:118-119.
    [118]李海滨,郝晓辰,刘彬,等.基于模糊神经网络的篦式冷却机熟料流动建模[J].仪器仪表学报,2005,26(8):171-173,176.
    [119]乔景慧,柴天佑,孙明岩,等.基于案例推理的篦冷机熟料冷却过程智能优化控制[J].东北大学学报,2009,30(12):1673-1677.
    [120]万春红,张东宁,杨彩铃,等.水泥篦冷机回路优化控制设计及编程实现[J].电气自动化,32(6):30-34.
    [121]郑坤灿,温治,刘训良,等.高温散料气-固换热过程通用数学模型的研究[J].冶金能源,2010,29(2):27-30.
    [122]张欣,温治,楼国峰,等.高温烧结矿气-固换热过程数值模拟及参数分析[J].北京科技大学学报,2011,33(3):339-345.
    [123]华建社,张成元,徐德龙,等.立式熟料冷却剂内气体流动规律及其影响因素[J].水泥技术,2008,(3):22-27.
    [124]Chen Bin, Wang Cong, Wang Zhiwei, etal. Investigation of gas-solid two-phase flow across circular cylinders with discrete vortex method[J]. Applied Thermal Engineering,2009,29:1457-1466.
    [125]Pain C C, Mansoorzadeh S, Oliverira D. A study of bubbling and slugging fluid beds using the two-fluid granular temperature model [J]. International Journal of Multiphase Flow.2001,27:527-551.
    [126]Gidaspow D. Multiphase Flows and Fluidization[J]. San Diego:Academic Press Inc, 1994:86-119.
    [127]Maxey M R, Riley J J. Equation of motion for a small rigid sphere in a nonuniform flow[J]. Phys. Fluids,1983,26:883-889.
    [128]Auton T R, Hunt J C R, Prud M. The force exerted on a body in inviscid unsteady nonuniform rotational flow[J]. Fluid Mech,1988,197:241-257.
    [129]Sene K, Hunt J C R, Thomas N H. The role of coherent structures in bubble transport by turbulent shear flows [J]. Fluid Mech.1994,259:219-240.
    [130]Yang X. Two-phase flow dynamics simulations and modeling [D]. University of Birmingham, UK,1996.
    [131]吴青娇.加热炉内流动、燃烧及传热的数值模拟和优化研究[D].湖南:中南大学,2010.
    [132]李欣峰.炼铜闪速炉熔炼过程的数值分析与优化[D].湖南:中南大学,2001.
    [133]杨贤平.燃煤电厂烟气湿法脱硫系统数值模拟与优化设计[D].江苏:东南大学,2008.
    [134]胡岩.管壳式换热器数值模拟研究[D].哈尔滨:哈尔滨工业大学,2007.
    [135]Georgallis M, Nowak P, Salcudean M, et al. Modelling the Rotary Lime Kiln [J]. The Canadian Journal of Chemical Engineering,2005,83:212-223.
    [136]彭家强,宋丹路,宗营营.基于Fluent四通道煤粉燃烧器流场数值模拟[J].机械科学与技术,2012,31(1):63-66.
    [137]周力行.湍流气粒两相流动和燃烧的理论与数值模拟[M].陈文芳,林文漪,译.北京:科学出版社,1994.
    [138]Aichun Ma, Ji em in Zhou, Wangxing Li. CFD prediction of cold air flow field for multi-air channel pulverized coal burner in rotary kiln[C].37th intersociety energy conversion engineering conference,2002:418-421.
    [139]马爱纯.熟料窑内流动、传热和煤粉燃烧的数值模拟和优化研究[D].湖南:中南大学,2007.
    [140]岑可法,樊建人.煤粉颗粒在气流中的受力分析及运动轨迹的研究[J].浙江大学学报,1987,21(6):01-11.
    [141]Jahnson P C, Jackson R. Frictional-collisional constitutive relations for granular materials, with application to plane shearing[J]. Fluid Mech,1987(176):67-93.
    [142]Huanpeng Liu, Wenti Liu, Jianxiang Zheng, etal. Numerical study of gas-solid flow in a precalciner using kenetic theory of granular flow[J]. Chemical Engineering Journal 2004,102:151-160.
    [143]Neri, Gidaspow D. Riser hydrodynamics:simulation using kinetic theory[J]. AJCHE Journal,2000,46(1):52-67.
    [144]赖远明,张明义,喻文兵,等.封闭条件下抛石路堤降温效果及机理的试验研究[J].冰川冻土,2004,26(5):576-581.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700