用户名: 密码: 验证码:
普通混凝土多轴动态性能试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
混凝土是现代建筑中被广泛应用的建筑材料。动态荷载(如地震、冲击、爆炸、车辆荷载、海浪荷载、风荷载等)能够造成建筑物和构筑物的破坏甚至倒塌,造成财产和生命的损失。混凝土结构的动力复杂受力分析是结构设计中的难点,例如框架结构的节点、核安全壳、混凝土拱坝等处于复杂应力状态的结构。我国处于环太平洋与欧亚地震带之间,是地震多发国家。现有的混凝土多轴动态性能研究成果中,单轴动态性能研究比较多,多轴动态性能研究比较少;爆炸、冲击荷载作用下混凝土性能研究比较多,地震荷载作用下(应变率范围10-5s-1-10-2s-1)混凝土性能研究比较少。因此,地震荷载作用下,多轴应力状态下混凝土的动态性能研究具有非常重要的意义。
     本文采用大连理工大学研制的三轴静、动液压伺服试验机,开展了一系列的混凝土单轴和多轴动态试验。应力组合方式包括:单轴压、单轴拉、定侧压双轴抗压、双轴比例抗压、双轴拉压和三轴抗压;应变率分别为:10-5s-1、10-4s-1、10-3s-1和10-2s-1。利用ABAQUS提供的用户自定义材料模块,编写了混凝土内时损伤动态破坏模型程序,建立了与本文部分试验相应的数值模型,进行了数值计算。
     主要研究内容如下:
     1开展了混凝土单轴抗压、单轴抗拉动态性能试验,获得了试件的破坏形态,单轴压、拉动态强度,峰值荷载处的应变,单轴抗压峰值荷载处的割线模量,得到了单轴抗压、单轴抗拉强度与应变率的关系,获得了不同应变率下的单轴抗压、单轴抗拉应力-应变曲线。
     2开展了定侧压双轴抗压和双轴比例抗压动态性能试验,获得了试件的破坏形态、双轴抗压动态强度和竖向峰值应变;获得了竖向荷载引起的侧向峰值应变、由竖向荷载引起的泊松比;讨论了比例加载与非比例加载两种加载方式对混凝土双轴抗压强度的影响;探讨了混凝土双轴受压强度提高的机理;从侧向变形的角度解释了双轴抗压强度随中间主应力变化的原因;建立了考虑应变率影响的混凝土双轴抗压动态破坏准则。
     3开展了定围压三轴抗压动态性能试验,获得了试件的破坏形态、三轴抗压动态强度和竖向峰值应变;得到了三轴抗压动态强度的计算公式;比较了竖向单调加载和竖向循环加载时混凝土的三轴抗压强度;研究了定围压三轴抗压动态荷载下混凝土的能量耗散和混凝土的损伤。
     4开展了定侧拉双轴拉压动态性能试验,获得了试件的破坏形态、双轴拉压动态强度和拉、压方向上的峰值应变。得到了双轴拉压强度及峰值应变随侧拉应力和应变率的变化规律。建立了考虑应变率影响的双轴拉压动态破坏准则。
     5建立了在单轴、二轴及三轴应力状态下,应变率范围为10-5s-1-10-2s-1的八面体应力空间的混凝土动态破坏准则。为了工程上的实用性,给出了拉、压子午线的上限值、下限值和平均值。
     6在本文建立的多轴动态强度破坏准则和内时损伤动态本构模型的基础上,利用ABAQUS中的用户自定义材料模块(UMAT),建立了与本文试验相应的数值模型并进行了数值计算,验证了自定义混凝土材料模型与本文试验结果是吻合的。
Concrete is a widely used construction material in modern architectures. Dynamic load (such as earthquake load, impact load, explosion load, vehicle load, waves load, wind load, etc.) can cause the damage and collapse of buildings, which can lead to casualties and property losses. In structure design, it is a difficult point to the analyses of complex dynamic force, such as the force analyses of beam-column connections, nuclear containments and concrete arch dams. Since China lies in the earthquake belt along the west of the Pacific Ocean, She is a multi-earthquake-happening country. In existing research results, the works of uniaxial dynamic behavior are much more than these of multi-axial dynamic behavior, the works of concrete dynamic behavior under explosion load and impact load are much more than these of earthquake load. Therefore, it is very important to study the dynamic behavior of concrete under multi-axial stress.
     A series of concrete multi-axial dynamic tests are carried out by the triaxial static and dynamic testing machine. The tests include several stress states:uniaxial compression, uniaxial tension, biaxial compression with constant lateral pressure, biaxial proportional compression, triaxial compression, biaxial tension-compression. The strain rates were10-5s-1,10-4s-1,10-3s-1and10-2s-1. In the UMAT of ABAQUS, the program of concrete endochronic damage constitutive model is written. The corresponding numerical models are established, and the numerical calculations are carried out.
     The main research contents are as follows:
     1Uniaxial compression and uniaxial tension dynamic tests are carried out. Specimen failure modes, dynamic strength, peak strain and the secant modulus at peak load are obtained. The relationships between the uniaxial strength and strain rates are obtained. Stress-strain curves are obtained.
     2The tests of biaxial compression with constant lateral pressure and biaxial proportional compression are carried out. Specimen failure modes, biaxial compressive dynamic strength, vertical peak strain are obtained. Lateral peak strain and the poisson ratio are obtained, which are caused by vertical load. The influence of loading paths on biaxial compressive strength is discussed, and the loading paths include biaxial proportional compression and biaxial compression with constant lateral pressure. Under biaxial compression, the mechanism of strength increase is discussed. From lateral deformation, the reason of biaxial compressive strength changing with middle principal stress is explained. The dynamic failure criteria are respectively established.
     3The tests of triaxial comprssion are carried out. The specimen failure modes, the triaxial compressive dynamic strength, the vertical and lateral peak strain are obtained. The formulas of triaxial dynamic strength are obtained. The strengths of monotonic loading and cyclic loading in vertical direction are compared. Under triaxial compressive dynamic loading, energy dissipation of concrete and damage of concrete are researched.
     4The tests of concrete biaxial dynamic tension-compression are carried out. Specimen failure mode, the tensile-compressive dynamic strength, the peak tensile strain and the peak compressive strain are obtained. The changing rules of strength or strain with strain rates and lateral tensile stress are obtained. The dynamic criterion under tension-compression is established.
     5Using the testing data of this paper, in octahedral space, the multi-axial dynamic criterion is established, in which the range of strain rates is10-5s-1-10-2s-1. For the usability of engineering, three groups of parameters of tensile meridian and compressive meridian are given, which respectively are upper limit, average and lower limit.
     6Based the multi-axial dynamic failure criterion and endochronic damage constitutive model, using UMAT of ABAQUS, the numerical computations are carried out, and the results prove that the material model is agreeing with the testing results of this paper.
引文
[1]中国水利水电科学研究院,电力工业部昆明勘测设计研究院,电力工业部西北勘测设计研究院.DL5073-2000水工建筑物抗震设计规范[S].行业标准-电力,2000.
    [2]中华人民共和国住房和城乡建设部.GB50010-2010混凝土结构设计规范[S].中国建筑工业出版社,2010.
    [3]过镇海,张秀琴,张达成等.混凝土应力-应变全曲线的试验研究[J].建筑结构学报,1982,3(1):1-12.
    [4]王传志,过镇海,张秀琴.二轴和三轴受压混凝土的强度试验[J].土木工程学报,1987,20(1):15-26.
    [5]宋玉普.多种混凝土材料的本构关系和破坏准则[M].北京:中国水利水电出版社,2002.
    [6]Abrams D A. Effect of rate of application of load on the compressive strength of concrete [J]. ASTM Journal,1917,17(2):364-377.
    [7]Jones P G, Richart F E. The effect of testing speed on strength and elastic properties of concrete [J].ASTM Journal,1936,36(2):296-306.
    [8]Watstein D. Effect of straining rate on the compressive strength and elastic properties of concrete [J]. ACI Journal,1953,49(4):729-744.
    [9]Atchley B L, Furr H L. Strength and energy absorption capablities of plain concrete under dynamic and static loadings [J]. ACI Journal,1967,64(11):745-756.
    [10]Hughes B P, Gregory R. Concrete subjected to high rates of loading in compression [J]. Magazine of Concrete Research,1972,24(78):25-36.
    [11]Cowell W L. Dynamic properties of plain Portland cement concrete [R]. Technical Report R447, California:Naval Civil Engineering Laboratory,1966.
    [12]肖诗云,林皋,逯静洲,等.应变率对混凝土抗压特性的影响[J].哈尔滨建筑大学学报,2002,35(5):35-39.
    [13]肖诗云,林皋,王哲,等.应变率对混凝土抗拉特性影响[J].大连理工大学学报,2001,41(6):721-725.
    [14]宁建国,刘海峰,商霖.强冲击荷载作用下混凝土材料动态力学特性及本构模型[J].中国科学:G辑,2008,38(6):759-772.
    [15]阚永魁.混凝土在快速变形下的抗拉强度[R].筋混凝土结构构件在冲击荷载下的性能.北京:清华大学出版社,1986:84-89.
    [16]尚仁杰.混凝土动态本构行为研究[D].大连:大连理工大学,1994.
    [17]闫东明,林皋,王哲,等.不同应变速率下混凝土直接拉伸试验研究[J].土木工程学报,2005,38(6):97-103.
    [18]侯顺载,李金玉,曹建国,等.高拱坝全级配混凝土动态试验研究[J].水力发电,2002,(1):51-53.
    [19]Mellinger F M, Birkimer D L. Measurement of stress and strain on cylinderical test specimens of rock and concrete under impact loading [R]. Technical Report 4-46, U.S. Army of Engineers, Ohio River Division Laboratories, Cineinnati, Ohio, Apr.1966,71.
    [20]Wakabayashi M, Nakamura T, Yoshida N, et al. Dynamic loading effects on the structural performance of concrete and steel materials and beams [A]. Proceedings of the seventh world conference on earthquake engineering [C]. Istanbul, Turkey,1980:271-278.
    [21]Zielinski A J, Reinhardt H W, Kormeling H A. Experiments on concrete under uniaxial impact tensile loading [J]. Materials and Structures,1981,14(2):103-112.
    [22]Birkimer D L, Lindemann R. The impact strength of concrete materials [J]. Amer Concr. Inst.1971,68:47-49.
    [23]McVay M K. Spall damage of concrete structures [R]. U.S. Army Engineer Waterways Experiment Station, Vicksburg, Miss, June 1988.
    [24]Lambert D E, Allen Ross C. Strain rate effects on dynamic fracture and strength [J]. International Journal of Impact Engineering,2000,24(10):985-998.
    [25]Ross C A, Jerome D M, Tedesco J W, et al. Moisture and strain rate effects on concrete strength [J]. ACI Materials Journal,1996,93(3):293-300.
    [26]Yon J H, Hawkins N M, Kobayashi A S. Strain-rate sensitivity of concrete mechanical properties [J]. ACI Materials Journal,1992,89(2):146-153.
    [27]Malvar L J, Ross C A. Review of strain rate effects for concrete in tension [J]. ACI Materials Journal,1998,95 (6):735-739.
    [28]Bischoff P H, Perry S H. Compressive behaviour of concrete at high strain rates [J]. Materials and Structures,1991,24(6):425-450.
    [29]吕培印,宋玉普,吴智敏.变速率加载下有侧压混凝土强度和变形特性[J].大连理工大学学报,2001,41(6):716-720.
    [30]关萍,王清湘.双向等比例加载下的混凝土动态抗压性能[J].沈阳工业大学学报,2008,30(6):700-704.
    [31]闫东明,林皋.双向应力状态下混凝土的动态压缩试验研究[J].工程力学,2006,23(9):104-108.
    [32]覃丽坤,宋玉普,张众,等.普通混凝土在非比例加载双轴压下的力学性能试验研究[J].建筑结构学报,2008,(s1):74-77.
    [33]宋玉普,吕培印,侯景鹏.有侧压混凝土的变速率劈拉强度试验及其破坏准则研究[J].水利学报,2002,(3):1-5.
    [34]闫东明,林皋,徐平.三向应力状态下混凝土动态强度和变形特性研究[J].工程力学,2007,24(3):58-64.
    [35]Chen Z, Hu Y, Li Q, et al. Behavior of concrete in water subjected to dynamic triaxial compression [J]. Journal of Engineering Mechanics,2010,136(3):379-389.
    [36]Fujikake K, Mori K, Uebayashi K, et al. Dynamic properties of concrete materials with high rates of tri-axial compressive loads [J]. Structures and Materials, Structures under Shock and Impact VI,2000,8:511-522.
    [37]闫东明.混凝土动态力学性能试验与理论研究[D].大连:大连理工大学,2006.
    [38]Gran J K, Florence A L, Colton J D. Dynamic triaxial tests of high-strength concrete [J]. Journal of Engineering Mechanics,1989,115(5):891-904.
    [39]Takeda J, Tachikawa H, Fujimoto K. Mechanical behavior of concrete under higher rate loading than in static test [A]. Proceeding of the Symposium on the Mechanical Behaviour of Materials[C]. Kyoto:Society of Materials Science,1974,2:479-486.
    [40]Takeda J, Tachikawa H. Deformation and fracture of concrete subjected to dynamic load [J]. Mechanical Behavior of Materials,1972,4:276-277.
    [41]Dilger W H, Koch R, Kowalczyk R. Ductility of plain and confined concrete under different strain rate [J]. ACI Journal,1984,81(1):73-81.
    [42]Ahmad S H, Shin S B. Dynamic behavior of hoop confined concrete under high strain rates [J]. ACI Journal,1985,82:634-647.
    [43]Bischoff P H, Perry S H. Compressive behaviour of concrete at high strain rates [J]. Materials and structures,1991,24(6):425-450.
    [44]Katsuta T. On the elastic and plastic properties of concrete in compression tests with high deformation velocity, Part I [J]. Trans Inst Jpn Arch(in Jpn),1943,29(5):268-274.
    [45]吕培印,宋玉普.混凝土动态压缩试验及其本构模型[J].海洋工程,2002,20(2):43-48.
    [46]Ban S, Muguruna H. Behavior of plain concrete under dynamic loading with straining rate comparable to earthquake loading [C]. Proceeding of 2nd world conference on earthquack engineering,1960,3:1979-1993.
    [47]McHenry D, Shideler J J. Review of data on effect of speed in mechanical testing of concrete [C]. Symposium on speed of esing of non-metallic materials. Philadelphia, American Society for testing Materials,1956,72-82.
    [48]Hatano T, Tsutsumi H. Dynamic compressive deformation and failure of concrete under earthquake load [C]. Proceeding of 2nd world conference on earthquack engineering, 1960,3:1963-1978.
    [49]Bertero V V, Rea D, Mahin S, et al. Rate of loading effects on uncracked and repaired reinforced concrete members [C]. Proceedings of Fifth World Conference on Earthquake Engineering, Rome.1973,1:1461-1470.
    [50]Bresler B, Bertero V V. Influence of high strain rate and cyclic loading of unconfined and confined concrete in compression [C]. Proceedings of 2nd Canadian Conference on Earthquake Engineering, Hamilton, Ontario,1975:1-13.
    [51]Mainstone R J. Properties of materials at high rates of straining or loading [J]. Materials of Structures,1975,8(44):102-116.
    [52]闫东明,林皋.混凝土单轴动态压缩特性试验研究[J].水科学与工程技术,2005,5(6):8-10.
    [53]Hughes B P, Watson A J. Compressive strength and ultimate strain of concrete under impact loading [J]. Magazine of Concrete Research,1978,30(105):189-199.
    [54]Takeda J, Tachikawa H. The mechanical properties of several kinds of concrete at compressive, tensile, and flexural tests in high rates of loading [J]. Transactions of the Architectural Institute of Japan,1962,77:1-6.
    [55]Kotsovos M D. A mathematical description of the strength properties of concrete under generalized stress [J]. Magazine of Concrete Research,1979,31(108):151-158.
    [56]Paulmann K, Steinert J. Conerete under very short-term loading [J]. Beton, 1982,32(6):225-228.
    [57]Horibe T, Kobayashi R. On mechanical behavior of rock under various loading rates [J]. J. Soc. Mater. Sci. (Jpn),1965,14(141):498-506.
    [58]闫东明,林皋,王哲,等.不同环境下混凝土动态直接拉伸特性研究[J].大连理工大学学报,2005,3(5):416-421.
    [59]CEB-FIP MC 90. Design of concrete structures. CEB-FIP Model Code 1990 [S]. Thomas Telford,1993.
    [60]Dhir R K, Sangha CM. A study of the relationships between time, strength, deformation and fracture of plain concrete [J]. Magazine of Concrete Research,1972,24(81): 197-208.
    [61]Sparks P R, Menzies J B. The effect of rate of loading upon the static and fatigue strengths of plain concrete in compression [J]. Magazine of Concrete Research,1973, 25(83):73-80.
    [62]李赞成,胡功笠,陈磊.混凝土强度对其动态抗压强度的影响[J].山西建筑,2007,33(4):185-186.
    [63]Rossi P, Van Mier J G M, Boulay C, et al. The dynamic behaviour of concrete:influence of free water [J]. Materials and Structures,1992,25(9):509-514.
    [64]闫东明,林皋,刘钧玉,等.不同环境下混凝土动态抗压特性试验研究[J].大连理工大学学报,2006,46(5):707-711.
    [65]Zheng D, Li Q, Wang L. Rate effect of concrete strength under initial static loading [J]. Engineering Fracture Mechanics,2007,74(15):2311-2319.
    [66]Yan D, Lin G. Influence of initial static stress on the dynamic properties of concrete [J]. Cement and Concrete Composites,2008,30(4):327-333.
    [67]王道荣,胡时胜.骨料对混凝土材料冲击压缩行为的影响[J].实验力学,2002,17(1):23-27.
    [68]Rossi P, Van Mier J G M, Toutlemonde F, et al. Effect of loading rate on the strength of concrete subjected to uniaxial tension [J]. Materials and Structures,1994,27(5): 260-264.
    [69]肖诗云,林皋,李宏男.混凝土WW三参数率相关动态本构模型[J].计算力学学报,2004,21(6):641-646.
    [70]Wang W M. Stationary and propagative instabilities in metals:a computational point of view [D]. Netherlands:Delft University of Technology,1997.
    [71]Winnicki A, Pearce C J, Bicanic N. Viscoplastic Hoffman consistency model for concrete [J]. Computers and Structures,2001,79(1):7-19.
    [72]肖诗云,李宏男,杜荣强,等.混凝土四参数动态本构模型[J].哈尔滨工业大学学报,2006,38(10):1754-1757.
    [73]肖诗云,林皋,王哲.Drucker-Prager材料一致率型本构模型[J].工程力学,2003,20(4):147-151.
    [74]王哲,林皋,逯静洲.混凝土的单轴率型本构模型[J].大连理工大学学报,2000,40(5):597-601.
    [75]董毓利,谢和平.不同应变率下混凝土受压全过程的实验研究及其本构模型[J].水利学报,1997,(7):72-77.
    [76]白卫峰,陈健云,钟红.基于混凝土率相关损伤模型的重力坝地震动超载响应分析[J].水利学报,2006,37(7):820-826.
    [77]陈健云,李静,林皋.基于速率相关混凝土损伤模型的高拱坝地震响应分析[J].土木工程学报,2003,36(10):46-50.
    [78]齐振伟,蔡清裕,杨涛.应变率相关的混凝土连续损伤本构模型[J].弹道学报,2007,19(4):55-58.
    [79]陈士海,张安康,杜荣强,等.混凝土正交各向异性动态损伤本构模型研究[J].振动与冲击,2012,31(3):23-26.
    [80]林皋,闫东明,肖诗云,等.应变速率对混凝土特性及工程结构地震响应的影响[J].土木工程学报,2005,38(11):1-8.
    [81]刘海峰,宁建国.冲击荷载作用下混凝土动态本构模型的研究[J].工程力学,2008,25(12):135-140.
    [82]闫东明,林皋,刘钧玉,等.定侧压下混凝土的双轴动态抗压强度及破坏模式[J].水利学报,2006,37(2):200-204.
    [83]Rossi P. Strain rate effects in concrete structures:the LCPC experience [J]. Materials and Structures,1997,30(1):54-62.
    [84]肖诗云.混凝土率型本构模型及其在拱坝动力分析中的应用[D].大连:大连理工大学,2002.
    [85]Ragueneau F, Gatuingt F. Inelastic behavior modelling of concrete in low and high strain rate dynamics [J]. Computers and Structures,2003,81(12):1287-1299.
    [86]Li Q M, Meng H. About the dynamic strength enhancement of concrete-like materials in a split Hopkinson pressure bar test [J]. International Journal of Solids and Structures,2003,40(2):343-360.
    [87]Zhou X Q, Hao H. Modelling of compressive behaviour of concrete-like materials at high strain rate [J]. International Journal of Solids and Structures,2008,45(17): 4648-4661.
    [88]Klepaczko J R, Brara A. An experimental method for dynamic tensile testing of concrete by spalling [J]. International Journal of Impact Engineering,2001,25(4):387-409.
    [89]张磊,胡时胜,陈德兴,等.混凝土材料的层裂特性[J].爆炸与冲击,2008,28(3):193-199.
    [90]Brara A, Klepaczko J R. Experimental characterization of concrete in dynamic tension [J]. Mechanics of Materials,2006,38(3):253-267.
    [91]闫东明,林皋.混凝土动力试验设备的发展现状与展望[J].水科学与工程技术,2007,(1):1-4.
    [92]闫东明,林皋.单向恒定侧压下混凝土动态抗压特性试验研究[J].爆炸与冲击,2007,(2):121-125.
    [93]吕培印.混凝土单轴,双轴动态强度和变形试验研究[D].大连:大连理工大学,2002.
    [94]戚承志,钱七虎.岩石等脆性材料动力强度依赖应变率的物理机制[J].岩石力学与工程学报,2003,22(2):177-181.
    [95]Lu Y, Xu K. Modelling of dynamic behaviour of concrete materials under blast loading [J]. International Journal of Solids and Structures,2004,41(1):131-143.
    [96]曹居易.混凝土的应力应变关系[J].四川建筑科学研究,1979,(1):1-11.
    [97]朱伯芳.论混凝土坝抗裂安全系数[J].水利水电技术,2005,(7):33-37.
    [98]Xiao S Y, Tian Z K. Experimental study on the uniaxial dynamic tensile damage of concrete [C]. Earth and Space 2008, Long Beach, California,2008:1-7.
    [99]余天庆.混凝土的分段线性损伤模型[J].岩石、混凝土断裂与强度,1985,(2):14-16.
    [100]郭少华.混凝土破坏理论研究进展[J].力学进展,1993,23(4):520-529.
    [101]Mills L L, Zimmerman R M. Compressive strength of plain concrete under multiaxial loading conditions [C]. ACI Journal Proceedings,1970,67(10):802-807.
    [102]Gabet T, Malecot Y, Daudeville L. Triaxial behaviour of concrete under high stresses: Influence of the loading path on compaction and limit states [J]. Cement and Concrete Research,2008,38(3):403-412.
    [103]姚家伟,宋玉普,张众.高温后混凝土三轴压的强度及破坏准则研究[J].混凝土,2011,(6):8-11.
    [104]姚家伟,宋玉普,张众.普通混凝土三轴压强度和变形试验研究[J].建筑科学,2011,27(7):28-31.
    [105]Richart F E, Brandtzaeg A, Brown R L. A study of the failure of concrete under combined compressive stresses [R]. Bulletin No.185, Engineering Experiment Station, University of Illinois, Urbana,1928.
    [106]Newman K, Newman J B. Failure theories and design criteria for plain concrete [M]. Wiley-Interscience, London, England,1971.
    [107]余天庆,钱济成.损伤理论及其应用[M].国防工业出版社,1993.
    [108]孙从亚,逯静洲,王凤达.基于能量耗散的多轴应力状态下混凝土损伤模型[J].烟台大学学报(自然科学与工程版),2009,22(1):65-68.
    [109]王中强,余志武.基于能量损失的混凝土损伤模型[J].建筑材料学报,2004,7(4):365-369.
    [110]曲晓东,丁铸,宋玉普.复杂应力下大骨料混凝土与二级配混凝土强度对比试验研究[J].大连理工大学学报,2009,49(6):902-906.
    [111]王怀亮,宋玉普,曲晓东,等.大坝原级配混凝土在双轴拉-压及三轴拉-压-压受力状态下的试验研究[J].土木工程学报,2007,40(7):104-110.
    [112]He Z, Song Y. Multiaxial tensile-compressive strengths and failure criterion of plain high-performance concrete before and after high temperatures [J]. Construction and Building Materials,2010,24(4):498-504.
    [113]覃丽坤,宋玉普,陈浩然,等.双轴拉压混凝土在冻融循环后的力学性能及破坏准则[J].岩石力学与工程学报,2005,24(10):1740-1745.
    [114]肖诗云,张剑.历经荷载历史混凝土动态受压试验研究[J].大连理工大学学报,2011,51(1):78-83.
    [115]Yan D, Xu P, Lin G. Dynamic properties of concrete under severe environmental condition [J]. Journal of Wuhan University of Technology-Materials Science Edition, 2010,25(5):877-882.
    [116]Yan D, Lin G. Dynamic properties of concrete in direct tension [J]. Cement and Concrete Research,2006,36(7):1371-1378.
    [117]Xiao S Y, Lin G, Lu J Z, et al. Effect of strain rate on dynamic behavior of concrete in compression [J]. Journal of Harbin University of Civil Engineering and Architecture, 2002 (5):35-39.
    [118]Yan D, Lin G, Chen G. Dynamic Properties of Plain Concrete in Triaxial Stress State [J]. ACI Materials Journal,2009,106(1):89-94.
    [119]Yan D, Lin G. Dynamic behaviour of concrete in biaxial compression [J]. Magazine of Concrete Research,2007,59(1):45-52.
    [120]关萍.定侧压下混凝土双轴动态抗压性能的试验研究[J].土木工程学报,2009,(4):33-37.
    [121]Bresler B, Pister K S. Strength of concrete under combined stresses [J]. ACI Journal Proseedings,1958,55(9):321-345.
    [122]Willam K J, Warnke E P. Constitutive model for the triaxial behavior of concrete [J]. International Association for Bridge and Structural Engineering,1975, (19):1-30.
    [123]Donida G, Mentrasti L. A linear failure criterion for concrete under multiaxial states of stress [J]. International Journal of Fracture,1982,19(1):53-66.
    [124]Ottosen N S.A failure criterion for concrete [J]. American Society of Civil Engineers (Engineering Mechanics Division),1977,103(4):527-535.
    [125]Hsieh S S, Chen W F, Ting E C. An elastic-fracture model for concrete [C]. Proceeding of 3rd EngineeringMechanics, Special Division, Conference ASCE,1979:437-440.
    [126]Podgorski J. General failure criterion for isotropic media [J]. Journal of Engineering Mechanics,1985,111(2):188-201.
    [127]过镇海,王传志,张秀琴.多轴应力下混凝土的强度和破坏准则研究[J].土木工程学报,1991,24(3):1-14.
    [128]李嘉进,陈志勋.多轴受力下混凝土强度和变形的试验研究[J].水电站设计,1991,7(4):45-52.
    [129]李伟政,过镇海.二轴拉压应力状态下混凝土的强度和变形试验研究[J].水利学报,1991,(8):51-56.
    [130]过镇海.砼的多轴强度介绍[J].建筑结构学报,1994,15(6):72-75.
    [131]吕培印,宋玉普,侯景鹏.一向侧压混凝土在不同加载速率下的受压试验及其破坏准则[J].工程力学,2002,(5):67-71.
    [132]肖诗云,田子坤.混凝土单轴动态受拉损伤试验研究[J].土木工程学报,2008,41(7):14-20.
    [133]Kupfer H, Hilsdorf H K, Rusch H. Behavior of concrete under biaxial stresses[C]. ACI Journal Proceedings,1969,66(8):656-666.
    [134]日本大坝委员会.钱志春译.坝工设计规范[S](1978年第二次修订版).北京:水利出版社,1981.
    [135]徐积善,何淅淅.双轴拉压应力下混凝土的强度和变形[J].水利学报,1986,10(11):59-64.
    [136]肖诗云,林皋,逯静洲,等.应变率对混凝土抗压特性的影响[J].哈尔滨建筑大学学报,2002,35(5):35-39.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700