用户名: 密码: 验证码:
压电智能骨料力学模型与试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着土木工程结构日益向大型化、复杂化、智能化方向发展,混凝土结构健康监测与损伤识别的理论方法、试验研究及工程应用已经成为学术界的研究焦点。压电智能材料,如锆钛酸铅(Lead Zirconate Titanate,简称PZT)具有传感和驱动于一体的优越特性,其应用为重大工程结构和基础设施的长期健康监测与定性、定量的整体状态损伤识别技术提供了全新思路。通过实时有效地处理来自监测系统海量的不确定性的测量数据与信息,对结构的健康情况和损伤状态进行评价,可实现结构的服役状况监测,保证了结构的安全性、完整性、适用性和耐久性。基于上述背景,对压电智能骨料(传感器和驱动器)的力学模型、力学性能及其在混凝土结构健康监测与损伤识别中的应用等相关技术进行详细研究。具体工作包括以下几个方面:
     (1)给出了一种自行封装的压电智能骨料的制作工艺。
     针对压电智能材料与结构系统的特点,以混凝土基压电智能材料为传感和驱动元件,设计一种自行封装并与结构相容性良好的新型多功能“压电智能骨料(Piezoelectric Smart Aggregate)"作为传感器和驱动器使用。进一步改进和完善了其制作工艺和封装技术,有效地解决了传统压电材料相容性不好、耐久性差、具有易损性等方面的问题。建立了基于压电智能骨料列阵的智能结构健康监测体系与监测流程,为相应力学模型建立、力学性能分析、试验研究及其实际应用奠定了理论基础。
     (2)建立了压电传感器的力学模型,并进行了理论分析,数值计算与试验验证。
     基于PZT正压电效应的本构关系和结构动力学的振动原理,采用集总质量法,分别建立了粘贴式和埋入式PZT传感器的力学模型及数学模型;考虑粘结层阻尼效应,求解了传感器的振动方程及其电压表达式。通过简谐荷载激励下的数值模拟分析,确定了传感器力学与电学特性的对应关系,进一步明确了各个参数的影响规律;考虑不同胶层厚度和作用力影响,分别对粘贴和埋入式PZT传感器的传感性能进行试验研究,并与理论模型和数值分析结果相比较,验证了所建立的传感模型的正确性。
     (3)建立了压电驱动器的力学模型,并进行了理论分析,数值计算与试验验证。
     基于PZT逆压电效应的本构关系和结构动力学的振动原理,采用集总质量法,分别建立了单片PZT沿长度方向自由振动、粘贴式和埋入式PZT驱动力学模型;推导了PZT驱动运动方程并求解驱动力表达式;通过数值算例,考虑胶层等性能参数对驱动性能的影响,分析了驱动器输入信号与输出信号的关系、胶层性能及PZT尺寸对驱动力的影响;对粘贴和埋入式PZT驱动器的驱动性能分别进行试验研究,验证了驱动模型的合理性。
     (4)对压电智能骨料截面抗压与抗剪及冻融循环性能进行试验研究,揭示了压电智能骨料在抗压与抗剪及抗冻融环境下的服役性能。
     通过被动监测技术,研究压电智能骨料在不同应力作用下抵抗外荷载(抗压、抗剪)以及抗冻融循环的能力,分析了压电智能骨料自身受力性能和耐久性能。结果表明:压电智能骨料具有良好的抗压、抗剪及抗冻融循环的能力,能够满足使用功能的要求。从而使其在实际工程条件下能很好地保持力学性能的稳定性,确保与混凝土材料具有同样的服役寿命。
     (5)建立了基于小波分析的混凝土结构损伤统计指标和损伤程度、损伤概率及损伤位置判定方法,并提出了基于小波分析的压电智能骨料混凝土结构损伤统计识别算法。
     基于压电智能骨料的优越特性,将自行设计封装的压电智能骨料埋置在混凝土结构的指定位置,利用主动健康监测技术和压电波动理论,对混凝土结构的损伤情况进行实时在线监测及试验研究。建立了基于小波分析的混凝土结构损伤统计指标和损伤程度、损伤概率及损伤位置判定方法,并提出了基于小波分析的压电智能骨料混凝土结构损伤统计识别算法。试验结果证明了利用压电智骨料传感器和驱动器开展混凝土结构长期健康监测与损伤统计识别技术及其推广应用于实际工程的有效性和可行性。
The theoretical method, experimental investigation and practical application of structural health monitoring (SHM) as well as damage identification (DI) have received considerable attentions in academic and engineering field along with the development of civil engineering structures into large scale, complicated and intelligent technology and the emergence of new smart materials. Piezoelectric smart materials, such as Lead Zirconate Titanate (PZT), play dual functions of both sensing and actuating and have many other distinct advantages. The application of PZT provides a new way for long-term SHM and qualitative and quantitative overall damage detection technology of significant engineering structures and infrastructures. Meanwhile, the convenient and practical SHM system and damage identification strategy based on PZT have implemented the status monitoring of structure service by real-time and effective processing of the vast amounts of uncertainty data and information from monitoring system. The structural health and damage status are evaluated to ensure the safety, completeness, applicability and durability of structures. Based on the above background, the author of this thesis ambitiously engaged in the research of the mechanical modeling of PZT smart aggregate (sensor and actuator), mechanical properties and its application in SHM and damage identification. The research work and innovations concerning theoretical analysis, numerical modeling and experimental research, are as follows:
     Firstly, the fabrication process of piezoelectric smart aggregates has been proposed. According to the characteristics of piezoelectric smart materials and structural systems, with the concrete-based PZT as sensing and actuating element, the new multifunctional piezoelectric smart aggregates working as transducers which have good compatibility with civil engineering structures and encapsulated in concrete block, are designed and developed, respectively. The fabrication process and encapsulation technique have been further improved and perfected. The serious problem affecting its application due to bad compatibility, poor durability and vulnerability of traditional PZT materials are effectively solved. The smart SHM system and monitoring processes based on PZT smart aggregate arrays are developed in order to lay a theoretical foundation for establishment of mechanical models, analysis of mechanical properties, experimental study and its application.
     Secondly, the mechanical model of piezoelectric smart sensor is built, the theoretical analysis, numerical simulation and experimental validation are performed, respectively. Based on direct piezoelectric effect and PZT constitutive relation as well as the vibration principle of structure dynamics, mechanical models of surface-bonded and embedded PZT sensors are simplified and established by employing the lumped-mass method. The vibration equation of PZT sensor is solved and the voltage expression is obtained in consideration of bonding layer damping effect. Numerical simulation analysis by using harmonic exciting load is implemented to determine the correspondence relation between the mechanical and electrical properties of PZT sensors, and the influence of different parameters is further defined. Considering different adhesive thickness and applying force, the experimental study on the sensing performance of surface-bonded and embedded PZT sensor is respectively carried out using the proposed models. The theoretical model and numerical results are compared with test results to verify the correctness of sensing model.
     Thirdly, the mechanical model of piezoelectric smart actuator is built, and theoretical research, numerical calculation and experimental validation are performed. According to the converse piezoelectric effect and PZT constitutive relation as well as the vibration principle of structure dynamics, the PZT actuating model is developed based on the free vibration along-length direction of monolithic PZT and the surface-bonded and embedded PZT by using lumped-mass method. The motion equation of PZT actuator and the expression of actuating force are derived and solved. The relationship between input signals and output signals of PZT actuator is analyzed by numerical examples. The influence of adhesive properties and the size on the PZT actuating force is concurrently studied. In view of the effect of different adhesive properties on PZT actuating force, the proposed surface-bonded and embedded models of PZT actuator and the impact on the adhesive layer of PZT actuating force are further validated by experiments. The experimental study on the driving performance of surface-bonded and embedded PZT actuator is respectively carried out using the proposed models. The experimental results match well with the theoretical analysis and the rationality of the actuator model is verified.
     Fourthly, the mechanical properties of PZT smart aggregates resisting to compression and shear failure and the freeze-thaw cycle are theoretically analyzed and experimentally studied. The service performances of PZT smart aggregates are revealed. The passive monitoring technology using the PZT-based transducers is employed to detect and analyze the performance of smart aggregates under different stress and the influence of the freeze-thaw cycle on smart aggregates for the purpose of more fully and intuitively understanding their durability and mechanical properties. The results show that PZT smart aggregate has good compression, shear and freezing-thawing resisting ability, and can satisfy the requirements of the use function, which make the smart aggregates well maintain the stability of mechanical properties and ensure the same service life to concrete material in practical engineering.
     Finally, the decision method of damage statistical index, damage degree, damage probability and damage location of concrete structure is established and the damage statistic identification algorithm for piezoelectric smart concrete structures is proposed based on wavelet analysis. Based on the superior characteristics of PZT smart aggregate sensor and actuator embedded in the designated position of concrete structure, the real-time online monitoring experimental research is conducted and an innovative method for damage detection is demonstrated by combing the active health monitoring technology-based PZT wave with the theory of probability and statistics and wavelet analysis as well as damage detection technology. The damage index-based wavelet analysis is effectively made and damage probability and degree-based statistics characteristics are developed to evaluate the damage states according to the attenuation of propagation wave. Furthermore, the rough damage location is effectively determined. The damage index-based wavelet analysis is also performed, the damage probability-based probability and statistics are proposed to convert uncertainty of damage detection into the mathematics description in context of probability and statistic. The proposed statistical algorithm of damage identification can effectively determine damage probability and damage degree, and provide a prediction for critical damage location of concrete structure. The research findings prove the tremendous effectiveness and feasibility of structural health comprehensive monitoring and damage detection technique in various large-scale concrete structures identification utilizing PZT transducers.
引文
[1]SUN M Q, STASZEWSKI W J and SWAMY R N. Application of low-profile piezoceramic transducers for health monitoring of concrete structures [J]. NDT & E International,2008,41(8): 589-595.
    [2]李宏男,李东升.土木工程结构安全性评估、健康监测及诊断述评[J].地震工程与工程振动,2002,22(3):82-90.
    [3]朱宏平,余璟,张俊兵.结构损伤动力检测与健康监测研究现状与展望[J].工程力学,2011,28(2):1-11.
    [4]WEI F. Health monitoring and damage identification of composite structures [D]. Washington: Department of Civil and Environmental Engineering, Washington State University,2011.
    [5]DUAN W H, WANG Q and QUEK S T. Applications of piezoelectric materials in structural health monitoring and repair:selected research examples [J]. Materials,2010,3(12):5169-5194.
    [6]李宏男,高东伟,伊廷华.土木工程结构健康监测系统的研究状况与进展[J].力学进展,2008,38(2):151-166.
    [7]SHIN S W, QURESHI A R, LEE J Y, et al. Piezoelectric sensor based nondestructive active monitoring of strength gain in concrete [J]. Smart Materials and Structures,2008,17(5):1-8.
    [8]ZHU J S and HE L K. Piezoelectric actuator/sensor wave propagation based nondestructive active monitoring method of concrete structures [J]. Journal of Wuhan University of Technology-Materials Science Edition,2011,26(3):541-547.
    [9]孙明清,李卓球,侯作富.压电材料在土木工程结构健康监测中的应用[J].混凝土,2003,(3):22-24.
    [10]段向胜,周锡元.土木工程监测与健康诊断—原理、方法及工程实例[M].北京:中国建筑工业出版社,2010,72-78,135-160.
    [11]李宏男,赵晓燕.压电智能传感结构在土木工程中的研究和应用[J].地震工程与工程振动,2004,24(6):165-172.
    [12]吴克恭.埋入压电材料的智能复合材料结构振动主动控制理论和实验研究[D].西安:西北工业大学力学与十木建筑学院,2003.
    [13]HOUSNER G W, BERGMAN L A, CAUGHEY T K, et al. Structural control:past, present, and future [J]. Journal of Waterway, Port, Coastal and Ocean Engineering,1997,123(9):897-971.
    [14]SOHN H, FARRAR C R, FRANCOIS M H, et al. A review of structural health monitoring literature: 1996-2001 [R]. Los Alamos:Los Alamos National Laboratory,2004.
    [15]姜绍飞.结构健康监测-智能信息处理及应用[J].工程力学,2009,26(增刊Ⅱ):184-212.
    [16]QIU L and YUAN S F. Design and experiment of PZT network-based structural health monitoring scanning system [J]. Chinese Journal of Aeronautics,2009,22(5):505-512.
    [17]李宏男.结构健康监测[M].大连:大连理工大学出版社,2005,5-35.
    [18]KWON K and FRANGOPOL D M. Bridge fatigue reliability assessment using probability density functions of equivalent stress range based on field monitoring data [J]. International Journal of Fatigue,2010,32(8):1221-1232.
    [19]KO J M, NI Y Q, ZHOU H F, et al. Investigation concerning structural health monitoring of an instrumented cable-stayed bridge [J]. Structures & Infrastructure Engineering,2009,5(6):497-513.
    [20]杨晓明,李宗津.水泥基压电传感系统在混凝土结构动态监测中的应用[J].地震工程与工程振动,2012,32(5):111-118.
    [21]HU Y H and YANG Y W. Wave propagation modeling of the PZT sensing region for structural health monitoring [J]. Smart Materials and Structures,2007,16(3):706-716.
    [22]MORITA K and TESHIGAWARA M. Structural health monitoring of an existing 8-story building using strong motion observation data and structural design data [C]. San Diego:Proceedings of SPIE, 2006.
    [23]欧进萍.重大工程结构智能传感网络与健康监测系统的研究与应用[J].中国科学基金,2005,19(1):8-12.
    [24]WEI F and QIAO P Z. Vibration-based damage identification methods:a review and comparative study [J]. Structural Health Monitoring-an International Journal,2011,10(1):83-111.
    [25]VIEIRA F J, BAPTISTA F G and INMAN D J. Time-domain analysis of piezoelectric impedance-based structural health monitoring using multilevel wavelet decomposition [J]. Mechanical Systems and Signal Processing,2011,25(5):1550-1558.
    [26]WANG Z. Statistical damage detection based on frequencies of sensitivity-enhanced structures [J], International Journal of Structural Stability and Dynamics,2008,8(2):231-255.
    [27]DOEBLING S W, FARRAR C R, PRIME M B, et al. Damage identification and health monitoring of structural and mechanical systems from changes in their vibration characteristics:a literature review [R]. Los Alamos:Los Alamos National Laboratory,1996.
    [28]ROBLES S I, ORTEGA N F and ORBANICH C J. Damage identification in 2D structures through static response [J]. The Open Construction and Building Technology Journal,2008, (2):176-184.
    [29]李杰,陈隽.部分输入未知时求解动力复合反演问题的补偿算法[J].计算力学学报,2002,19(3):310-314.
    [30]BAGCHI A, HUMAR J, XU H, et al. Model-based damage identification in a continuous bridge using vibration data [J]. Journal of Performance of Constructed Facilities,2010,24(2):148-158.
    [31]SONG F, HUANG G L, KIM J H, et al. On the study of surface wave propagation in concrete structures using a piezoelectric actuator/sensor system [J]. Smart Materials and Structures,2008, 17(5):1-8.
    [32]MENG Y Y, YAN S, SUN W, et al. Experimental research on crack damage detection of concrete beam based on PZT wave method [C]. San Diego:Proceedings of SPIE,2010.
    [33]TRENDAFILOVE I, HEYLEN W and SAS P. Two statistical pattern recognition methods for damage localization [C]. Belgium:Proceedings of IMAC,1999.
    [34]PAPADOPOULOS M and CARCIA E. Probabilistic finite element model updating using random variable theory [J]. AIAA Journal,2001,39(1):193-195.
    [35]HE Z M, LOH T H and ONG E H. A probabilistic approach to evaluate the reliability of piezoelectric micro-actuators [J]. IEEE Transactions on Reliability,2005,54(1):83-91.
    [36]SOHN H, FUGATE M L and FARRAR C R. Damage diagnosis using statistical process control [C]. South Ampton:Conference on Recent Advances in Structural Dynamics,2000.
    [37]WORDEN K, ALLEN D W, SOHN H, et al. Damage detection in mechanical structures using extreme value statistics [C]. San Diego:Proceedings of SPIE,2002.
    [38]YEO I, SHIN S and LEE H S. Statistical damage assessment of framed structures from static responses [J]. Journal of Mechanical Engineering,2000,126(4):414-421.
    [39]SAITO T, MASE S and MORITA K. A probabilistic approach to structural damage estimation [J]. Structural Control and Health Monitoring,2005,12(3-4):283-299.
    [40]李宏男,孙鸿敏.基于小波分析和神经网络的框架结构损伤诊断方法[J].地震工程与工程振动,2003,23(5):141-148.
    [41]冯新,李国强,周晶.土木工程结构健康诊断中的统计识别方法综述[J].地震工程与工程振动,2005,25(2):105-113.
    [42]张启伟.桥梁健康监测中的损伤特征提取与异常诊断[J].同济大学学报,2003,31(3):258-262.
    [43]袁旭东.基于不完备信息土木工程结构损伤识别方法研究[D].大连:大连理工大学建设工程学部,2005.
    [44]杨晓明.土木工程结构的性能监测系统与损伤识别方法研究[D].天津:天津大学土木工程学院,2006.
    [45]林秀萍.基于概率统计方法的结构损伤识别研究[D].重庆:重庆大学土木工程学院,2009.
    [46]刘智.利用压电传感器的混凝土结构损伤识别算法研究[D].沈阳:沈阳建筑大学土木工程学院,2009.
    [47]MEHRABIAN A R and AGHILY K. A novel technique for optimal placement of piezoelectric actuators on smart structures [J]. Journal of Franklin Institute,2011,348(1):12-23.
    [48]李惠,欧进萍.智能混凝土与结构[J].工程力学,2007,24(增刊):45-61.
    [49]SUN M, STASZEWSKI W J and SWAMY R N. Smart sensing technologies for structural health monitoring of civil engineering structures [J]. Advances in Civil Engineering,2010,2010:1-13.
    [50]杜彦良,孙宝臣,张光磊.智能材料与结构健康监测[M].武汉:华中科技大学出版社,2011,149-157.
    [51]李双蓓.压电智能结构分析的新方法研究及其应用[D].广西:广西大学土木建筑工程学院,2012.
    [52]Gu H C. Innovative application of smart piezoelectric material to vibration control and health monitoring [D]. Houston:Department of Mechanical Engineering University of Houston,2007.
    [53]HOU S, OU J P and ZHANG H B. A PZT-based smart aggregate for compressive seismic stress monitoring [J]. Smart Materials and Structures,2012,21(10):105035-105043.
    [54]周晚林.压电智能结构冲击荷载及损伤识别方法的研究[D].南京:南京航空航天大学航空宇航学院,2005.
    [55]MATVEENKO V P, KLIGMAN E P, YURLOV M A, et al. Simulation and optimization of dynamic characteristics of piezoelectric smart structures [J]. Physical Mesomechanics,2012,15(3-4): 190-199.
    [56]GABBERT U, LEFEVRE J, LAUGWITZ F, et al. Modeling and analysis of piezoelectric smart structures for vibration and noise control [J]. International Journal of Applied Electromagnetics and Mechanics,2009,31(1):29-39.
    [57]QIU J and JI H. Research on applications of piezoelectric materials in smart structures [J]. Frontiers of Mechanical Engineering,2011,6(1):99-117.
    [58]HU Y H and YANG Y W. Wave propagation modeling of the PZT sensing region for structural health monitoring [J]. Smart Materials and Structures,2012,21(10):706-716.
    [59]SHIN S W and OH T K. Application of electro-mechanical impedance sensing technique for online monitoring of strength development in concrete using smart PZT patches [J]. Construction and Building Materials,2009,23(2):1185-1188.
    [60]LI Y Y, CHENG L and LI P. Modeling and vibration control of a plate coupled with piezoelectric material [J]. Composite Structures,2003,62(2):155-162.
    [61]LEE C K. Theory of laminated piezoelectric plates for the design of distributed sensors/actuators, part Ⅰ:governing equations and relationships [J]. Journal of the Acoustical Society of America,1990, 87(3):1144-1158.
    [62]CAIRN S D, ABDALLAH M G, CAMPBELL J F, et al. A multi-purpose sensor for composite structures based on a piezoelectric film [C]. Alexandria USA:Conference on Active Material and Adaptive Structure,1991.
    [63]TZOU H S. Distributed modal identification and vibration control of continua:theory and applications [J]. Journal of Dynamic Systems, Measurement and Control,1991,113(3):494-499.
    [64]CHAI W K, SMITHMAITRIE P and TZOU H S. Neural potentials and micro-signals of non-linear deep and shallow conical shells [J]. Mechanical Systems and Signal Processing,2004,18(4): 959-975.
    [65]TONG L Y, SUN D CH and ATLURI S N. Sensing and actuating behaviors of piezoelectric layers with debonding in smart beams [J]. Smart Materials and Structures,2001,10(4):713-723.
    [66]BIRMAN V and SIMONYAN A. Theory and applications of cylindrical sandwich shells with piezoelectric sensors and actuators [J]. Smart Materials and Structures,1994,3(4):391-396.
    [67]孙宝元,钱敏,张军.压电式传感器与测力仪研发回顾与展望[J].大连理工大学学报,2001,41(2):127-133.
    [68]石立华,陶宝祺.埋入压电元件的自诊断智能结构的理论分析与实验研究[J].实验力学,1998,(3):370-376.
    [69]孙明清,李卓球.压电陶瓷-混凝土机敏结构研究[J].混凝土,2004,(2):5-9.
    [70]石艺娜,周又和,赵强.压电层合圆板传感器的非线性静力耦合分析[J].力学季刊,2003,24(1):36-42.
    [71]文玉梅,李平.压电换能型传感器电学响应特性研究[J].压电与声光,1999,21(1):17-21.
    [72]陈雨.混凝土压电陶瓷敏感模块特性研究[D].重庆:重庆大学光电工程学院,2006.
    [73]朱炳杰,陶溢,吴宇列,等.杯形陀螺压电片粘结胶层对谐振子振动特性的影响规律研究[J].传感器技术,2011,24(9):1248-1252.
    [74]李宏男,李军,宋钢兵.采用压电智能材料的土木工程结构控制研究进展[J].建筑结构学报,2005,26(3):1-8.
    [75]石荣,陈伟民,朱永,等.采用压电片阵列传感进行损伤检测的研究[J].压电与声光,2000,22(4):277-280.
    [76]孙艾薇.结构健康监测中的压电传感技术研究[D].长沙:中南大学土木工程学院,2010.
    [77]TZOU H S, BAO Y and VENKAYYA V B. Parametric study of segmented transducers laminated on cylindrical shells, partⅠ:sensor patches [J]. Journal of Sound and Vibration,1996,197(2):207-224.
    [78]GHAEDI S K and MISRA A K. Active control of shallow spherical shells using piezoceramic sheets [J]. Smart Structures and Materials:Smart Structures and Integrated Systems,1999,3668:890-912.
    [79]PADMA A. Modeling and control of smart structures with bonded piezoelectric sensors and actuators [J]. Smart Materials and Structures,1994, (3):344-353.
    [80]CRAWLEY E F and LUIS J D. Use of piezoelectric actuator as elements of intelligent structures [J]. AIAA Journal 1987,25(10):1373-1385.
    [81]VEL S S and BAILLARGEON B P. Analysis of static deformation, vibration and active damping of cylindrical composite shells with piezoelectric shear actuators [J]. Journal of Vibration and Acoustics, Transactions of the ASME,2005,127(4):395-407.
    [82]GLAZOUNOV A E, ZHANG Q M and KIM C. Torsional actuator based on mechanically amplified shear piezoelectric response [J]. Sensors and Actuators A:Physical,2000,79(1):22-30.
    [83]BENJEDDOU A. Shear-mode piezoceramic advanced materials and structures:a state of the art [J]. Mechanics of Advanced Materials and Structures,2007,14(4):263-275.
    [84]王威远,魏英杰,王聪,等.压电智能结构传感器/作动器位置优化研究[J].宇航学报,2007,28(4):1025-1029.
    [85]SUN C T and ZHANG X R. Use of thickness-shear mode in constructing adaptive sandwich structures [J]. Smart Structures and Materials,1995,4(3):470-480.
    [86]陈勇,陶宝祺.压电复合材料薄壳结构振动主动控制[J].压电与声光,1998,20(4):228-232.
    [87]马治国,闻邦椿,颜云辉.智能结构中压电材料厚度的设计[J].机械设计,1999,16(1):15-17.
    [88]朱建国,骆英,柳祖亭.基于压电致动器的有限元分析[J].江苏大学学报,2004,25(3):273-276.
    [89]吴克恭,葛森,闫云聚.梁板结构埋入压电片的深度和厚度优化研究[J].应用力学学报,2003,20(3):122-126.
    [90]孙东昌,于大钧.梁振动控制的分布压电单元法[J].北京大学学报,1996,32(5):585-593.
    [91]SONG G B, OLMI C and GU H C. An overheight vehicle-bridge collision monitoring system using piezoelectric transducers [J]. Smart Materials and Structures,2007,16(2),462-468.
    [92]DONG B Q and LI Z J. Cement-based piezoelectric ceramic smart composites [J]. Composites Science and Technology,2005,65(9):1363-1371.
    [93]YONG C M, KOO K K and YON P H. The real-time health monitoring system of a large structure based on non-destructive testing [C]. San Diego:Proceedings of SPIE,2003.
    [94]程书剑,刘西拉,方从启.混凝土结构埋入式传感器的耐久性研究[J].四川建筑科学研究,2009,35(3):50-54.
    [95]孙法国.压电结构的可靠性分析[D].哈尔滨:哈尔滨工程大学建筑工程学院,2006.
    [96]孙威,阎石,蒙彦宇,等.基于压电波动法的混凝土裂缝损伤主动被动监测对比试验[J].沈阳建筑大学学报,2012,28(2):193-199.
    [97]LI Z X, YANG X M and LI Z J. Application of cement-based piezoelectric sensors for monitoring traffic flows [J]. Journal of Transportation Engineering,2006,132(7):1-9.
    [98]SU Z Q, WANG X M, CHEN Z P, et al. A built-in active sensor network for health monitoring of composite structures [J]. Smart Materials and Structures,2006,15(6):1939-1949.
    [99]BROWNJOHN J M W. Structural health monitoring of civil infrastructure [J]. Philosophical Transactions of the Royal Society,2007,365:589-622.
    [100]WANG C S, WU F and CHANG F K. Structural health monitoring from fiber-reinforced composites to steel-reinforced concrete [J]. Smart Materials and Structures,2001,10(3):548-522.
    [101]BHALLA S, SOH C K and LIU Z X. Wave propagation approach for NDE using surface bonded piezoceramics [J]. NDT & E International,2005,38(2):143-150.
    [102]AGHIL Y K. and GEORGE V. Development and application of an active control system for smart structures using the wave method [J]. Journal of Vibration and Control,2005,11(8):1043-1065.
    [103]SAAFIM M and SAYYAH T. Health monitoring of concrete structures strengthened with advanced composite materials using piezoelectric transducers [J]. Composites Part B:Engineering,2001,32(4): 333-342.
    [104]SONG G B, GU H C, MO Y L, et al. Concrete structural health monitoring using embedded piezoceramic transducers [J]. Smart Materials and Structures,2007,16(4):959-968.
    [105]赵晓燕,李宏男.一种改进的小波分析消噪方法及其在健康监测中的应用[J].振动与冲击,2007,26(10):137-139.
    [106]SUN M Q, LIU Q P, LI Z Q, et al. A study of piezoelectric properties of carbon fiber reinforced concrete and plain paste during dynamic loading [J]. Cement and Concrete Research,2000,30(10): 1593-1595.
    [107]陈雨,文玉梅,李平,等.混凝土中压电陶瓷在变荷载作用下的特性研究[J].压电与声光,2005,27(6):700-703.
    [108]谢东,庹有康.应力敏感压电无源阵列传感器在混凝土结构健康监测中的应用研究[J].重庆交通学院学报,2000,19(2):75-78.
    [109]YAN S, SUN W, MENG Y Y, et al. Crack monitoring for reinforced concrete columns based on piezoceramic transducers [C]. San Diego:Proceedings of SPIE,2009.
    [110]BHALLA S. A mechanical impedance approach for structural identification, health monitoring and non-destructive evaluation using piezo-impedance transducers [D]. Singapore:School of Civil and Environmental Engineering Nanyang Technological University,2004.
    [111]YANG Y W, LIU H, ANNAMDAS V G M, et al. Monitoring damage propagation using PZT impedance transducers [J]. Smart Materials and Structures,2009,18(4):1-9.
    [112]SUN F P, CHAUDHRY Z, LIANG C, et al. Truss structure integrity identification using PZT sensor-actuator [J]. Journal of Intelligent Material Systems and Structures,1995,16(2):134-139.
    [113]GIURGIUTIU V, REYNOLDS A and ROGERS C A. Experimental investigation of E/M impedance health monitoring for spot-welded structural joints [J]. Journal of Intelligent Material Systems and structure,2000,10(10):802-812.
    [114]杨光瑜.基于PZT阻抗分析的结构健康监测技术研究[D].长沙:国防科学技术大学机电工程与自动化学院,2002.
    [115]芮延年,刘文杰,郭旭红,等.基于压电阻抗的设备结构健康智能诊断[J].中国制造业信息化,2003,32(8):122-124.
    [116]徐茂华.结构损伤检测PZT法的理论与试验研究[D].武汉:华中科技大学土木工程与力学学院,2005.
    [117]王丹生.基于反共振频率和压电阻抗的结构损伤检测[D].武汉:华中科技大学土木工程与力学学院,2006.
    [118]冯伟.应用于结构健康监测的压电阻抗技术研究[D].南京:南京航空航天大学航空宇航学院,2007.
    [119]孙威,阎石,张莺.基于压电陶瓷传感器的混凝土结构健康监测技术的数值模拟研究[J].混凝土,2008,(2):34-38.
    [120]SONG G B, MO Y L, OTERO K, et al. Health monitoring and rehabilitation of a concrete structure using intelligent materials [J]. Smart Materials and Structures,2006,15(2):309-314.
    [121]郑旭峰,肖沙里,谭霞,等.压电传感技术在桥梁振动检测中的研究与应用[J].压电与声光,2003,25(1):71-74.
    [122]MENG Y Y, YAN S and SUN W. Experimental research on damage detection of concrete structures based on piezoelectric smart aggregates [J]. Applied Mechanics and Materials,2012,166-169: 1145-1151.
    [123]张福学.现代压电学(上)[M].北京:科学出版社,2001,10-28,25-34.
    [124]QIN Q H. Advanced mechanics of piezoelectricity [M]. Bei Jing:Higher Education Press,2012, 18-36.
    [125]KABEYA K. Structural health monitoring using multiple piezoelectric sensors and actuators [D]. Virginia:Faculty of Virginia Polytechnic Institute and State University,1998.
    [126]高长银.压电石英晶片扭转效应研究及新型扭矩传感器的研制[D].大连:大连理工大学机械制造及其自动化,2004.
    [127]王矜奉,苏文斌,王春明,等.压电振动理论与应用[M].北京:科学出版社,2011,15-33,158-178.
    [128]王春雷,李吉超,赵明磊.压电铁电物理[M].北京:科学出版社,2009,8-20,73-134.
    [129]SONG G B, GU H C and MO Y L. Smart aggregates:multi-functional sensors for concrete structures actutorial and a review [J]. Smart Materials and Structures,2008,17(3):1-17.
    [130]MATTHEW M and CHRIS C. Smart aggregates containing piezoceramic:fabrication and applications [R]. Houston:NSF-REU Program Smart Aggregates Report,2007.
    [131]GU H C, SONG G B, DHONDE H, et al. Concrete early-age strength monitoring using embedded piezoelectric transducers [J]. Smart Materials and Structures,200615(6):1837-1845.
    [132]YASHAR M, GU H C, BELARBI A, et al. Smart aggregate-based damage detection of circular RC columns under cyclic combined loading [J]. Smart Materials and Structures,2010,19(6):140-158.
    [133]周文韦.结构混凝土压电机敏监测技术的基础研究[D].重庆:重庆大学光电工程学院,2003.
    [134]郭浩.压电机敏模块性能分析[D].重庆:重庆大学光电工程学院,2006.
    [135]綦宝晖,阎石,刘福学,等.利用压电智能骨料的钢管混凝土柱密实性检测试验[J].沈阳建筑大学学报,2012,28(3):491-496.
    [136]袁宁宁.基于压电智能骨料的钢筋混凝土桥墩船-桥碰撞监测研究[D].大连:大连理工大学建设工程学部,2012.
    [137]张海滨.基于压电智能骨料的钢筋混凝土结构地震应力监测方法[D].大连:大连理工大学建设工程学部,2012.
    [138]YAN S, SUN W, SONG G B, et al. Health monitoring of reinforced concrete shear walls using smart aggregates [J]. Smart Materials and Structures,2009,18(4):1-7.
    [139]YANG M and QIAO P Z. Modeling and experimental detection of damage in various materials using the pulse-echo method and piezoelectric sensors/actuators [J]. Smart Materials and Structures, 2005,14(6):1083-1100.
    [140]KIM H and MELHEM H. Fourier and wavelet analyses for fatigue assessment of concrete beams [J]. Experimental Mechanics,2003,43(2):131-140.
    [141]李旭,霍林生,李宏男.基于波动理论的压电智能混凝土单轴破坏实验研究[J].防灾减灾工程学报,2010,30(增刊):188-190.
    [142]张德丰MATLAB小波分析[M].北京:机械工业出版社,2010,49-97.
    [143]FARZAD E. Piezoelectric materials and devices-practice and applications [M]. Rijeka Croatia:In Tech Publisher,2013,70-79.
    [144]SOHN H, WORDEN K and FARRA C R. Statistical damage classification under changing environmental and operational conditions [J]. Journal of Intelligent Materials Systems and Structures, 2002,13(9):561-574.
    [145]ERDOGAN A, MAHMOUD M and DAVID S. Damage pattern recognition for structural health monitoring using fuzzy similarity prescription [J]. Computer Aided Civil and Infrastructure Engineering,2006,21(8):549-560.
    [146]道格拉斯,蒙哥马利,诺尔马,等.工程统计学(第3版)[M].北京:中国人民大学出版社,2005,18-51.
    [147]何正风.MATLAB概率与数理统计分析[M].北京:机械工业出版社,2012,32-88.
    [148]孙威.利用压电陶瓷的智能混凝土结构健康监测技术[D].大连:大连理工大学建设工程学部,2009.
    [149]周静海,何海进,孟宪宏,等.再生混凝土基本力学性能试验[J].沈阳建筑大学学报,2010,26(3):464-468.
    [150]QIAO P Z. Seismic performance and smart health monitoring of concrete with recycled aggregate Part I:smart health monitoring of concrete with recycled aggregate [R]. Washington:Transportation Northwest Regional Center X,2010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700