用户名: 密码: 验证码:
流体混合物吸附分离的分子模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
流体混合物的吸附分离不仅是化工过程中一个重要的单元操作,而且在产品分离、尾气处理、药物提纯、节能减排、海水淡化和环境保护等多个领域中也发挥着重要的作用。借助于计算机分子模拟技术研究混合物在多孔材料内的吸附分离对于从分子水平上理解其内部分离机制具有重要的意义和明显的优势。为了系统地研究各种多孔材料的特性(自由体积、聚合度、官能团、孔径),吸附质的性质(分子大小、粘度、逸度、极性、手性),它们之间的相互作用(范德华力、氢键作用、静电),外界条件(温度、压力、湿度和进料浓度)对吸附分离行为,尤其是吸附量和分离因子的影响,本论文通过密度泛函法(Density functional theory,DFT)、蒙特卡罗方法(Monte Carlo,MC)和分子动力学方法(Molecular Dynamics,MD)结合,并使用Gaussian,Materials Studio,MuSiC,RASPA等多种软件平台进行计算,对多种力场进行比较,以期能够发现适合实际需要的吸附分离材料,并模拟分析出最合适的分离条件以及分离结果,从而满足分离技术应用中的需求。本论文具体研究内容分为以下五个部分:
     1.采用巨正则蒙特卡罗方法(Grand canonical Monte Carlo,GCMC),研究在不同压力(10-1000kPa)、不同温度(298-338K)以及不同聚合度(100-1000)下,聚乙烯醇(PVA)聚合物膜中水和乙醇共沸物(乙醇质量分数为95.57wt%)的渗透汽化过程。通过计算吸附等温线和分离因子,发现水和乙醇吸附量和分离效率随着温度升高缓慢的下降;随着聚合度升高,二者的吸附量都先上升后下降,而分离因子则相反。我们分析了聚合物膜的自由体积分率和它与吸附分子之间的氢键作用,并用于解释上述现象:当聚合度升高时,自由体积分率变化的趋势与之前讨论吸附量的趋势是相似的,但是极值所对应的聚合度却不同,而氢键作用则被成功地用于解释这一区别。经过深入地讨论发现,吸附量的变化主要是因为自由体积分率和氢键作用从共同作用到竞争作用的变化。研究发现,分离最优的操作条件为温度298K以及压力101.325kPa,在这一条件下,1000聚合度PVA膜对乙醇和水共沸物的分离因子可达到80,这一分离效率足以制备99.96wt%的无水乙醇。
     2.采用GCMC方法讨论了不同温度、压力及管径下,碳纳米管对H2S/N2混合物(主体相体积比为1:99)的吸附分离选择性。结果表明,随着碳纳米管管径的增大,H2S的吸附选择性先增加后减小;而(11,0)碳纳米管(管径为0.86nm)对H2S的选择性最高。经过对吸附构型和吸附热的分析,我们发现H2S的吸附选择性与管径的关系是由几何效应和能量效应共同决定的。针对(11,0)碳纳米管,讨论了温度和压力对H2S吸附量和选择性的影响。模拟结果表明,随着温度上升,H2S的吸附量和选择性都呈先增加后减小的趋势;随着压力增加,H2S的吸附量和选择性都有所下降。此研究可为含硫气体混合物的吸附分离提供一定的指导。
     3.并行退火-构型偏倚-巨正则蒙特卡罗(PT-CB-GCMC)和并行摩尔分率-构型偏倚-巨正则蒙特卡罗(PMF-CB-GCMC)方法被用于研究四种烷烃醇在纯手性金属-有机骨架材料(HOIZA-1)中的手性分离机制。由于这类系统中的手性分子紧密结合于窄孔中,传统的GCMC方法不能够满足于此系统的模拟。但是,并行退火和并行摩尔分率的技术手段因为MC移动接受率的改进克服了这一问题。研究中,无限稀释流体吸附焓的分析证明了所使用的两种改进GCMC方法是优于传统GCMC方法的。其模拟结果显示(R,S)-烷烃醇的手性吸附分离原因与手性分子特殊的几何构型以及材料孔道尺寸和形状密切相关的。
     4. GCMC方法被运用于研究五种不同的金属-有机骨架材料(Metal-organicframework,MOF)中CH4和CO2混合物的吸附分离机制,它们是未改性MIL-53(Al)以及四种胺基基团(-NH2,-(NH2)4,-NHCO,-CH2CONH2)改性的MIL-53(Al)。研究发现,虽然未改性的MIL-53材料有最高的吸附量,但是它并没有最优的分离效率,而-(NH2)4胺基官能团改性MIL-53材料的分离效率达到最优。进一步发现,-NH2和-NHCO功能化材料的分离性能也优于未改性的材料,但-CH2CONH2改性材料的性能却不是非常优异的,它的分离因子和吸附量都低于未改性材料。几何效应和能量效应被用于分析和解释它们分离效率的不同。这一工作揭示了设计新型功能化MOF材料是一种有效地改进CH4和CO2分离效率的方法,同时它也对将来MOF材料的合成和应用有极其重要的推进作用。
     5.本章工作提出了一种新颖的筛选方法,这一方法对大量MOFs以及它们的功能化材料性能进行重复筛选层层分析。为了解释这一方法,我们分三步详细讨论和分析了不同胺基官能团功能化MOFs材料的CH4和CO2分离性能。第一步,筛选了大量传统的未改性MOFs材料;第二步,筛选了多种多样的胺基官能团;第三步,筛选了不同数目的胺基官能团。模拟结果显示:其中两种材料的分离效率在近150种材料中达到最佳,而且在研究中我们提出了“胺基官能团饱和度”这一概念。这一新颖的筛选方法和胺基官能团饱和度的提出有助于大幅度提升实验合成功能化MOFs材料的经济效率,并缩短开发新型功能化MOFs材料的周期。
Adsorption separation of the fluid mixture is an operating unit of chemical process andhas an important influence on seawater desalination, purification, wastewater treatment,environmental protection etc. The molecular simulation methods (DFT, MC and MD) andGaussian, Materials Studio, MuSiC and RASPA softwares can be employed to studymembrane properties (free volume, degree of polymerization, functional groups), the natureof adsorbate (molecular size, viscosity, fugacity, polarity), the interactions between membraneand adsorbate (van der Waals force, hydrogen bonds, electrostatics), the external conditions(temperature, pressure, humidity, feed concentration) on the adsorption separation behavior.The optimized adsorption loading and separation factor can be found for the actual adsorptionprocess. The thesis includes five parts, as follows.
     1. Grand canonical Monte Carlo (GCMC) simulation is used to investigate theperformance of poly (vinyl alcohol)(PVA) membrane in separating the azeotropicwater/ethanol mixture (95.57wt%ethanol) over a wide range of pressures (10–1000kPa),temperatures (298–338K) and PVA polymerization degrees (100–1000). By calculating thesorption isotherms and the ethanol-to-water separation factors, we observe that thewater/ethanol adsorption amount and separation factor decline slowly with the increase oftemperature; as the polymerization degree rises, both of adsorption amounts first increase andthen decrease, while the separation factor changes adversely. Concepts such as fractional freevolume (FFV) and hydrogen bonding interactions were analyzed to explain the observation.As the polymerization degree increases, the FFV changing trend is similar to the onementioned in the discussion of adsorption amount, but their inflexions are different. Hydrogenbonding interaction successfully explains this variation. We further deduce that the fact thatthe change of adsorption amount results from a transition from cooperation to competitionbetween FFV and hydrogen bonding interactions. The optimal operating conditions forseparation are298K and101.325kPa. Under this condition, the PVA membrane(polymerization degree1000) has a separation factor of~80for the water/ethanol azeotropicmixture, which means that ethanol can be refined to99.96wt%and anhydrous ethanol ispossible to be obtained by PVAmembrane evaporation.
     2. Adsorption and separation of1:99(volume ratio) H2S/N2mixture by single wallcarbon nanotubes are studied using the GCMC method at a range of nanotube diameters,pressures and temperatures. It is demonstrated that the selectivity towards H2S increases andthen decreases with increasing nanotube diameter and the selectivity is highest for (11,0) carbon nanotube, which is due to the synergy of geometry effect and energy effect. It is shownthat under different operation conditions, the adsorption isotherm and selectivity can varysignificantly. At100kPa, the amount of adsorbed of H2S in (11,0) carbon nanotube and theselectivity towards H2S firstly increase and then decrease with increasing temperatures.Moreover, at300K, with increasing pressures, the adsorbed amount of H2S and the selectivitytowards H2S decrease. The simulation findings in this work would be helpful for the designand development of sulfur removal processes.
     3. Parallel tempering and parallel mol-fraction grand canonical Monte Carlo simulationswith configurational bias are used to study the enantioselective adsorption of four alkanols ina homochiral metal-organic framework (MOF), known as HOIZA-1. Conventional GCMCsimulations are not able to converge satisfactorily for this system due to the tight fit of thechiral alkanols in the narrow pores. Parallel tempering and parallel mol-fraction simulationsovercome this problem because of the improvement of acceptance ratios of Monte Carlomoves, the results of infinite dilution enthalpy of adsorption also prove that they are superiorto conventional GCMC. The simulations show that the enantioselective adsorption of thedifferent (R,S)-alkanols is due to the specific geometry of the chiral molecules relative to thepore size and shape.
     4. GCMC simulations are employed to study the adsorption and separation of carbondioxide/methane gas mixture by five different metal organic frameworks (MOFs) includingthe unmodified MIL-53(Al) and four amine functionalized (-NH2,-(NH2)4,-NHCO,-CH2CONH2) MIL-53(Al) MOFs. It is found that although original MIL53had the bestadsorption amount, its separation efficiency is not very high. The carbon dioxide/methaneseparation factor of-(NH2)4amine functionalized MIL-53is the best in five MOFs. Moreover,the predicted separation performance of-NH2and-NHCO functionalized MIL-53alsosurpass that of the original one. However, the predicted separation performance of-CH2CONH2modified MIL-53is not so good; i.e., both its carbon dioxide/methaneseparation factor and adsorption amount are lower than those of the original one. Thegeometric effect and energetic effect are analyzed to explain the difference of separationefficiency. This work shows that a rational design of functionalized MOF is a feasible way toimprove the carbon dioxide/methane separation efficiency and to provide helpful informationfor future MOF preparation and applications.
     5. A novel3-step in-silica screening method for a large number of MOFs and theirfunctionalized ones is offered. The improvement of CO2separation capability from theCO2/CH4mixtures using different amine functionalized MOFs are discussed and analyzed carefully. In the first step, plenty of classical types of original MOFs are screened. In thesecond step, the various amine functional groups are screened. In the third step, differentnumbers of amine functional groups are screened. The results show that the separationefficiencies of (NHCOH)4-MIL-53and (NH2CH2CH2NH2)9-Co-MOF-74reach maximum inabout two hundred screened MOFs; amine functional group saturation degree is also proposed.The novel screening method and the concept of functional group saturation degree could beapplied in cost-effective experiments and reduce the period of the development of newfunctionalized materials in future researches.
引文
[1]朱宇;陆小华;丁皓, et al.分子模拟在化工应用中的若干问题及思考[J].化工学报(Journal Of Chemical IndustryAnd Engineering(China)),2004,55(8):1213-1223.
    [2]沈光林.膜法气体分离技术在石化中的应用新进展[J].现代化工(Modern ChemicalIndustry),2003,23(3):15-20.
    [3]徐仁贤.气体分离膜应用的现状和未来[J].膜科学与技术(Membrane Science AndTechnology),2003,23(4):123-128.
    [4]苏毅;胡亮;刘谋盛.分子模拟技术在气体膜分离研究中的应用[J].石油与天然气化工(Chemical Engineering Of Oil And Gas),2001,30(3):113-116.
    [5]邢丹敏.膜法有机蒸气回收系统在工业中的应用[J].膜科学与技术(MembraneScience And Technology),2000,20(4):43-46.
    [6]徐南平.无机膜的发展现状与展望[J].化工进展(Chemical IndustryAnd EngineeringProgress),2000,19(4):5-9.
    [7]阎勇.膜分离技术在有机废气处理中的应用[J].现代化工(Modern ChemicalIndustry),1998,18(11):19-22.
    [8]廖传华;徐南平;时钧.气体分离无机膜的应用及研究进展[J].中国陶瓷(ChinaCeramics),2003,39(2):15-17.
    [9] Leach, A. R. Molecular Modelling Principles and Application[M]. England: PearsonEducation Limited,2001:353-405.
    [10]李以圭;刘金晨.分子模拟与化学工程[J].现代化工(Modern Chemical Industry),2001,21(7):10-15.
    [11]吕家桢;陆小华;周健, et al.化学工程中的分子动力学模拟[J].化工学报(JournalOf Chemical IndustryAnd Engineering(China)),1998,49:64-70.
    [12]殷开梁;徐端钧;陈正隆.真空条件下β—环糊精和对—甲基苯酚包结物动态结构的分子动力学模拟[J].无机化学学报(Chinese Journal Of Inorganic Chemistry),2003,19(5):480-484.
    [13]殷开梁;徐端钧;夏庆, et al.正十六烷体系凝固过程的分子动力学模拟[J].物理化学学报(Acta Physico-Chimica Sinica),2004,20(3):302-305.
    [14] Yin, K. L.; Xia, Q.; Xi, H. T., et al. Molecular Simulation of Inner Structure of a SelfAssembled Gold Cluster Passivated with Thiol-Terminated Asymmetric HydroquinonylOligoethers[J]. Journal of Molecular Structure: Theochem,2004,674(1-3):159-165.
    [15] Tamai, Y.; Tanaka, H.; Nakanishi, K. Molecular Simulation of Permeation of SmallPenetrants through Membranes.1. Diffusion Coefficients[J]. Macromolecules,1994,27(16):4498-4508.
    [16]钟璟;黄维秋;殷开梁.分子模拟技术在气体膜分离研究中的应用[J].化工进展(Chemical IndustryAnd Engineering Progress),2005,24(7):743-748.
    [17] Kawamura, K. Molecular Dynamics Simulations[M]. Berlin: Springer Verlag,1992:88.
    [18] Mizukami, K.; Takaba, H.; Kobayashi, Y., et al. Molecular Dynamics Calculations ofCO2/N2Mixture through the Nay Type Zeolite Membrane[J]. Journal Of MembraneScience,2001,188(1):21-28.
    [19] Haas, O. E.; Simon, J. M.; Kjelstrup, S. Surface Self-Diffusion and Mean Displacementof Hydrogen on Graphite and a Pem Fuel Cell Catalyst Support[J]. Journal of PhysicalChemistry C,2009,113(47):20281-20289.
    [20] Rajabbeigi, N.; Elyassi, B.; Tsotsis, T. T., et al. Molecular Pore-Network Model forNanoporous Materials. I: Application to Adsorption in Silicon-Carbide Membranes[J].Journal Of Membrane Science,2009,335(1-2):5-12.
    [21] Newsome, D. A.; Sholl, D. S. Atomically Detailed Simulations of Surface Resistances toTransport of CH4, CF4, and C2H6through Silicalite Membranes[J]. Microporous andMesoporous Materials,2008,107(3):286-295.
    [22] Sunderrajan, S.; Hall, C. K.; Freeman, B. D. Estimation of Mutual Diffusion Coefficientsin Polymer/Penetrant Systems Using Nonequilibrium Molecular DynamicsSimulations[J]. Journal Of Chemical Physics,1996,105(4):1621-1632.
    [23] Eslami, H.; Muller-Plathe, F. Molecular Dynamics Simulation of Sorption of Gases inPolystyrene[J]. Macromolecules,2007,40(17):6413-6421.
    [24] Huang, C.; Nandakumar, K.; Choi, P. Y. K., et al. Molecular Dynamics Simulation of aPressure-Driven Liquid Transport Process in a Cylindrical Nanopore Using TwoSelf-Adjusting Plates[J]. Journal Of Chemical Physics,2006,124:234701.
    [25] Huang, C.; Choi, P. Y. K.; Nandakumar, K., et al. Investigation of Entrance and ExitEffects on Liquid Transport through a Cylindrical Nanopore[J]. Physical ChemistryChemical Physics,2008,10(1):186-192.
    [26] Sedigh, M. G.; Onstot, W. J.; Xu, L., et al. Experiments and Simulation of Transport andSeparation of Gas Mixtures in Carbon Molecular Sieve Membranes[J]. Journal OfPhysical ChemistryA,1998,102(44):8580-8589.
    [27] Zhang, Y.; Furukawa, S. I.; Nitta, T. Computer Simulation Studies on Gas Permeation ofPropane and Propylene across Zsm-5Membranes by a Non-Equilibrium MolecularDynamics Technique[J]. Separation and Purification Technology,2003,32(1-3):215-221.
    [28] Miyamoto,A.; Kobayashi, Y.; Elanany, M., et al. Novel Computational ChemistryApproaches for Studying Physico-Chemical Properties of Zeolite Materials[J].Microporous and Mesoporous Materials,2007,101(1-2):324-333.
    [29] Kobayashi, Y.; Takami, S.; Kubo, M., et al. Non-Equilibrium Molecular SimulationStudies on Gas Separation by Microporous Membranes Using Dual Ensemble MolecularSimulation Techniques[J]. Fluid Phase Equilibria,2002,194:319-326.
    [30] Tiemblo, P.; Saiz, E.; Guzmcn, J., et al. Comparison of Simulated and ExperimentalTransport of Gases in Commercial Poly (Vinyl Chloride)[J]. Macromolecules,2002,35(10):4167-4174.
    [31] Striolo, A.; Chialvo, A. A.; Cummings, P. T., et al. Water Adsorption in Carbon-SlitNanopores[J]. Langmuir,2003,19(20):8583-8591.
    [32] Hung, F. R.; Bhattacharya, S.; Coasne, B., et al. Argon and KryptonAdsorption onTemplated Mesoporous Silicas: Molecular Simulation and Experiment[J].Adsorption-journal Of The International Adsorption Society,2007,13(5):425-437.
    [33] Babarao, R.; Hu, Z.; Jiang, J., et al. Storage and Separation of CO2and CH4in Silicalite,C168Schwarzite, and Irmof-1: AComparative Study from Monte Carlo Simulation[J].Langmuir,2007,23(2):659-666.
    [34] Yang, J. Z.; Liu, Q. L.; Wang, H. T. Analyzing Adsorption and Diffusion Behaviors ofEthanol/Water through Silicalite Membranes by Molecular Simulation[J]. Journal OfMembrane Science,2007,291(1-2):1-9.
    [35] Fried, J. R. Gas Diffusion and Solubility in Poly (Organophosphazenes): Results ofMolecular Simulation Studies[J]. Journal of Inorganic and Organometallic Polymers andMaterials,2006,16(4):407-418.
    [36] Liu, Q. L.; Huang, Y. Transport Behavior of Oxygen and Nitrogen throughOrganasilicon-Containing Polystyrenes by Molecular Simulation[J]. Journal Of PhysicalChemistry B,2006,110(35):17375-17382.
    [37] Smit, B. Simulating theAdsorption Isotherms of Methane, Ethane, and Propane in theZeolite Silicalite[J]. Journal of Physical Chemistry,1995,99(15):5597-5603.
    [38] Krishna, R.; Smit, B.; Calero, S. Entropy Effects During Sorption ofAlkanes inZeolites[J]. Chemical Society Reviews,2002,31(3):185-194.
    [39] Lu, L. H.; Wang, Q.; Liu, Y. C. Molecular Simulation ofAdsorption and Separation ofBinary Mixtures for Short Linear Alkanes in Zeolite[J]. Acta Chimica Sinica,2003,61(8):1232-1240.
    [40] Chen, Y. P.; Lu, X. H. Molecular Simulation Study ofAdsorption and Diffusion onZeolites for Alkanes[J]. Computers&Applied Chemistry,2007,24(7):867-871.
    [41] Limpouchova, Z.; Prochazka, K. On the Ergodicity of Dynamic Monte Carlo Simulationsof Multichain or Star Systems[J]. Macromolecular Theory and Simulations,2004,13(4):328-334.
    [42] Suzuki, S.; Takaba, H.; Yamaguchi, T., et al. Estimation of Gas Permeability of a ZeoliteMembrane, Based on a Molecular Simulation Technique and Permeation Model[J].Journal Of Physical Chemistry B,2000,104(9):1971-1976.
    [43] Tung, K. L.; Lu, K. T.; Ruaan, R. C., et al. Md and Mc Simulation Analyses on the Effectof Solvent Types on Accessible Free Volume and Gas Sorption in Pmma Membranes[J].Desalination,2006,192(1-3):391-400.
    [44] Yang, Q.; Liu, D.; Zhong, C., et al. Development of Computational Methodologies forMetal–Organic Frameworks and Their Application in Gas Separations[J]. ChemicalReviews,2013.
    [45] Forster, P. M.; Stock, N.; Cheetham, A. K. AHigh-Throughput Investigation of the Roleof Ph, Temperature, Concentration, and Time on the Synthesis of HybridInorganic-Organic Materials[J]. Angewandte Chemie International Edition,2005,44(46):7608-7611.
    [46] Robin, A. Y.; Fromm, K. M. Coordination Polymer Networks with O-and N-Donors:What TheyAre, Why and How TheyAre Made[J]. Coordination Chemistry Reviews,2006,250(15-16):2127-2157.
    [47] Yaghi, O. M.; Qiaowei, L. I. Reticular Chemistry and Metal-Organic Frameworks forClean Energy[J]. Mrs Bulletin,2009,34(9):682-690.
    [48] Yaghi, O. M.; O'Keeffe, M.; Ockwig, N. W., et al. Reticular Synthesis and the Design ofNew Materials[J]. Nature,2003,423(6941):705-714.
    [49] Kim, J.; Chen, B.; Reineke, T. M., et al.Assembly of Metal-Organic Frameworks fromLarge Organic and Inorganic Secondary Building Units: New Examples and SimplifyingPrinciples for Complex Structures[J]. Journal Of The American Chemical Society,2001,123(34):8239-8247.
    [50] Reineke, T. M.; Eddaoudi, M.; Moler, D., et al. Large Free Volume in MaximallyInterpenetrating Networks: The Role of Secondary Building Units Exemplified by Tb2(ADB)3[(CH3)2SO]4'16[(CH3)2SO][J]. Russian Journal of Inorganic Chemistry,1994,39:512-520.
    [51] Liu, D.; Yang, Q.; Zhong, C. Adsorption of Methane in Heterometallic Metal-OrganicFrameworks with Anions: AMolecular Simulation Study[J]. Molecular Simulation,2009,35(3):213-219.
    [52] Kawakami, T.; Takamizawa, S.; Kitagawa, Y., et al. Theoretical Studies of SpinArrangement ofAdsorbed Organic Radicals in Metal-Organic Nanoporous Cavity[J].Polyhedron,2001,20(11-14):1197-1206.
    [53] Duren, T.; Sarkisov, L.; Yaghi, O. M., et al. Design of New Materials for MethaneStorage[J]. Langmuir,2004,20(7):2683-2689.
    [54] Sarkisov, L.; Duren, T.; Snurr, R. Q. Molecular Modelling ofAdsorption in NovelNanoporous Metal-Organic Materials[J]. Molecular Physics,2004,102(2):211-221.
    [55] Liu, B.; Yang, Q.; Xue, C., et al. Molecular Simulation of Hydrogen Diffusion inInterpenetrated Metal-organic Frameworks[J]. Physical Chemistry Chemical Physics,2008,10(22):3244-3249.
    [56] Frost, H.; Duren, T.; Snurr, R. Q. Effects of Surface Area, Free Volume, and Heat ofAdsorption on Hydrogen Uptake in Metal-Organic Frameworks[J]. Journal Of PhysicalChemistry B,2006,110(19):9565-9570.
    [57] Frost, H.; Snurr, R. Q. Design Requirements for Metal-Organic Frameworks asHydrogen Storage Materials[J]. Journal of Physical Chemistry C,2007,2007(111):18794-18803.
    [58] Yang, Q.; Zhong, C. Electrostatic-Field-Induced Enhancement of Gas Mixture Separationin Metal-Organic Frameworks: AComputational Study[J]. Chemical Physics andPhysical Chemistry,2006,7(7):1417-1421.
    [59] Yang, Q.; Zhong, C. Molecular Simulation of Carbon Dioxide/Methane/HydrogenMixtureAdsorption in Metal-Organic Frameworks[J]. Journal Of Physical Chemistry B,2006,110(36):17776-17783.
    [60] Skoulidas, A. I.; Sholl, D. S. Self-Diffusion and Transport Diffusion of Light Gases inMetal-Organic Framework Materials Assessed Using Molecular DynamicsSimulations[J]. Journal Of Physical Chemistry B,2005,109(33):15760-15768.
    [61] Zhang, L.; Wang, Q.; Liu, Y. C. Design for Hydrogen Storage Materials Via ObservationofAdsorption Sites by Computer Tomography[J]. Journal Of Physical Chemistry B,2007,111(17):4291-4295.
    [62] Amirjalayer, S.; Tafipolsky, M.; Schmid, R. Molecular Dynamics Simulation of BenzeneDiffusion in Mof-5: Importance of Lattice Dynamics[J]. Angewandte ChemieInternational Edition,2007,46(3):463-466.
    [63] Wang, S. Comparative Molecular Simulation Study of Methane Adsorption inMetal-Organic Frameworks[J]. Energy Fuels,2007,21(2):953-956.
    [64] Yang, Q.; Zhong, C. Molecular Simulation ofAdsorption and Diffusion of Hydrogen inMetal-Organic Frameworks[J]. Journal Of Physical Chemistry B,2005,109(24):11862-11864.
    [65] Sagara, T.; Klassen, J.; Ganz, E. Computational Study of Hydrogen Binding byMetal-Organic Framework-5[J]. Journal Of Chemical Physics,2004,121:12543-12547.
    [66] Garberoglio, G.; Skoulidas, A. I.; Johnson, J. K. Adsorption of Gases in Metal OrganicMaterials: Comparison of Simulations and Experiments[J]. Journal Of PhysicalChemistry B,2005,109(27):13094-13103.
    [67] Duren, T.; Snurr, R. Q.Assessment of Isoreticular Metal-Organic Frameworks forAdsorption Separations: AMolecular Simulation Study of Methane/N-ButaneMixtures[J]. Journal Of Physical Chemistry B,2004,108(40):15703-15708.
    [68] Dubbeldam, D.; Galvin, C. J.; Walton, K. S., et al. Separation and Molecular-LevelSegregation of Complex Alkane Mixtures in Metal-Organic Frameworks[J]. Journal OfThe American Chemical Society,2008,130(33):10884-10885.
    [69] Yang, Q.; Zhong, C. Understanding Hydrogen Adsorption in Metal-Organic Frameworkswith Open Metal Sites: AComputational Study[J]. Journal Of Physical Chemistry B,2006,110(2):655-658.
    [70] Karra, J. R.; Walton, K. S. Effect of Open Metal Sites onAdsorption of Polar andNonpolar Molecules in Metal-Organic Framework Cu-Btc[J]. Langmuir,2008,24(16):8620-8626.
    [71] Jung, D. H.; Kim, D.; Lee, T. B., et al. Grand Canonical Monte Carlo Simulation Studyon the Catenation Effect on Hydrogen Adsorption onto the InterpenetratingMetal-Organic Frameworks[J]. Journal Of Physical Chemistry B,2006,110(46):22987-22990.
    [72] Keskin, S.; Sholl, D. S. Screening Metal-Organic Framework Materials forMembrane-Based Methane/Carbon Dioxide Separations[J]. Journal of PhysicalChemistry C,2007,111:14055-14059.
    [73] Greathouse, J. A.;Allendorf, M. D. Force Field Validation for Molecular DynamicsSimulations of Irmof-1and Other Isoreticular Zinc Carboxylate CoordinationPolymers[J]. Journal of Physical Chemistry C,2008,112:5795-5802.
    [74] Dubbeldam, D.; Walton, K. S.; Ellis, D. E., et al. Exceptional Negative ThermalExpansion in Isoreticular Metal-Organic Frameworks[J]. Angewandte ChemieInternational Edition,2007,46(24):4496-4499.
    [75] Zhang, L.; Wang, Q.; Wu, T., et al. Understanding Adsorption and Interactions ofAlkaneIsomer Mixtures in Isoreticular Metal-Organic Frameworks[J]. Chemistry-AEuropeanJournal2007,13(22):63876396.
    [76] Skoulidas, A. I. Molecular Dynamics Simulations of Gas Diffusion in Metal-OrganicFrameworks: Argon in Cubtc[J]. Journal Of The American Chemical Society,2004,126(5):1356-1357.
    [77] Liu, J.; Culp, J. T.; Natesakhawat, S., et al. Experimentaland Theoretical Studies of GasAdsorption in Cu3(Btc)2: An Effective Activation Procedure[J]. Journal of PhysicalChemistry C,2007,2007(111):9305-9313.
    [78] Liu, J.; Lee, J. Y.; Pan, L., et al. Adsorption and Diffusion of Hydrogen in a NewMetal-Organic Framework Material:[Zn (Bdc)(Ted)0.5][J]. Journal of Physical ChemistryC,2008,2008(112):2911-2917.
    [79] Keskin, S.; Liu, J.; Johnson, J. K., et al. Testing theAccuracy of Correlations forMulticomponent Mass Transport ofAdsorbed Gases in Metal-Organic Frameworks:Diffusion of H2/Ch4Mixtures in Cubtc[J]. Langmuir,2008,24(15):8254-8261.
    [80] Eddaoudi, M.; Li, H.; Yaghi, O. M. Highly Porous and Stable Metal-OrganicFrameworks: Structure Design and Sorption Properties[J]. Journal Of TheAmericanChemical Society,2000,122(7):1391-1397.
    [81] Chae, H. K.; Siberio-Pérez, D. Y.; Kim, J., et al. ARoute to High SurfaceArea, Porosityand Inclusion of Large Molecules in Crystals[J]. Nature,2004,427(6974):523-527.
    [82] Hayashi, H.; Furukawa, H.; Yaghi, O. M. Zeolite a Imidazolate Frameworks[J]. NatureMaterials,2007,6(7):501-506.
    [83]刘漫;鲁晓明;冯俊鹤.美国沸石咪唑酯骨架结构材料的研究进展[J].现代化工(Modern Chemical Industry),2008,28(6):81-84.
    [84] Wang, B.; Furukawa, H.; Yaghi, O. M. Colossal Cages in Zeolitic ImidazolateFrameworks as Selective Carbon Dioxide Reservoirs[J]. Nature,2008,453(7192):207-211.
    [85] Alkordi, M. H.; Liu, Y.; Larsen, R. W., et al. Zeolite-Like Metal-Organic Frameworks asPlatforms for Applications: On Metalloporphyrin-Based Catalysts[J]. Journal Of TheAmerican Chemical Society,2008,130(38):12639-12641.
    [86] Park, K. S.; Ni, Z.; Yaghi, O. M. Exceptional Chemical and Thermal Stability of ZeoliticImidazolate Frameworks[J]. Proceedings of the National Academy of Sciences,2006,103(27):10186-10191.
    [87] Banerjee, R.; Phan, A.; Wang, B., et al. High-Throughput Synthesis of ZeoliticImidazolate Frameworks and Application to CO2Capture[J]. Science,2008,319(5865):939-943.
    [88]梁倩;赵震.金属有机骨架材料储存CO2的研究进展[J].工业催化(IndustrialCatalysis),2010,18(7):1-7.
    [89] Férey, G.; Mellot-Draznieks, C.; Serre, C., et al. AChromium Terephthalate-Based Solidwith Unusually Large Pore Volumes and Surface Area[J]. Science,2005,309(5743):2040-2042.
    [90] Yang, Q.; Zhong, C. Molecular Simulation of Carbon Dioxide/Methane/HydrogenMixtureAdsorption in Metal-Organic Frameworks[J]. Journal Of Physical Chemistry B,2006,110(36):17776-17783.
    [91] Keskin, S.; Sholl, D. S. Assessment of a Metal-Organic Framework Membrane for GasSeparations Using Atomically Detailed Calculations: CO2, CH4, N2, H2Mixtures inMOF-5[J]. Industrial&Engineering Chemistry Research,2008,48(2):914-922.
    [92] Ramsahye, N. A.; Maurin, G.; Bourrelly, S., et al. Adsorption of CO2in Metal OrganicFrameworks of Different Metal Centres: Grand Canonical Monte Carlo SimulationsCompared to Experiments[J]. Adsorption-journal Of The International AdsorptionSociety,2007,13(5):461-467.
    [93] Ramsahye, N. A.; Maurin, G.; Bourrelly, S., et al. Charge Distribution in Metal OrganicFramework Materials: Transferability to a Preliminary Molecular Simulation Study ofthe CO2Adsorption in the MIL-53(Al) System[J]. Physical Chemistry Chemical Physics,2007,9(9):1059-1063.
    [94] Walton, K. S.; Millward, A. R.; Dubbeldam, D., et al. Understanding Inflections andSteps in Carbon Dioxide Adsorption Isotherms in Metal-Organic Frameworks[J]. JournalOf The American Chemical Society,2008,130(2):406-407.
    [95] Vaidhyanathan, R.; Iremonger, S. S.; Shimizu, G. K. H., et al. Direct Observation andQuantification of CO2Binding within an Amine-Functionalized Nanoporous Solid[J].Science,2010,330(6004):650-653.
    [96] Yang, Q.; Zhong, C.; Chen, J. F. Computational Study of CO2Storage in Metal-OrganicFrameworks[J]. Journal of Physical Chemistry C,2008,112:1562-1569.
    [97] Wu, D.; Wang, C.; Liu, B., et al. Large-Scale Computational Screening of Metal-OrganicFrameworks for Ch4/H2Separation[J]. AIChE Journal,2012,58(7):2078-2084.
    [98] Mu, W.; Liu, D.; Yang, Q., et al. Computational Study of the Effect of Organic Linkerson Natural Gas Upgrading in Metal-Organic Frameworks[J]. Microporous andMesoporous Materials,2010,130(1–3):76-82.
    [99] Rekoske, J. E. Chiral Separations[J]. AIChE J,2001,47(1):2-5.
    [100] He, L.; Beesley, T. E.Applications of Enantiomeric Gas Chromatography: AReview[J].Journal Of Liquid Chromatography&Related Technologies,2005,28(7):1075-1114.
    [101] Schurig, V. Separation of Enantiomers by Gas Chromatography[J]. Journal OfChromatographyA,2001,906(1-2):275-299
    [102] Thompson, R. APractical Guide to Hplc Enantioseparations for PharmaceuticalCompounds[J]. Journal Of Liquid Chromatography&Related Technologies,2005,28(7):1215-1231.
    [103] Liu, Y.; Lantz, A. W.; Armstrong, D. W. High Efficiency Liquid and Super-/SubcriticalFluid-Based Enantiomeric Separations: An Overview[J]. Journal Of LiquidChromatography&Related Technologies,2005,27(7):1121-1178.
    [104] Lipkowitz, K. B. Atomistic Modeling of Enantioselective Binding[J]. Accounts OfChemical Research,2000,33(8):555-562.
    [105] Jin, Y. Z.; Hirose, K.; Nakamura, T., et al. Preparation and Evaluation of a ChiralStationary Phase Covalently Bound with a Chiral Pseudo-18-Crown-6Ether Having aPhenolic Hydroxy Group for Enantiomer Separation ofAmino Compounds[J]. JournalOf ChromatographyA,2006,1129(2):201-207.
    [106] Pirkle, W. H.; Welch, C. J. An Investigation into the Role of Solvation in a WellCharacterized Chiral Recognition System[J]. Journal Of Liquid Chromatography&Related Technologies,1991,14(11):2027-2042.
    [107] Pirkle, W. H.; Welch, C. J.; Hyun, M. H. Concerning the Role of Face-to-Edge-Interactions in Chiral Recognition[J]. Journal Of ChromatographyA,1992,607(1):126-130.
    [108] Berthod, A.; Chang, S. C.;Armstrong, D. W. Empirical Procedure That Uses MolecularStructure to Predict Enantioselectivity of Chiral Stationary Phases[J]. AnalyticalChemistry,1992,64(4):395-404.
    [109] Kitagawa, S.; Kitaura, R.; Noro, S. Functional Porous Coordination Polymers[J].Angewandte Chemie International Edition,2004,43(18):2334-2375.
    [110] Eddaoudi, M.; Moler, D. B.; Li, H., et al. Modular Chemistry: Secondary Building Unitsas a Basis for the Design of Highly Porous and Robust Metal-Organic CarboxylateFrameworks[J]. Accounts Of Chemical Research,2001,34(4):319-330.
    [111] Rowsell, J. L. C.; Yaghi, O. M. Metal-Organic Frameworks: ANew Class of PorousMaterials[J]. Microporous and Mesoporous Materials,2004,73(1-2):3-14.
    [112] Maspoch, D.; Ruiz-Molina, D.; Veciana, J. Old Materials with New Tricks:Multifunctional Open-Framework Materials[J]. Chemical Society Reviews,2007,36(5):770-818.
    [113] Férey, G. Hybrid Porous Solids: Past, Present, Future[J]. Chemical Society Reviews,2008,37(1):191-214.
    [114] Kesanli, B.; Lin, W. Chiral Porous Coordination Networks: Rational Design andApplications in Enantioselective Processes[J]. Coordination Chemistry Reviews,2003,246(1-2):305-326.
    [115] Bradshaw, D.; Claridge, J. B.; Cussen, E. J., et al. Design, Chirality, and Flexibility inNanoporous Molecule-Based Materials[J]. Accounts Of Chemical Research,2005,38(4):273-282.
    [116] Lee, S.; Mallik, A. B.; Xu, Z., et al. Small Amphiphilic Organics, CoordinationExtended Solids, and Constant Curvature Structures[J]. Accounts Of Chemical Research,2005,38(4):251-261.
    [117] Snurr, R. Q.; Hupp, J. T.; Nguyen, S. B. T. Prospects for Nanoporous Metal-OrganicMaterials in Advanced Separations Processes[J]. AIChE Journal,2004,50(6):1090-1095.
    [118] Lin, W. B. Metal-Organic Frameworks for Asymmetric Catalysis and ChiralSeparations[J]. Mrs Bulletin,2007,32(7):544-548.
    [119] Wu, C. D.; Hu, A.; Zhang, L., et al. AHomochiral Porous Metal-Organic Framework forHighly Enantioselective HeterogeneousAsymmetric Catalysis[J]. Journal Of TheAmerican Chemical Society,2005,127(25):8940-8941.
    [120] Wu, C. D.; Lin, W. Highly Porous, Homochiral Metal-Organic Frameworks:Solvent-Exchange-Induced Single-Crystal to Single-Crystal Transformations[J].Angewandte Chemie International Edition,2005,44(13):1958-1961.
    [121] Evans, O. R.; Ngo, H. L.; Lin, W. Chiral Porous Solids Based on Lamellar LanthanidePhosphonates[J]. Journal Of The American Chemical Society,2001,123(42):10395-10396.
    [122] Hu, A.; Zhang, L.; Lin, W. AHomochiral Porous Metal-Organic Framework for HighlyEnantioselective HeterogeneousAsymmetric Catalysis[J]. J. Am. Chem. Soc,2005,127(25):8940-8941.
    [123] Shi, X.; Zhu, G.; Qiu, S., et al. Zn2[(S)-O3PCH2NHC4H7CO2]2: AHomochiral3D ZincPhosphonate with Helical Channels[J].Angewandte Chemie International Edition,2004,116(47):6644-6647.
    [124] Carlucci, L.; Ciani, G.; Proserpio, D. M., et al. Chiral Packing of Chiral QuintupleLayers Polycatenated to Give a Three-Dimensional Network in the CoordinationPolymer [CO5(bpe)9(H2O)8(SO4)4](SO4)·14H2O [bpe=1,2-bis(4-pyridyl)ethane][J].Chemical Communications,2000,2000(14):1319-1320.
    [125] Ranford, J. D.; Vittal, J. J.; Wu, D., et al. Thermal Conversion of a Helical Coil into aThree-Dimensional Chiral Framework[J]. Angewandte Chemie International Edition,1999,38(23):3498-3501.
    [126] Ezuhara, T.; Endo, K.;Aoyama, Y. Helical Coordination Polymers fromAchiralComponents in Crystals. Homochiral Crystallization, Homochiral Helix Winding in theSolid State, and Chirality Control by Seeding[J]. Journal Of The American ChemicalSociety,1999,121(14):3279-3283.
    [127] Wang, Y. T.; Tong, M. L.; Fan, H. H., et al. Homochiral Crystallization of HelicalCoordination Chains Bridged by Achiral Ligands: Can It Be Controlled by the LigandStructure?[J]. Dalton Transactions,2005,2005(3):424-426.
    [128] Biradha, K.; Seward, C.; Zaworotko, M. J. Helical Coordination Polymers with LargeChiral Cavities[J]. Angewandte Chemie International Edition,1999,38(4):492-495.
    [129] Pérez-García, L.;Amabilino, D. B. Spontaneous Resolution under SupramolecularControl[J]. Chemical Society Reviews,2002,31(6):342-356.
    [130] Jacques, J.; Collet, A.; Wilen, S. H. Enantiomers,Racemates and Resolutions[M].Malabar,Florida: Krieger Publishing Company,1994.
    [131] Knof, U.; von Zelewsky, A. Predetermined Chirality at Metal Centers[J]. AngewandteChemie International Edition,1999,38(3):302-322.
    [132] Seo, J. S.; Whang, D.; Lee, H., et al. AHomochiral Metal-organic Porous Material forEnantioselective Separation and Catalysis[J]. Nature,2000,404(6781):982-986.
    [133] Zhang, G.; Yao, S. Y.; Guo, D. W., et al. Noncentrosymmetric and Homochiral Metal-Organic Frameworks of (S)-2-(1H-Imidazole1-Yl) PropionicAcid[J]. Crystal Growth&Design,2010,10(5):2355-2359.
    [134] Bao, X.; Snurr, R. Q.; Broadbelt, L. J. Collective Effects of Multiple Chiral Selectors onEnantioselective Adsorption[J]. Langmuir,2009,25(18):10730-10736.
    [135] Bao, X.; Broadbelt, L. J.; Snurr, R. Q. Elucidation of Consistent Enantioselectivity for aHomologous Series of Chiral Compounds in Homochiral Metal-Organic Frameworks[J].Physical Chemistry Chemical Physics,2010,12(24):6466-6473.
    [136]刘秀英;王朝阳;唐永建, et al.烷烃在ZSM-25型分子筛中吸附的蒙特卡罗模拟[J].四川大学学报(Journal Of Sichuan University),2008,45(5):1217-1220.
    [137]王建国;秦张峰;郭向云.低碳烷烃在silicalite中吸附的分子水平模拟研究[J].燃料化学学报(Journal Of Fuel ChemistryAnd Technology),1999,27:158-160.
    [138]卓胜池;黄永民;胡军, et al.有机/无机复合材料吸附分离CO2的模拟研究[J].中国科技论文在线(Sciencepaper Online),2008,3(12):919-923.
    [139]陈玉平;吕玲红;陆小华.烷烃在分子筛孔中吸附和扩散的分子模拟[J].计算机与应用化学(Computers and Applied Chemistry),2007,24(7):867-871.
    [140]张国;白福全;周欣.噻吩分子及其与异辛烷二元混合物在MCM-22分子筛中吸附的蒙特卡罗模拟[J].物理化学学报(Acta Physico-Chimica Sinica),2009,25(2):218-222.
    [141]吕玲红;王琦;刘迎春.短链烷烃二元混合物在分子筛上吸附分离的分子模拟[J].化学学报(Acta Chimica Sinica),2003,61(8):1232-1240.
    [142] Zeng, Y.; Ju, S. Adsorption of Thiophene and Benzene in Sodium-Exchanged Mfi-andMor-Type Zeolites: AMolecular Simulation Study[J]. Separation and PurificationTechnology,2009,67(1):71-78.
    [143]曾勇平;居沈贵.分子模拟噻吩、苯、正己烷混合物在MFI和MOR中的吸附行为[J].物理化学学报(Acta Physico-Chimica Sinica),2007,23(3):343-348.
    [144]朱丽荔;侯廷军;徐筱杰. MCM-22型分子筛中苯分子吸附行为的蒙特卡罗模拟研究[J].物理化学学报(Acta Physico-Chimica Sinica),2000,16(11):981-986.
    [145]孙书勇;曹达鹏;汪文川. MCM-22型分子筛中纯的和混合的轻烃的吸附行为的Monte Carlo模拟研究[J].北京化工大学学报(Journal Of Beijing University OfChemical Technology),2003,30(4):1-5.
    [146] Jiang, J.; Sandler, S. I. Monte Carlo Simulation for theAdsorption and Separation ofLinear and Branched Alkanes in IRMOF-1[J]. Langmuir,2006,22(13):5702-5707.
    [147] Perego, C.;Amarilli, S.; Millini, R., et al. Experimental and Computational Study ofBeta, ZSM-12, Y, Mordenite and ERB-1in Cumene Synthesis[J]. Microporous Materials,1996,6(5-6):395-404.
    [148] Aoyama, N.; Yoshihara, T.; Furukawa, S., et al. Molecular Simulation Study onAdsorption of Methanol/Water Mixtures in Mesoporous Silicas Modified Pore SurfaceSilylation[J]. Fluid Phase Equilibria,2007,257(2):212-216.
    [149] Denayer, J. F. M.; Ocakoglu, R. A.; Arik, I. C., et al. Rotational Entropy DrivenSeparation of Alkane/Isoalkane Mixtures in Zeolite Cages[J]. Angewandte Chemie,2005,117(3):404-407.
    [150] Granato, M.A.; Lamia, N.; Vlugt, T. J. H., et al. Adsorption Equilibrium of Isobutaneand1-Butene in Zeolite13X by Molecular Simulation[J]. Industrial&EngineeringChemistry Research,2008,47(16):6166-6174.
    [151] Pohl, P. I.; Heffelfinger, G. S.; Smith, D. M. Molecular Dynamics Computer Simulationof Gas Permeation in Thin Silicalite Membranes[J]. Molecular Physics,1996,89(6):1725-1731.
    [152] Pohl, P. I.; Heffelfinger, G. S. Massively Parallel Molecular Dynamics Simulation ofGas Permeation across Porous Silica Membranes[J]. Journal Of Membrane Science,1999,155(1):1-7.
    [153] Klemm, E.; Wang, J.; Emig, G. AComparative Study of the Sorption of Benzene andPhenol in Silicalite, Halzsm-5and Naalzsm-5by Computer Simulation[J]. Microporousand Mesoporous Materials,1998,26(1-3):11-21.
    [154] Furukawa, S.; McCabe, C.; Nitta, T., et al. Non-Equilibrium Molecular DynamicsSimulation Study of the Behavior of Hydrocarbon-Isomers in Silicalite[J]. Fluid PhaseEquilibria,2002,194:309-317.
    [155] Furukawa, S.; Nitta, T. AStudy of Permeation of N-Butane through Zsm-5Membraneby Using Monte Carlo and Equilibrium/Non-Equilibrium Molecular DynamicsSimulations[J]. Journal Of Chemical Engineering Of Japan,2003,36(3):313-321.
    [156] Vlugt, T. J. H.; Zhu, W.; Kapteijn, F., et al. Adsorption of Linear and Branched Alkanesin the Zeolite Silicalite-1[J]. Journal Of The American Chemical Society,1998,120(22):5599-5600.
    [157] Jia, W.; Murad, S. Molecular Dynamics Simulations of Gas Separations UsingFaujasite-Type Zeolite Membranes[J]. Journal Of Chemical Physics,2004,120(10):4877-4885.
    [158] Jia, W.; Murad, S. Separation of Gas Mixtures Using a Range of Zeolite Membranes: AMolecular-Dynamics Study[J]. Journal Of Chemical Physics,2005,122:234708.
    [159] Du, Z.; Manos, G.; Vlugt, T. J. H., et al. Molecular Simulation ofAdsorption of ShortLinear Alkanes and Their Mixtures in Silicalite[J]. AIChE Journal,1998,44(8):1756-1764.
    [160] Macedonia, M. D.; Maginn, E. J. Pure and Binary Component Sorption Equilibria ofLight Hydrocarbons in the Zeolite Silicalite from Grand Canonical Monte CarloSimulations[J]. Fluid Phase Equilibria,1999,158:19-27.
    [161] Nascimento, M.A. C. Computer Simulations of the Adsorption Process of LightAlkanes in High-Silica Zeolites[J]. Journal of Molecular Structure: THEOCHEM,1999,464(1-3):239-247.
    [162] Yue, X.; Yang, X. Molecular Simulation Study ofAdsorption and Diffusion on Silicalitefor a Benzene/CO2Mixture[J]. Langmuir,2006,22(7):3138-3147.
    [163] Hou, T. J.; Zhu, L. L.; Li, Y. Y., et al. The Localization and Adsorption of Benzene andPropylene in Itq-1Zeolite: Grand Canonical Monte Carlo Simulations[J]. JournalofMolecular Structure: THEOCHEM,2001,535(1-3):9-23.
    [164] Takaba, H.; Mizukami, K.; Kubo, M., et al. Permeation Dynamics of Small Moleculesthrough Silica Membranes: Molecular Dynamics Study[J]. AIChE Journal,1998,44(6):1335-1343.
    [165] Hernandez, E.; Catlow, C. R. A. Molecular Dynamics Simulations of N-Butane andN-Hexane Diffusion in Silicalite[J]. Proceedings: Mathematical and Physical Sciences,1995,448(1932):143-160.
    [166] Skoulidas, A. I.; Sholl, D. S. Transport Diffusivities of CH4, CF4, He, Ne, Ar, Xe, andSF6in Silicalite fromAtomistic Simulations[J]. Journal Of Physical Chemistry B,2002,106(19):5058-5067.
    [167] Skoulidas, A. I.; Sholl, D. S. Molecular Dynamics Simulations of Self-Diffusivities,Corrected Diffusivities, and Transport Diffusivities of Light Gases in Four Silica Zeolitesto Assess Influences of Pore Shape and Connectivity[J]. Journal Of Physical ChemistryA,2003,107(47):10132-10141.
    [168] Keil, F.; Krishna, R.; Coppens, M. O. Modeling of Diffusion in Zeolites[J]. Reviews InChemical Engineering,2000,16:71-197.
    [169] Paschek, D.; Krishna, R. Kinetic Monte Carlo Simulations of Transport Diffusivities ofBinary Mixtures in Zeolites[J]. Physical Chemistry Chemical Physics,2001,3(15):3185-3191.
    [170] Klein, H.; Fuess, H.; Schrimpf, G. Mobility ofAromatic Molecules in Zeolite Nay byMolecular Dynamics Simulation[J]. Journal of Physical Chemistry,1996,100(26):11101-11112.
    [171] Martin, M. G.; Thompson, A. P.; Nenoff, T. M. Effect of Pressure, Membrane Thickness,and Placement of Control Volumes on the Flux of Methane through Thin SilicaliteMembranes: ADual Control Volume Grand Canonical Molecular Dynamics Study[J].Journal Of Chemical Physics,2001,114(16):7174-7181.
    [172] Kamat, M.; Dang, W.; Keffer, D. Agreement betweenAnalytical Theory and MolecularDynamics Simulation for Adsorption and Diffusion in Crystalline NanoporousMaterials[J]. Journal Of Physical Chemistry B,2004,108(1):376-386.
    [173] Ahunbay, M. G.; Elliott Jr, J. R.; Talu, O. The Diffusion Process of Methane through aSilicalite Single Crystal Membrane[J]. Journal Of Physical Chemistry B,2002,106(20):5163-5168.
    [174] Ahunbay, M. G.; Elliott Jr, J. R.; Talu, O. Surface Resistance to Permeation through theSilicalite Single Crystal Membrane: Variation with Permeant[J]. Journal Of PhysicalChemistry B,2004,108(23):7801-7808.
    [175] Ahunbay, M. G.; Elliott Jr, J. R.; Talu, O. Effect of Surface Resistances on the Diffusionof Binary Mixtures in the Silicalite Single Crystal Membrane[J]. Journal Of PhysicalChemistry B,2005,109(2):923-929.
    [176] Newsome, D. A.; Sholl, D. S. Predictive Assessment of Surface Resistances in ZeoliteMembranes Using Atomically Detailed Models[J]. Journal Of Physical Chemistry B,2005,109(15):7237-7244.
    [177] Newsome, D. A.; Sholl, D. S. Molecular Dynamics Simulations of Mass TransferResistance in Grain Boundaries of Twinned Zeolite Membranes[J]. Journal Of PhysicalChemistry B,2006,110(45):22681-22689.
    [178] Moon, S. D.; Choi, D. W. Monte Carlo Simulation on theAdsorption Properties ofCarbon Tetrachloride, Neopentane, and Cyclohexane in MCM-41[J]. Korean Journal OfChemical Engineering,2009,26(4):1098-1105.
    [179] Rungsirisakun, R.; Nanok, T.; Probst, M., et al. Adsorption and Diffusion of Benzene inthe Nanoporous Catalysts FAU, ZSM-5and MCM-22: AMolecular Dynamics Study[J].Journal of Molecular Graphics and Modelling,2006,24(5):373-382.
    [180] Krishna, R.; Paschek, D. Molecular Simulations ofAdsorption and Siting of LightAlkanes in Silicalite-1[J]. Physical Chemistry Chemical Physics,2001,3(3):453-462.
    [181] Goj, A.; Sholl, D. S.;Akten, E. D., et al. Atomistic Simulations of CO2and N2Adsorption in Silica Zeolites: The Impact of Pore Size and Shape[J]. Journal Of PhysicalChemistry B,2002,106(33):8367-8375.
    [182] Heuchel, M.; Snurr, R. Q.; Buss, E. Adsorption of CH4-CF4Mixtures in Silicalite:Simulation, Experiment, and Theory[J]. Langmuir,1997,13(25):6795-6804.
    [183] Liu, B.; Smit, B. Comparative Molecular Simulation Study of CO2/N2and CH4/N2Separation in Zeolites and Metal-Organic Frameworks[J]. Langmuir,2009,25(10):5918-5926.
    [184] Sebastian, J.; Pillai, R. S.; Peter, S. A., et al. Sorption of N2, O2, and Ar in Mn(II)-Exchanged Zeolites a and X Using Volumetric Measurements and Grand CanonicalMonte Carlo Simulation[J]. Industrial&Engineering Chemistry Research,2007,46(19):6293-6302.
    [185] Pillai, R. S.; Peter, S. A.; Jasra, R. V. Correlation of Sorption Behavior of Nitrogen,Oxygen, and Argon with Ca2+Locations in Zeolite A: AGrand Canonical Monte CarloSimulation Study[J]. Langmuir,2007,23(17):8899-8908.
    [186] Hussain, I.; Titiloye, J. O. Molecular Dynamics Simulations of the Adsorption andDiffusion Behavior of Pure and Mixed Alkanes in Silicalite[J]. Microporous andMesoporous Materials,2005,85(1-2):143-156.
    [187] Iijima, S. Helical Microtubules of Graphitic Carbon[J]. Nature,1991,354(6348):56-58.
    [188] Chen, H.; Sholl, D. S. Rapid Diffusion of CH4/H2Mixtures in Single-Walled CarbonNanotubes[J]. Journal Of The American Chemical Society,2004,126(25):7778-7779.
    [189] Skoulidas, A. I.;Ackerman, D. M.; Johnson, J. K., et al. Rapid Transport of Gases inCarbon Nanotubes[J]. Physical Review Letters,2002,89(18):185901.
    [190] Ackerman, D. M.; Skoulidas, A. I.; Sholl, D. S., et al. Diffusivities ofAr and Ne inCarbon Nanotubes[J]. Molecular Simulation,2003,29(10):677-684.
    [191] Mao, Z.; Sinnott, S. B. AComputational Study of Molecular Diffusion and DynamicFlow through Carbon Nanotubes[J]. Journal Of Physical Chemistry B,2000,104(19):4618-4624.
    [192] Hinds, B. J.; Chopra, N.; Rantell, T., et al. Aligned Multiwalled Carbon NanotubeMembranes[J]. Science,2004,303(5654):62-65.
    [193] Lee, K. H.; Sinnott, S. B. Computational Studies of Non-Equilibrium MolecularTransport through Carbon Nanotubes[J]. Journal Of Physical Chemistry B,2004,108(28):9861-9870.
    [194] Chen, H.; Sholl, D. S. Predictions of Selectivity and Flux for CH4/H2Separations UsingSingle Walled Carbon Nanotubes as Membranes[J]. Journal Of Membrane Science,2006,269(1-2):152-160.
    [195] Zheng, J.; Lennon, E. M.; Tsao, H. K., et al. Transport of a Liquid Water and MethanolMixture through Carbon Nanotubes under a Chemical Potential Gradient[J]. Journal OfChemical Physics,2005,122:214702.
    [196] Jiang, J.; Sandler, S. I.; Schenk, M., et al. Adsorption and Separation of Linear andBranched Alkanes on Carbon Nanotube Bundles from Configurational-Bias Monte CarloSimulation[J]. Physical Review B,2005,72(4):45447.
    [197] Zhang, X.; Wang, W. Adsorption of Linear Ethane Molecules in Single Walled CarbonNanotubeArrays by Molecular Simulation[J]. Physical Chemistry Chemical Physics,2002,4(13):3048-3054.
    [198] Arora, G.; Sandler, S. I. Air Separation by Single Wall Carbon Nanotubes:Thermodynamics and Adsorptive Selectivity[J]. Journal Of Chemical Physics,2005,123:044705.
    [199] Jiang, J.; Sandler, S. I. Nitrogen and Oxygen MixtureAdsorption on Carbon NanotubeBundles from Molecular Simulation[J]. Langmuir,2004,20(25):10910-10918.
    [200] Gu, C.; Gao, G. H.; Yu, Y. X., et al. Simulation for Separation of Hydrogen and CarbonMonoxide by Adsorption on Single-Walled Carbon Nanotubes[J]. Fluid Phase Equilibria,2002,194:297-307.
    [201] Challa, S. R.; Sholl, D. S.; Johnson, J. K. Adsorption and Separation of HydrogenIsotopes in Carbon Nanotubes: Multicomponent Grand Canonical Monte CarloSimulations[J]. Journal Of Chemical Physics,2002,116:814-824.
    [202] Cruz, F. J.A. L.; Muller, E. A. Behavior of Ethylene and Ethane within Single-WalledCarbon Nanotubes.1-Adsorption and Equilibrium Properties[J]. Adsorption-journal OfThe InternationalAdsorption Society,2009,15(1):1-12.
    [203] Jakobtorweihen, S.; Keil, F. J. Adsorption ofAlkanes, Alkenes and Their Mixtures inSingle-Walled Carbon Nanotubes and Bundles[J]. Molecular Simulation,2009,35(1):90-99.
    [204] Huang, L. L.; Zhang, L. Z.; Shao, Q., et al. Molecular Dynamics Simulation Study ofthe Structural Characteristics of Water Molecules Confined in Functionalized CarbonNanotubes[J]. Journal Of Physical Chemistry B,2006,110(51):25761-25768.
    [205] Takaba, H.; Mizukami, K.; Oumi, Y., et al. Application of Integrated ComputationalChemistry System to the Design of Inorganic Membranes[J]. Catalysis Today,1999,50(3-4):651-660.
    [206] Fritz, L.; Hofmann, D. Molecular Dynamics Simulations of the Transport ofWater-Ethanol Mixtures through Polydimethylsiloxane Membranes[J]. Polymer,1997,38(5):1035-1045.
    [207] Choi, K.; Jo, W. H. Effect of Chain Flexibility on Selectivity in the Gas SeparationProcess: Molecular Dynamics Simulation[J]. Macromolecules,1995,28(25):8598-8603.
    [208] Macelroy, J. M. D. Molecular Simulation of the Kinetic Selectivity of a Model SilicaSystem[J]. Molecular Physics,2002,100(14):2369-2376.
    [209] Yoshioka, T.; Tsuru, T.;Asaeda, M. Molecular Dynamics Studies on Gas PermeationProperties through Microporous Silica Membranes[J]. Separation and PurificationTechnology,2001,25(1-3):441-449.
    [210] Cracknell, R. F.; Nicholson, D.; Quirke, N. Direct Molecular Dynamics Simulation ofFlow Down a Chemical Potential Gradient in a Slit-Shaped Micropore[J]. PhysicalReview Letters,1995,74(13):2463-2466.
    [211] Zhao, S.; Li, Z.; Liu, Y., et al. Simulation of Binary Gas Separation in Hollow FiberMembrane-Acetylene Dehydration[J]. Desalination,2008,233(1-3):310-318.
    [212] Wu, Z.; Liu, Z.; Wang, W., et al. Non-Equilibrium Molecular Dynamics Simulation onPermeation and Separation of H2/CO in Nanoporous Carbon Membranes[J]. Separationand Purification Technology,2008,64(1):71-77.
    [213] Coroneo, M.; Montante, G.; Giacinti Baschetti, M., et al. CFD Modelling of InorganicMembrane Modules for Gas Mixture Separation[J]. Chemical Engineering Science,2009,64(5):1085-1094.
    [214] Zhang, Q. G.; Liu, Q. L.; Zhu, A. M., et al. Pervaporation Performance of QuaternizedPoly (VinylAlcohol) and Its Crosslinked Membranes for the Dehydration of Ethanol[J].Journal Of Membrane Science,2009,335(1-2):68-75.
    [215] Choi, J. H.; Jegal, J.; Kim, W. N., et al. Incorporation of Multiwalled Carbon Nanotubesinto Poly (Vinyl Alcohol) Membranes for Use in the Pervaporation of Water/EthanolMixtures[J]. Journal OfApplied Polymer Science,2009,111(5):2186-2193.
    [216] Uragami, T.; Okazaki, K.; Matsugi, H., et al. Structure and Permeation Characteristicsof an Aqueous Ethanol Solution of Organic-Inorganic Hybrid Membranes Composed ofPoly (VinylAlcohol) and Tetraethoxysilane[J]. Macromolecules,2002,35(24):9156-9163.
    [217] Yeom, C. K.; Lee, K. H. Characterization of SodiumAlginate and Poly (Vinyl Alcohol)Blend Membranes in Pervaporation Separation[J]. Journal OfApplied Polymer Science,1998,67(5):949-959.
    [218] Rhim, J. W.; Yeom, C. K.; Kim, S. W. Modification of Poly (Vinyl Alcohol) MembranesUsing Sulfur-Succinic Acid and ItsApplication to Pervaporation Separation ofWater-Alcohol Mixtures[J]. Journal OfApplied Polymer Science,1998,68(11):1717-1723.
    [219] Zhang, Q. G.; Liu, Q. L.; Chen, Y., et al. Microstructure Dependent Diffusion ofWater-Ethanol in Swollen Poly (Vinyl Alcohol): AMolecular Dynamics SimulationStudy[J]. Chemical Engineering Science,2009,64(2):334-340.
    [220] Qiao, Z.; Wu, Y.; Li, X., et al. Molecular Simulation on the Separation of Water/EthanolAzeotropic Mixture by Poly (Vinyl Alcohol) Membrane[J]. Fluid Phase Equilibria,2010.
    [221] Tan, Z.; Gubbins, K. E. Selective Adsorption of Simple Mixtures in Slit Pores: AModelof Methane-Ethane Mixtures in Carbon[J]. Journal of Physical Chemistry,1992,96(2):845-854.
    [222] Nicholson, D.; Gubbins, K. E. Separation of Carbon Dioxide/Methane Mixtures byAdsorption: Effects of Geometry and Energetics on Selectivity[J]. Journal Of ChemicalPhysics,1996,104(20):8126-8134.
    [223] Sliwinska-Bartkowiak, M.; Sikorski, R.; Sowers, S. L., et al. Phase Separations forMixtures in Well-Characterized Porous Materials: Liquid¨Cliquid Transitions[J]. FluidPhase Equilibria,1997,136(1-2):93-109.
    [224]王淑梅;于养信.氮气和氧气在膜表面和狭缝孔内平衡吸附的分子模拟[J].化学学报(Acta Chimica Sinica),2006,64(11):1111-1115.
    [225]毛炜;窦潇;王华.分子模拟在反相液相色谱分离机理研究中的应用[J].计算机与应用化学(ComputersAnd Applied Chemistry),2007,24(4):524-528.
    [226] Kierlik, E.; Rosinberg, M.; Finn, J. E., et al. Binary Vapour MixturesAdsorbed on aGraphite Surface: AComparison of Mean Field Density Functional Theory with Resultsfrom Monte Carlo Simulations[J]. Molecular Physics,1992,75(6):1435-1454.
    [227] Nitra, T.; Nozawa, M.; Hishikawa, Y. Monte Carlo Simulation ofAdsorption of Gasesin Carbonaceous Slitlike Pores[J]. Journal Of Chemical Engineering Of Japan,1993,26(3):266-272.
    [228] Shigeta, T.; Yoneya, J.; Nitta, T. Monte Carlo Simulation Study ofAdsorptionCharacteristics in Slit-Like Micropores under Supercritical Conditions[J]. MolecularSimulation,1996,16(4):291-305.
    [229] Maddox, M.; Ulberg, D.; Gubbins, K. E. Molecular Simulation of Simple Fluids andWater in Porous Carbons[J]. Fluid Phase Equilibria,1995,104:145-158.
    [230] Peterson, B. K.; Gubbins, K. E. Phase Transitions in a Cylindrical Pore[J]. MolecularPhysics,1987,62(1):215-226.
    [231] Tusel, G.; Bruschke, H. Use of Pervaporation Systems in the Chem Ical Industry[J].Desalination,1985,53:327-330.
    [232] Mezei, M. ACavity-Biased (T, V, Μ) Monte Carlo Method for the Computer Simulationof Fluids[J]. Molecular Physics,1980,40(4):901-906.
    [233] Andersen, H. C. Molecular Dynamics Simulations at Constant Pressure and/orTemperature[J]. The Journal of Chemical Physics,1980,72(4):2384-2393.
    [234] Essmann, U.; Perera, L.; Berkowitz, M. L., et al. ASmooth Particle Mesh EwaldMethod[J]. Journal Of Chemical Physics,1995,103:8577-8593.
    [235] Metropolis, N.; Rosenbluth, A. W.; Rosenbluth, M. N., et al. Equation of StateCalculations by Fast Computing Machines[J]. Journal Of Chemical Physics,1953,21:1087-1092.
    [236] Mbhele, Z. H.; Salemane, M. G.; Van Sittert, C., et al. Fabrication and Characterizationof Silver-Polyvinyl Alcohol Nanocomposites[J]. Chemistry Of Materials,2003,15(26):5019-5024.
    [237] Fox, T. G.; Flory, P. J. Second-Order Transition Temperatures and Related Properties ofPolystyrene. I. Influence of Molecular Weight[J]. Journal OfApplied Physics,1950,21(6):581-591.
    [238] Pan, F.; Peng, F.; Jiang, Z. Diffusion Behavior of Benzene/Cyclohexane Molecules inPoly (VinylAlcohol)-Graphite Hybrid Membranes by Molecular DynamicsSimulation[J]. Chemical Engineering Science,2007,62(3):703-710.
    [239] Peng, F.; Pan, F.; Sun, H., et al. Novel Nanocomposite Pervaporation MembranesComposed of Poly (Vinyl Alcohol) and Chitosan-Wrapped Carbon Nanotube[J]. JournalOf Membrane Science,2007,300(1):13-19.
    [240] DeMerlis, C. C.; Schoneker, D. R. Review of the Oral Toxicity of Polyvinyl Alcohol(Pva)[J]. Food and Chemical Toxicology,2003,41(3):319-326.
    [241] Tao, C. G.; Feng, H. J.; Zhou, J., et al. Molecular Simulation of OxygenAdsorption andDiffusion in Polypropylene[J]. Acta Physico-chimica Sinica,2009,25(7):1373-1378.
    [242] Lyulin, S. V.; Darinskii, A. A.; Lyulin, A. V. Computer Simulation of Complexes ofDendrimers with Linear Polyelectrolytes[J]. Macromolecules,2005,38:3990-3998.
    [243] Gotze, W.; Sjogren, L. Relaxation Processes in Supercooled Liquids[J]. Reports OnProgress In Physics,1992,55(3):241-376.
    [244] Abe, N.; Ito, M. Effects of Hydrogen Bonding on the Raman Intensities of Methanol,Ethanol and Water[J]. J. Raman Spectrosc.,1978,7:161-167.
    [245] Fritz, L.; Hofmann, D. Molecular Dynamics Simulations of the Transport ofWater-Ethanol Mixtures through Polydimethylsiloxane Membranes[J]. Polymer,1997,38:1035-1045.
    [246] Song, C. An Overview of New Approaches to Deep Desulfurization for Ultra-CleanGasoline, Diesel Fuel and Jet Fuel[J]. Catalysis Today,2003,86(1-4):211-263.
    [247]刘海燕;于建宁;鲍晓军.世界石油炼制技术现状及未来发展趋势[J].过程工程学报(The Chinese Journal Of Process Engineering),2007,7(1):176-185.
    [248]王亚宁;熊春华.树脂吸附法去除水及空气中的CS2[J].化工环保(EnvironmentalProtection Of Chemical Industry),2006,26(3):174-177.
    [249] Stasinakis, A. S. Use of Selected Advanced Oxidation Processes (AOPs) for WastewaterTreatment-a Mini Review[J]. Global Nest Journal,2008,10(3):376-385.
    [250] Glover, T. G.; Peterson, G. W.; Schindler, B. J., et al. MOF-74Building Unit Has aDirect Impact on Toxic Gas Adsorption[J]. Chemical Engineering Science,2011,66(2):163-170.
    [251] Lin, L.; Zhang, Y.; Zhang, H., et al. Adsorption and Solvent Desorption Behaviour ofIon-Exchanged Modified Y Zeolites for Sulfur Removal and for Fuel CellApplications[J]. Journal Of Colloid and Interface Science,2011,360:753-759.
    [252]宋丽娟;潘明雪;秦玉才, et al. NiY分子筛选择性吸附脱硫性能及作用机理[J].高等学校化学学报(Chemical Journal Of Chinese Universities),2011,32(3):787-792.
    [253]范闽光;方金龙;周龙昌CuHY分子筛中铜离子的分布与吸附脱硫性能[J].高等学校化学学报(Chemical Journal of Chinese Universities),2008,29(9):1834-1840.
    [254] Shao, J.; Yang, C.; Zhu, X., et al. Melting and Freezing ofAu Nanoparticles Confined inArmchair Single-Walled Carbon Nanotubes[J]. Journal of Physical Chemistry C,2010,114(7):2896-2902.
    [255]王俊;朱宇;周健, et al.受限于不同螺旋性的纳米碳管中水的分子动力学模拟[J].化学学报(Acta Chimica Sinica),2003,61(12):1891-1896.
    [256] Lu, L.; Shao, Q.; Huang, L., et al. Simulation ofAdsorption and Separation ofEthanol-Water Mixture with Zeolite and Carbon Nanotube[J]. Fluid Phase Equilibria,2007,261(1-2):191-198.
    [257] Arora, G.; Sandler, S. I. Air Separation by Single Wall Carbon Nanotubes: MassTransport and Kinetic Selectivity[J]. Journal Of Chemical Physics,2006,124:084702.
    [258] Razavi, S. S.; Hashemianzadeh, S. M.; Karimi, H. Modeling the Adsorptive Selectivityof Carbon Nanotubes for Effective Separation of CO2/N2Mixtures[J]. Journal OfMolecular Modeling,2011,17(5):1163-1172.
    [259] Zhang, X.; Shao, X.; Wang, W., et al. Molecular Modeling of Selectivity ofSingle-Walled Carbon Nanotube and MCM-41for Separation of Methane and CarbonDioxide[J]. Separation and Purification Technology,2010,74(3):280-287.
    [260] Gu, C.; Gao, G. H.; Yu, Y. X., et al. Simulation Study of Hydrogen Storage in SingleWalled Carbon Nanotubes[J]. International Journal Of Hydrogen Energy,2001,26(7):691-696.
    [261] Shaijumon, M. M.; Ramaprabhu, S. Studies ofYield and Nature of CarbonNanostructures Synthesized by Pyrolysis of Ferrocene and HydrogenAdsorption Studiesof Carbon Nanotubes[J]. International Journal Of Hydrogen Energy,2005,30(3):311-317.
    [262] Yin, S. F.; Xu, B. Q.; Zhou, X. P., et al. AMini-Review on Ammonia DecompositionCatalysts for on-Site Generation of Hydrogen for Fuel Cell Applications[J]. AppliedCatalysis A,2004,277(1-2):1-9.
    [263]宋庆锋;张永春;刘军, et al.活性炭纤维吸附脱除硫化氢研究进展[J].广州化学(Guangzhou Chemistry),2007,32(4):72-77.
    [264] Nojini, Z. B.; Rafati, A. A.; Hashemianzadeh, S. M., et al. Predicting Helium and NeonAdsorption and Separation on Carbon Nanotubes by Monte Carlo Simulation[J]. JournalOf Molecular Modeling,2011,17(4):785-794.
    [265] Builes, S.; Roussel, T.; Vega, L. F. Optimization of the Separation of SulfurHexafluoride and Nitrogen by Selective Adsorption Using Monte Carlo Simulations[J].AIChE Journal,2011,57(4):962-974.
    [266]洪伟;古国榜;吴志伟.光催化氧化法治理恶臭污染的工程应用[J].环境工程(Environmental Engineering),2002,20(6):40-42.
    [267] Sun, H. Compass: An Ab Initio Force-Field Optimized for Condensed-PhaseApplications Overview with Details on Alkane and Benzene Compounds[J]. Journal OfPhysical Chemistry B,1998,102(38):7338-7364.
    [268] Arora, G.; Wagner, N. J.; Sandler, S. I. Adsorption and Diffusion of Molecular Nitrogenin Single Wall Carbon Nanotubes[J]. Langmuir,2004,20(15):6268-6277.
    [269] Somers, S. A.; McCormick, A. V.; Davis, H. T. Super Selectivity and Solvation Forcesof a Two Component Fluid Adsorbed in Slit Micropores[J]. Journal Of Chemical Physics,1993,99(12):9890-9898.
    [270] Rajendran, A.; Paredes, G.; Mazzotti, M. Simulated Moving Bed Chromatography forthe Separation of Enantiomers[J]. Journal Of ChromatographyA,2009,1216(4):709-738.
    [271] Fitos, I.; Visy, J.; Simonyi, M., et al. Separation of Enantiomers of Benzodiazepines onthe Chiral-AGP Column[J]. Journal Of Chromatography A,1995,709(2):265-273.
    [272] Calleri, E.; Massolini, G.; Loiodice, F., et al. Evaluation of a Penicillin G Acylase-BasedChiral Stationary Phase Towards a Series of2-Aryloxyalkanoic Acids, Isosteric Analogsand2-Arylpropionic Acids[J]. Journal Of ChromatographyA,2002,958(1-2):131-140.
    [273] Roussel, C.; Suteu, C.; Shaimi, L., et al. Structure and Substituent Effect on ChiralSeparation of Some4a-Methyl-2,3,4,4a-Tetrahydro-1h-Fluorene Derivatives and4a-Methyl-1,2,3,4,4a,9a-Hexahydro-Fluoren-9-One Derivatives on Cta-I andChiralcel Oj Chiral Stationary Phases[J]. Chirality,1998,10(6):522-527.
    [274] Maginn, E. J.; Bell, A. T.; Theodorou, D. N. Sorption Thermodynamics, Siting, andConformation of Long N-Alkanes in Silicalite as Predicted by Configurational-BiasMonte Carlo Integration[J]. Journal of Physical Chemistry,1995,99(7):2057-2079.
    [275] Macedonia, M. D.; Maginn, E. J. ABiased Grand Canonical Monte Carlo Method forSimulating Adsorption Using All-Atom and Branched United Atom Models[J].Molecular Physics,1999,96(9):1375-1390.
    [276] Smit, B.; Krishna, R. Monte Carlo Simulations in Zeolites[J]. Current Opinion in SolidStateAnd Materials Science,2001,5(5):455-462.
    [277] Fuchs, A. H.; Cheetham, A. K. Adsorption of Guest Molecules in Zeolitic Materials:Computational Aspects[J]. Journal Of Physical Chemistry B,2001,105(31):7375-7383.
    [278] Qiao, Z.; Ren, S.; Zhou, J. Molecular Simulations ofAdsorption and Separation ofH2Sand N2Mixture by Single Wall Carbon Nanotubes[J]. Chemical Journal of ChineseUniversities,2012,33(4):800-805.
    [279] Bao, X.; Broadbelt, L. J.; Snurr, R. Q. Computational Screening of HomochiralMetal-Organic Frameworks for EnantioselectiveAdsorption[J]. Microporous andMesoporous Materials,2012,157:118-123.
    [280] Moghadam, P. Z.; Duren, T. Origin of Enantioselectivity in a Chiral Metal-OrganicFramework: AMolecular Simulation Study[J]. Journal of Physical Chemistry C,2012,116(39):20874-20881.
    [281] De Meyer, K. M. A.; Chempath, S.; Denayer, J. F. M., et al. Packing Effects in theLiquid-PhaseAdsorption of C5-C22N-Alkanes on Zsm-5[J]. Journal Of PhysicalChemistry B,2003,107(39):10760-10766.
    [282] Qiao, Z.; Wu, Y.; Li, X., et al. Molecular Simulation on the Separation of Water/EthanolAzeotropic Mixture by Poly (Vinyl Alcohol) Membrane[J]. Fluid Phase Equilibria,2011,302(1):14-20.
    [283] Chempath, S.; Denayer, J. F. M.; De Meyer, K. M. A., et al.Adsorption of Liquid-PhaseAlkane Mixtures in Silicalite: Simulations and Experiment[J]. Langmuir,2004,20(1):150-156.
    [284] Daems, I.; Baron, G. V.; Punnathanam, S., et al. Molecular Cage Nestling in theLiquid-Phase Adsorption of N-Alkanes in5AZeolite[J]. Journal of Physical Chemistry C,2007,111(5):2191-2197.
    [285] Chempath, S.; Snurr, R. Q.; Low, J. J. Molecular Modeling of Binary Liquid‐PhaseAdsorption ofAromatics in Silicalite[J].AIChE Journal,2004,50(2):463-469.
    [286] Punnathanam, S.; Denayer, J. F. M.; Daems, I., et al. Parallel Tempering Simulations ofLiquid-PhaseAdsorption of N-Alkane Mixtures in Zeolite LTA-5A[J]. Journal ofPhysical Chemistry C,2011,115:762-769.
    [287] Bao, X. Y.; Broadbelt, L. J.; Snurr, R. Q. AComputational Study of EnantioselectiveAdsorption in a Homochiral Metal-Organic Framework[J]. Molecular Simulation,2009,35(1-2):50-59.
    [288] Bao, X. Y.; Snurr, R. Q.; Broadbelt, L. J. Collective Effects of Multiple Chiral Selectorson Enantioselective Adsorption[J]. Langmuir,2009,25(18):10730-10736.
    [289] Moghadam, P. Z.; Duren, T. Origin of Enantioselectivity in a Chiral Metal-OrganicFramework: AMolecular Simulation Study[J]. Journal of Physical Chemistry C,2012,116(38):20874-20881.
    [290] Bao, X. Y.; Broadbelt, L. J.; Snurr, R. Q. Elucidation of Consistent Enantioselectivityfor a Homologous Series of Chiral Compounds in Homochiral Metal-OrganicFrameworks[J]. Physical Chemistry Chemical Physics,2010,12(24):6466-6473.
    [291] Earl, D. J.; Deem, M. W. Parallel Tempering: Theory, Applications, and NewPerspectives[J]. Physical Chemistry Chemical Physics,2005,7(23):3910-3916.
    [292] Hansmann, U. H. E. Parallel Tempering Algorithm for Conformational Studies ofBiological Molecules[J]. Chemical Physics Letters,1997,281(1-3):140-150.
    [293] Tesi, M. C.; Rensburg, E. J. J.; Orlandini, E., et al. Monte Carlo Study of the InteractingSelf-Avoiding Walk Model in Three Dimensions[J]. Journal Of Statistical Physics,1996,82(1):155-181.
    [294] Xie, Y.; Zhou, J.; Jiang, S. Parallel Tempering Monte Carlo Simulations of LysozymeOrientation on Charged Surfaces[J]. Journal Of Chemical Physics,2010,132:065101.
    [295] Xiong, R. G.; You, X. Z.;Abrahams, B. F., et al. Enantioseparation of Racemic OrganicMolecules by a ZeoliteAnalogue[J].Angewandte Chemie International Edition,2001,40(23):4422-4425.
    [296] Rappe, A. K.; Casewit, C. J.; Colwell, K. S., et al. UFF, a Full Periodic Table ForceField for Molecular Mechanics and Molecular Dynamics Simulations[J]. Journal Of TheAmerican Chemical Society,1992,114(25):10024-10035.
    [297] Jorgensen, W. L. Optimized Intermolecular Potential Functions for Liquid Alcohols[J].Journal of Physical Chemistry,1986,90(7):1276-1284.
    [298] Jorgensen, W. L.; Maxwell, D. S.; Tirado-Rives, J. Development and Testing of theOPLS All-Atom Force Field on Conformational Energetics and Properties of OrganicLiquids[J]. Journal Of The American Chemical Society,1996,118(45):11225-11236.
    [299] Breneman, C. M.; Wiberg, K. B. Determining Atom-Centered Monopoles fromMolecular Electrostatic Potentials. The Need for High Sampling Density in FormamideConformationalAnalysis[J]. Journal Of Computational Chemistry,1990,11(3):361-373.
    [300] Lee, C.; Yang, W.; Parr, R. G. Development of the Colle-Salvetti Correlation-EnergyFormula into a Functional of the Electron Density[J]. Physical Review B,1988,37(2):785-789.
    [301] Becke, A. D. Density-Functional Thermochemistry. III. The Role of Exact Exchange [J].Journal Of Chemical Physics,1993,98:5648-5652.
    [302] Gelb, L. D.; Gubbins, K. E. Pore Size Distributions in Porous Glasses: AComputerSimulation Study[J]. Langmuir,1999,15(2):305-308.
    [303] Geyer, C. J.; Thompson, E.A. Annealing Markov Chain Monte Carlo withApplicationsto Ancestral Inference[J]. JournalAmerican Statistical Association,1995,90:909-920.
    [304] van Erp, T. S.; Dubbeldam, D.; Caremans, T. P., et al. Effective Monte Carlo Scheme forMulticomponent GasAdsorption and Enantioselectivity in Nanoporous Materials[J]. TheJournal of Physical Chemistry Letters,2010,1(14):2154-2158.
    [305] Caremans, T. P.; van Erp, T. S.; Dubbeldam, D., et al. Enantioselective AdsorptionCharacteristics ofAluminum-Substituted MFI Zeolites[J]. Chemistry Of Materials,2010,22(16):4591-4601.
    [306] Kim, C. U.; Lew, W.; Williams, M. A., et al. Structure-Activity Relationship Studies ofNovel Carbocyclic Influenza Neuraminidase Inhibitors[J]. Journal Of MedicinalChemistry,1998,41(14):2451-2460.
    [307] Ebner, D. C.; Trend, R. M.; Genet, C., et al. Palladium-Catalyzed EnantioselectiveOxidation of Chiral Secondary Alcohols: Access to Both Enantiomeric Series[J].Angewandte Chemie International Edition,2008,47(34):6367-6370.
    [308] Hernandez-Maldonado, A. J.; Yang, R. T.; Chinn, D., et al. Partially CalcinedGismondine Type Silicoaluminophosphate SAPO-43: Isopropylamine Elimination andSeparation of Carbon Dioxide, Hydrogen Sulfide, and Water[J]. Langmuir,2003,19(6):2193-2200.
    [309] Sarkar, S. C.; Bose, A. Role ofActivated Carbon Pellets in Carbon Dioxide Removal[J].Energy Conversion and Management,1997,38:105-110.
    [310] Li, S.; Falconer, J. L.; Noble, R. D. SAPO-34Membranes for CO2/CH4Separation[J].Journal Of Membrane Science,2004,241(1):121-135.
    [311] Carlson, H. A. Corrosion in Natural Gas Condensate Wells-PH and Carbon DioxideContent of Well Waters at Wellhead Pressure[J]. Industrial And Engineering Chemistry,1949,41(3):644-645.
    [312] Ju, D. H.; Shin, J. H.; Lee, H. K., et al. Effects of PH Conditions on the BiologicalConversion of Carbon Dioxide to Methane in a Hollow-Fiber Membrane BiofilmReactor (Hf–Mbfr)[J]. Desalination,2008,234(1):409-415.
    [313] He, Y.; Seaton, N. A. Experimental and Computer Simulation Studies of theAdsorptionof Ethane, Carbon Dioxide, and Their Binary Mixtures in MCM-41[J]. Langmuir,2003,19(24):10132-10138.
    [314] Cavenati, S.; Carlos, A.; Rodrigues, A. E. Adsorption Equilibrium of Methane, CarbonDioxide, and Nitrogen on Zeolite13X at High Pressures[J]. Journal Of Chemical andEngineering Data,2004,49(4):1095-1101.
    [315] Ustinov, E. A.; Do, D. D. High-Pressure Adsorption of Supercritical Gases on ActivatedCarbons: An Improved Approach Based on the Density Functional Theory and theBender Equation of State[J]. Langmuir,2003,19(20):8349-8357.
    [316] Yun, J. H.; Duren, T.; Keil, F. J., et al. Adsorption of Methane, Ethane, and Their BinaryMixtures on MCM-41: Experimental Evaluation of Methods for the Prediction ofAdsorption Equilibrium[J]. Langmuir,2002,18(7):2693-2701.
    [317] Choi, B. U.; Choi, D. K.; Lee, Y. W., et al. Adsorption Equilibria of Methane, Ethane,Ethylene, Nitrogen, and Hydrogen onto Activated Carbon[J]. Journal Of Chemical andEngineering Data,2003,48(3):603-607.
    [318] Soule, A. D.; Smith, C. A.; Yang, X., et al. Adsorption Modeling with the ESD Equationof State[J]. Langmuir,2001,17(10):2950-2957.
    [319] Harlick, P. J. E.; Tezel, F. H. Adsorption of Carbon Dioxide, Methane and Nitrogen:Pure and Binary MixtureAdsorption for ZSM-5with SiO2/Al2O3Ratio of280[J].Separation and Purification Technology,2003,33(2):199-210.
    [320] Latroche, M.; Surblé, S.; Serre, C., et al. Hydrogen Storage in the Giant-PoreMetal-Organic Frameworks MIL-100and MIL-101[J]. Angewandte ChemieInternational Edition,2006,45(48):8227-8231.
    [321] Liu, Y.; Eubank, J. F.; Cairns, A. J., et al. Assembly of Metal-Organic Frameworks(Mofs) Based on Indium-Trimer Building Blocks: APorous MOF with Soc Topologyand High Hydrogen Storage[J].Angewandte Chemie International Edition,2007,46(18):3278-3283.
    [322] Li, Y.; Yang, R. T. GasAdsorption and Storage in Metal-Organic FrameworkMOF-177[J]. Langmuir,2007,23(26):12937-12944.
    [323] Rosi, N. L.; Eckert, J.; Eddaoudi, M., et al. Hydrogen Storage in MicroporousMetal-Organic Frameworks[J]. Science,2003,300(5622):1127-1129.
    [324] Fairen-Jimenez, D.; Colón, Y. J.; Farha, O., et al. Understanding Excess UptakeMaxima for Hydrogen Adsorption Isotherms in Frameworks with Rht Topology[J].Chemical Communications,2012,48:10496-10498.
    [325] Mueller, U.; Schubert, M.; Teich, F., et al. Metal-Organic Frameworks-ProspectiveIndustrialApplications[J]. Journal Of Materials Chemistry,2006,16(7):626-636.
    [326] Alaerts, L.; Kirschhock, C. E.A.; Maes, M., et al. Selective Adsorption and Separationof Xylene Isomers and Ethylbenzene with the Microporous Vanadium (Iv) TerephthalateMIL-47[J]. Angewandte Chemie International Edition,2007,46(23):4293-4297.
    [327] Alaerts, L.; Maes, M.; Van Der Veen, M. A., et al. Metal–Organic Frameworks asHigh-PotentialAdsorbents for Liquid-Phase Separations of Olefins, Alkylnaphthalenesand Dichlorobenzenes[J]. Physical Chemistry Chemical Physics,2009,11(16):2903-2911.
    [328] Alaerts, L.; Maes, M.; Jacobs, P. A., et al. Activation of the Metal–Organic FrameworkMIL-47for Selective Adsorption of Xylenes and Other Difunctionalized Aromatics[J].Physical Chemistry Chemical Physics,2008,10(20):2979-2985.
    [329] Finsy, V.; De Bruyne, S.;Alaerts, L., et al. Shape Selective Adsorption of Linear andBranched Alkanes in the Cu3(BTC)2Metal-Organic Framework[J]. Studies In SurfaceScience and Catalysis,2007,170:2048-2053.
    [330] Huang, L.; Bandosz, T.; Joshi, K. L., et al. ReactiveAdsorption ofAmmonia andAmmonia/Water on Cubtc Metal-Organic Framework:AReaxff Molecular DynamicsSimulation[J]. Journal Of Chemical Physics,2013,138:034102.
    [331] Horcajada, P.; Serre, C.; Vallet-Regí, M., et al. Metal-Organic Frameworks as EfficientMaterials for Drug Delivery[J]. Angewandte Chemie,2006,118(36):6120-6124.
    [332] Bourrelly, S.; Llewellyn, P. L.; Serre, C., et al. Different Adsorption Behaviors ofMethane and Carbon Dioxide in the Isotypic Nanoporous Metal Terephthalates MIL-53and MIL-47[J]. Journal Of The American Chemical Society,2005,127(39):13519-13521.
    [333] Furukawa, H.; Miller, M. A.; Yaghi, O. M. Independent Verification of the SaturationHydrogen Uptake in MOF-177and Establishment of a Benchmark for HydrogenAdsorption in Metal–Organic Frameworks[J]. Journal Of Materials Chemistry,2007,17(30):3197-3204.
    [334] Llewellyn, P. L.; Bourrelly, S.; Serre, C., et al. High Uptakes of CO2and CH4inMesoporous Metal Organic Frameworks MIL-100and MIL-101[J]. Langmuir,2008,24(14):7245-7250.
    [335] Llewellyn, P. L.; Bourrelly, S.; Serre, C., et al. How Hydration Drastically ImprovesAdsorption Selectivity for CO2over CH4in the Flexible Chromium TerephthalateMIL-53[J]. Angewandte Chemie,2006,118(46):7915-7918.
    [336] Serre, C.; Bourrelly, S.; Vimont, A., et al.An Explanation for the Very Large BreathingEffect of a Metal-Organic Framework During CO2Adsorption[J]. Advanced Materials,2007,19(17):2246-2251.
    [337] Millward, A. R.; Yaghi, O. M. Metal-Organic Frameworks with Exceptionally HighCapacity for Storage of Carbon Dioxide at Room Temperature[J]. Journal Of TheAmerican Chemical Society,2005,127(51):17998-17999.
    [338] Huang, H.; Zhang, W.; Liu, D., et al. Understanding the Effect of TraceAmount ofWater on CO2Capture in Natural Gas Upgrading in Metal-Organic Frameworks: AMolecular Simulation Study[J]. Industrial and Engineering Chemistry Research,2012,51(30):10031-10038.
    [339] Minwang, Q.; Shen, D.; Bülow, M., et al. Metallo-Organic Molecular Sieve for GasSeparation and Purification[J]. Microporous Mesoporous Materials,2002,55(2):217-230.
    [340] Sikora, B. J.; Wilmer, C. E.; Greenfield, M. L., et al. Thermodynamic Analysis of Xe/KrSelectivity in over137,000Hypothetical Metal-Organic Frameworks[J]. ChemicalScience,2012,3:2217-2223.
    [341] Bae, Y. S.; Lee, C. Y.; Kim, K. C., et al. High Propene/Propane Selectivity inIsostructural Metal-Organic Frameworks with High Densities of Open Metal Sites[J].Angewandte Chemie International Edition,2012,51(8):1857-1860.
    [342] Yu, D.; Ghosh, P.; Snurr, R. Q. Hierarchical Modeling ofAmmonia Adsorption inFunctionalized Metal–Organic Frameworks[J]. Dalton Transactions,2012,41(14):3962-3973.
    [343] Wilmer, C. E.; Farha, O. K.; Bae, Y. S., et al. Structure-Property Relationships of PorousMaterials for Carbon Dioxide Separation and Capture[J]. Energy and EnvironmentalScience,2012,5:9849-9856.
    [344] Kitagawa, S.; Uemura, K. Dynamic Porous Properties of Coordination PolymersInspired by Hydrogen Bonds[J]. Chemical Society Reviews,2005,34(2):109-119.
    [345] Fletcher, A. J.; Thomas, K. M.; Rosseinsky, M. J. Flexibility in Metal-OrganicFramework Materials: Impact on Sorption Properties[J]. Journal Of Solid StateChemistry,2005,178(8):2491-2510.
    [346] Uemura, K.; Matsuda, R.; Kitagawa, S. Flexible Microporous Coordination Polymers[J].Journal Of Solid State Chemistry,2005,178(8):2420-2429.
    [347] Bureekaew, S.; Shimomura, S.; Kitagawa, S. Chemistry and Application of FlexiblePorous Coordination Polymers[J]. Science and Technology ofAdvanced Materials,2008,9:014108.
    [348] Hamon, L.; Serre, C.; Devic, T., et al. Comparative Study of Hydrogen SulfideAdsorption in the MIL-53(Al, Cr, Fe), MIL-47(V), MIL-100(Cr), and MIL-101(Cr)Metal-Organic Frameworks at Room Temperature[J]. Journal Of The AmericanChemical Society,2009,131(25):8775-8777.
    [349] Hamon, L.; Llewellyn, P. L.; Devic, T., et al. Co-Adsorption and Separation ofCO2-CH4Mixtures in the Highly Flexible MIL-53(Cr) MOF[J]. Journal Of TheAmerican Chemical Society,2009,131(47):17490-17499.
    [350] Serre, C.; Millange, F.; Thouvenot, C., et al. Very Large Breathing Effect in the FirstNanoporous Chromium(Iii)-Based Solids: MIL-53orCrIII(OH)·{O2C C6H4COo2}·{HO2C C6H4CO2H}X·H2Oy[J]. Journal Of TheAmerican Chemical Society,2002,124(45):13519-13526.
    [351] Coudert, F. X.; Jeffroy, M.; Fuchs, A. H., et al. Thermodynamics of Guest-InducedStructuralTransitions in Hybrid Organic-Inorganic Frameworks[J]. Journal Of TheAmerican Chemical Society,2008,130(43):14294-14302.
    [352] Ren, H.; Jin, J.; Hu, J., et al. Affinity between Metal-Organic Frameworks andPolyimides in Asymmetric Mixed Matrix Membranes for Gas Separations[J]. Industrialand Engineering Chemistry Research,2012,51(30):10156-10164.
    [353] Couck, S.; Denayer, J. F. M.; Baron, G. V., et al. An Amine-Functionalized MIL-53Metal-Organic Framework with Large Separation Power for CO2and CH4[J]. Journal OfThe American Chemical Society,2009,131(18):6326-6327.
    [354] Wang, Z.; Cohen, S. M. Postsynthetic Covalent Modification of a NeutralMetal-Organic Framework[J]. Journal Of The American Chemical Society,2007,129(41):12368-12369.
    [355] Eddaoudi, M.; Kim, J.; Rosi, N., et al. Systematic Design of Pore Size and Functionalityin Isoreticular Mofs and Their Application in Methane Storage[J]. Science,2002,295(5554):469-472.
    [356] Rowsell, J. L. C.; Yaghi, O. M. Effects of Functionalization, Catenation, and Variationof the Metal Oxide and Organic Linking Units on the Low-Pressure HydrogenAdsorption Properties of Metal-Organic Frameworks[J]. Journal Of The AmericanChemical Society,2006,128(4):1304-1315.
    [357] Arstad, B.; Fjellv g, H.; Kongshaug, K. O., et al. Amine Functionalised Metal OrganicFrameworks (Mofs) asAdsorbents for Carbon Dioxide[J]. Adsorption-journal Of TheInternationalAdsorption Society,2008,14(6):755-762.
    [358] Zhu, Y. J.; Zhou, J. H.; Hu, J., et al. The Effect of Grafted Amine Group on theAdsorption of CO2in MCM-41: AMolecular Simulation [J]. Catalysis Today,2012,194(1):53-59.
    [359] Mulliken, R. S. Electronic Population Analysis on Lcao-Mo Molecular WaveFunctions.[J]. Journal Of Chemical Physics,1955,23(10):1833-1840.
    [360] Ramsahye, N. A.; Maurin, G.; Bourrelly, S., et al. On the Breathing Effect of aMetal-Organic Framework Upon CO2Adsorption: Monte Carlo Compared toMicrocalorimetry Experiments[J]. Chemical Communications,2007,(31):3261-3263.
    [361] Goodbody, S. J.; Watanabe, K.; MacGowan, D., et al. Molecular Simulation of Methaneand Butane in Silicalite[J]. Journal of the Chemical Society, Faraday Transactions,1991,87(13):1951-1958.
    [362] Maurin, G.; Llewellyn, P. L.; Bell, R. G. Adsorption Mechanism of Carbon Dioxide inFaujasites: Grand Canonical Monte Carlo Simulations and MicrocalorimetryMeasurements[J]. Journal Of Physical Chemistry B,2005,109(33):16084-16091.
    [363] Gupta, A.; Chempath, S.; Sanborn, M. J., et al. Object-Oriented ProgrammingParadigms for Molecular Modeling[J]. Molecular Simulation,2003,29(1):29-46.
    [364] Ma, S.; Sun, D.; Simmons, J. M., et al. Metal-Organic Framework from an AnthraceneDerivative Containing Nanoscopic Cages Exhibiting High Methane Uptake[J]. JournalOf The American Chemical Society,2008,130(3):1012-1016.
    [365] Dubbeldam, D.; Frost, H.; Walton, K. S., et al. Molecular Simulation ofAdsorptionSites of Light Gases in the Metal-Organic Framework IRMOF-1[J]. Fluid PhaseEquilibria,2007,261(1):152-161.
    [366] Férey, G. Hybrid Porous Solids: Past, Present, Future[J]. Chemical Society Reviews,2007,37(1):191-214.
    [367] Planas, N.; Dzubak, A. L.; Poloni, R., et al. The Mechanism of Carbon DioxideAdsorption in an Alkylamine-Functionalized Metal–Organic Framework[J]. Journal OfThe American Chemical Society,2013,135(20):7402-7405.
    [368] Brand, S. K.; Colón, Y. J.; Getman, R. B., et al. Design Strategies for MetalAlkoxideFunctionalized Metal–Organic Frameworks for Ambient Temperature HydrogenStorage[J]. Microporous and Mesoporous Materials,2013,171(0):103-109.
    [369] Ren, Y.; Cheng, X.; Yang, S., et al. AChiral Mixed Metal-Organic Framework Based ona Ni(Saldpen) Metalloligand: Synthesis, Characterization and Catalytic Performances[J].Dalton Transactions,2013,42(27):9930-9937.
    [370] Dau, P. V.; Cohen, S. M. Cyclometalated Metal-Organic Frameworks as Stable andReusable Heterogeneous Catalysts for Allylic N-Alkylation ofAmines[J]. ChemicalCommunications,2013,49(55):6128-6130.
    [371] Marti, A. M.; Nijem, N.; Chabal, Y. J., et al. Selective Detection of Olefins Using aLuminescent Silver-Functionalized Metal Organic Framework, Rpm3[J]. Microporousand Mesoporous Materials,2013,174(0):100-107.
    [372] Lin, L.-C.; Berger, A. H.; Martin, R. L., et al. In Silico Screening of Carbon-CaptureMaterials[J]. Nature Materials,2012,11(7):633-641.
    [373] Tagliabue, M.; Farrusseng, D.; Valencia, S., et al. Natural Gas Treating by SelectiveAdsorption: Material Science and Chemical Engineering Interplay[J]. ChemicalEngineering Journal,2009,155(3):553-566.
    [374] Cavenati, S.; Grande, C. A.; Rodrigues, A. E. Removal of Carbon Dioxide from NaturalGas by Vacuum Pressure Swing Adsorption[J]. Energy and Fuels,2006,20(6):2648-2659.
    [375] Chae, H. K.; Siberio-Pérez, D. Y.; Kim, J., et al. ARoute to High Surface Area, Porosityand Inclusion of Large Molecules in Crystals[J]. Nature,2004,427(6974):523-527.
    [376] Park, K. S.; Ni, Z.; C té,A. P., et al. Exceptional Chemical and Thermal Stability ofZeolitic Imidazolate Frameworks[J]. Proceedings of the National Academy of Sciences,2006,103(27):10186-10191.
    [377] Koh, K.; Wong-Foy, A. G.; Matzger,A. J. ACrystalline Mesoporous CoordinationCopolymer with High Microporosity[J]. Angewandte Chemie International Edition,2008,47(4):677-680.
    [378] Chui, S. S. Y.; Lo, S. M. F.; Charmant, J. P. H., et al. AChemically FunctionalizableNanoporous Material [Cu3(Tma)2(H2O)3]N[J]. Science,1999,283(5405):1148-1150.
    [379] Dietzel, P. D. C.; Morita, Y.; Blom, R., et al. An in Situ High-TemperatureSingle-Crystal Investigation of a Dehydrated Metal-Organic Framework Compound andField-Induced Magnetization of One-Dimensional Metal-Oxygen Chains[J]. AngewandteChemie,2005,117(39):6512-6516.
    [380] Caskey, S. R.; Wong-Foy, A. G.; Matzger,A. J. Dramatic Tuning of Carbon DioxideUptake Via Metal Substitution in a Coordination Polymer with Cylindrical Pores[J].Journal Of The American Chemical Society,2008,130(33):10870-10871.
    [381] Dietzel, P. D. C.; Panella, B.; Hirscher, M., et al. HydrogenAdsorption in a NickelBased Coordination Polymer with Open Metal Sites in the Cylindrical Cavities of theDesolvated Framework[J]. Chemical Communications,2006,(9):959-961.
    [382] Barthelet, K.; Marrot, J.; Riou, D., et al. ABreathing Hybrid Organic–Inorganic Solidwith Very Large Pores and High Magnetic Characteristics[J]. Angewandte Chemie,2002,114(2):291-294.
    [383] Serre, C.; Millange, F.; Thouvenot, C., et al. Very Large Breathing Effect in the FirstNanoporous Chromium(III)-Based Solids: MIL-53orCrIII(Oh)·{O2C C6H4CO2}·{HO2C C6H4CO2H}X·H2Oy[J]. Journal Of TheAmerican Chemical Society,2002,124(45):13519-13526.
    [384] Loiseau, T.; Serre, C.; Huguenard, C., et al. ARationale for the Large Breathing of thePorousAluminum Terephthalate (MIL-53) Upon Hydration[J]. Chemistry-a EuropeanJournal,2004,10(6):1373-1382.
    [385] Liu, B.; Zhao, R.; Yang, G., et al. Two IsostructuralAmine-Functionalized3DSelf-Penetrating Microporous Mofs Exhibiting High Sorption Selectivity for CO2[J].CrystEngComm,2013,15:2057-2060.
    [386] Cavka, J. H.; Jakobsen, S.; Olsbye, U., et al. ANew Zirconium Inorganic BuildingBrick Forming Metal Organic Frameworks with Exceptional Stability[J]. Journal Of TheAmerican Chemical Society,2008,130(42):13850-13851.
    [387] Choi, S.; Watanabe, T.; Bae, T. H., et al. Modification of the Mg/DOBDC MOF withAmines to Enhance CO2Adsorption from Ultradilute Gases[J]. The Journal of PhysicalChemistry Letters,2012,3(9):1136-1141.
    [388] Wang, Z.; Tanabe, K. K.; Cohen, S. M.Accessing Postsynthetic Modification in a Seriesof Metal-Organic Frameworks and the Influence of Framework Topology onReactivity[J]. Inorganic Chemistry,2009,48(1):296-306.
    [389] Ahnfeldt, T.; Gunzelmann, D.; Wack, J., et al. Controlled Modification of the Inorganicand Organic Bricks in an Al-Based Mof by Direct and Post-Synthetic SynthesisRoutes[J]. CrystEngComm,2012,14(12):4126-4136.
    [390] Dubbeldam, D.; Calero, S.; Ellis, D. E., et al. Raspa1.0[M]. Northwestern University:Evanston, IL:2008.
    [391] Mayo, S. L.; Olafson, B. D.; Goddard, W. A. Dreiding: AGeneric Force Field forMolecular Simulations[J]. Journal of Physical Chemistry,1990,94(26):8897-8909.
    [392] Potoff, J. J.; Siepmann, J. I. Vapor–Liquid Equilibria of Mixtures Containing Alkanes,Carbon Dioxide, and Nitrogen[J]. AIChE Journal,2001,47(7):1676-1682.
    [393] Ewald, P. P. The Calculation of Optical and Electrostatic Grid Potential[J]. Annals OfPhysics,1921,64(3):253-287.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700