用户名: 密码: 验证码:
含锶磷酸钙中空微球的生物模板法仿生合成研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
磷酸钙生物陶瓷材料由于与天然骨的无机质具有化学组分和晶体结构的相似性,表现出良好的生物活性、生物相容性和骨传导性,是研究和开发骨组织再生修复材料的重要研究方向和应用种类之一。但是目前传统制备技术无法实现对产物的形貌、结构和组分的精确控制与仿生制备,所获得的磷酸钙材料与生物磷灰石在组成、结构和性能上仍存在较大的差异,存在力学性能、降解速率等新骨形成不匹配的问题,这极大地限制了其对骨缺损再生修复的应用。而开发高性能的骨组织再生修复材料,需要研究更有效可控的磷酸钙生物陶瓷材料仿生制备技术。
     本研究采用生物模板法仿生合成技术,创新性地利用酵母细胞作为生物模板,实现对多孔中空微球结构和对微量元素的离子含量与离子富集位置的有效调控,研制出可用于骨组织再生修复的含锶多孔磷酸钙中空微球。该材料的多孔中空微球结构具有密度低、稳定性高、流动性好、表面渗透能力强、可容纳大量客体分子等优点,使负载和释放具有促进新骨形成的功能性分子成为可能。在此基础上,进一步研究低剂量微量元素锶对磷酸钙材料的离子改性,可明显改善材料的生物相容性、骨传导性和生物可降解性,有效促进新骨的形成,提高骨缺损再生修复的效率。
     通过研究酵母细胞种类、聚电解质浓度、自组装次数、温度、pH值、离子浓度等关键技术参数对产物组分和结构的影响,确定制备磷酸钙中空微球的最优化条件,实现对多孔中空微球结构的精确控制,并探讨了磷酸钙中空微球的仿生合成机理。最终获得的多孔磷酸钙中空微球,主晶相为β-TCP,微球平均粒径约为5.85μm,壁厚约为0.5~1.0μm,并且微球壁上存在大量不规则的多级微纳米孔隙结构(孔径≤500nm)。
     在生物模板法合成多孔中空微球结构的基础上,进一步研究微量元素对磷酸钙材料的离子改性所引起的组分不均匀、离子突释等问题,利用聚电解质和酵母细胞对Sr~(2+)的特殊吸附作用,达到对离子含量和离子富集位置的有效控制,研制出含锶磷酸钙中空微球(Sr-CPMC),并研究了Sr~(2+)对Sr-CPMC组成和结构的影响,以及Sr~(2+)含量与Sr~(2+)富集位置对产物的离子释放行为、矿化、蛋白质吸附作用和细胞生物学性能的影响。
     研究结果表明,利用聚电解质吸附作用制备的多孔Sr-CPMC,其Sr~(2+)预先进入无定形磷酸钙中,特定热处理后形成Sr-TCP,Sr~(2+)主要富集在微球外层, Sr~(2+)含量与初始锶钙摩尔比成正比例关系。而利用酵母细胞的生物吸附作用制备的Sr-CPMC,其Sr~(2+)被负载在生物模板内核,在热处理阶段掺入TCP晶体中,Sr~(2+)主要富集在微球内层,Sr~(2+)含量随着初始Sr~(2+)浓度先升高后下降。生物模板法可调控磷酸钙材料的微量元素离子改性,有效控制CPMC的Sr~(2+)含量以及Sr~(2+)在微球内/外层的富集。酵母细胞作为一种智能的离子掺杂的初级筛选装置,可实现对磷酸钙的低剂量微量元素的离子改性。
     Sr-CPMC具有Sr~(2+)缓释性能以及良好的矿化和蛋白质吸附性能,Sr~(2+)含量和Sr~(2+)富集位置是影响Sr~(2+)释放行为、矿化和蛋白质吸附性能的关键技术参数。Sr-CPMC的多孔中空微球结构对Sr~(2+)的缓释起到关键控制作用。Sr-CPMC与人骨髓间充质干细胞(hMSCs)共培养过程中表现出良好的细胞相容性。Sr-CPMC具有促进hMSCs增殖和成骨分化的生物学性能,这主要得益于多孔中空微球结构和Sr-Ca组分的协同效应。与不含锶的磷酸钙空白样对比,当Sr~(2+)含量为0.18±0.04at%且Sr~(2+)富集在微球内层的Sr-CPMC,其细胞增值率提高了约40%。Sr~(2+)富集在微球内层的Sr-CPMC,在成骨诱导培养过程中使hMSCs的ALP酶活性提高了约50%,显著地促进了hMSCs的ALP、Collagen-I和Runx-2基因表达,以及ALP酶的分泌和钙结节的形成。Sr-CPMC与hMSCs经过30天成骨诱导共培养,形成了粉体-细胞三维复合团,在复合团内外hMSCs的黏附与增殖情况良好,并向成骨分化产生了大量的Collagen-I,该三维复合团具有向类骨组织转化的潜能。
     本研究采用生物模板法制备的含锶磷酸钙材料,表现出良好的离子缓释、矿化、蛋白质吸附和细胞生物学性能,有望作为药物载体或者填充料、钙磷系统可注射自固化骨水泥或者骨组织工程支架,在生物医学方面具有广阔的应用前景。
Calcium phosphate bioceramic exhibits excellent biological activity, biocompatibilityand osteoconductivity, because of the similarity with the inorganic component of the naturalbone in the chemical composition and crystal structure. It is one of the important researchesand application categories in the study and development of bone regeneration materials.However, the traditional techniques can not be achieved on the precise control and biomimeticpreparation toward the product morphology, structure and composition at present. There arestill large differences between the artificial calcium phosphate and biological apatite in thecomposition, structure and properties, existed the problems such as the mechanical propertiesand biodegradation rate mismatching with the new bone formation, which greatly limits itsapplication in the regeneration and repair of bone defects. Besides to research the moreeffectively controllable biomimetic technology to prepare calcium phosphate bioceramic isrequired for developing the high-performance materials for bone regeneration and repair.
     In this study, biotemplate biomimetic technology was used. We innovatively used theyeast-based biotemplate to implement the effective control toward the porous hollowmicrosphere structure and the ionic content and ionic enriching position of the trace elements,and prepared the porous hollow storntium-contained calcium phospahte microspheres for thebone tissue regeneration and repair. The porous hollow microsphere structure has theadvantages, such as low density, high stability, good fluidity, good surface penetration abilityand accommodating a large number of guest molecules, etc. The structure makes the load andrelease with the functional molecules for the promotion of the new bone formation becomepossible. On this basis, we further researched on the ionic modification of the low dosesstorntium in calcium phospahte, which can significantly improve the biocompatibility,osteoconductivity and biodegradation, and effectively promote the new bone formation, aswell as increased the bone defect regeneration efficiency.
     The effect of the key parameters on the product component and structure was researched,such as the cell types, polyelectrolyte concentration, the self-assembly times, temperature, pHvalue, ion concentration, etc. We determined the optimal conditions for preparing the poroushollow calcium phospahte microspheres, and achieved on the precise control of the poroushollow microsphere structure. The biomimetic mechanism was discussed. The main phase ofthe finally product was β-TCP. The microsphere average diameter was about5.85μm. Theshell thickness was among0.5-1.0μm. There were numbers of micro-and nano-sized pore inthe shell wall (The pore diameter≤500nm).
     Based on the use of the biotemplate for preparing porous calcium phosphate hollowmicrospheres, we further researched the ionic modification of the trace element on calciumphosphate and the problems of the component uneven and ion burst release. The specificadsorption of polyelectrolyte and microbial cells to the Sr~(2+)was utilized to achieve on theeffective control of the ion content and ion enriching position. The porousstrontium-sbustituted calcium phosphate hollow microsphere/microcapsule (Sr-CPMC) wassuccessfully synthesized. The study was carried out for the effect of Sr~(2+)on the hollowmicrosphere component and structure, as well as the infection of Sr~(2+)content and Sr~(2+)enriching position to the product's ion release behavior, mineralization, protein adsorption andbiological performance.
     The results showed that the Sr-CPMC was obtained by using the polyelectrolyteadsorption. The Sr~(2+)pre-substitued in the amorphous calcium phosphate, which became theSr-TCP after sintered. The Sr~(2+)enriched in the outer layer of microspheres. The Sr~(2+)contentand the initial Sr/(Sr+Ca) molar ratio was a proportional relationship. However, the theSr-CPMC prepared by using the yeast cells biosorption loaded the Sr~(2+)on the innerbiotemplates. Sr~(2+)incorporated in the TCP crystal lattice through the heat treatment, whichmainly enriched in the inner microspheres. The Sr~(2+)content increased with the initial Sr~(2+)concentration increased and then decreased. The biotemplate method can regulate the ionicmodification of the trace element in calcium phosphate and effectively control the Sr~(2+)content, Sr~(2+)enriching in outer/inner microsphere. Yeast cells as an intelligent primary devicefor the ion doping can achieve on the low dose ionic modification of the trace element.
     Sr-CPMC has the Sr~(2+)slow release properties and good mineralization and proteinadsorption properties. The Sr~(2+)content and Sr~(2+)enriching location were the key parameters toaffect the Sr~(2+)release behavior, mineralization and protein adsorption performance. Theporous hollow microsphere structure has the key function to control the Sr~(2+)slow release.Sr-CPMC showed good compatibility during co-culturing wiht the human marrow stromalcells (hMSCs). Sr-CPMC can promote the hMSCs proliferation and osteogenic differentiationdue to the synergies of the porous hollow microsphere structure and Sr-Ca component.Compared to the control, the cell proliferation rate of the Sr-CPMC sample increased about40%, when the Sr~(2+)content was0.18±0.04at%and the Sr~(2+)was enriching in the innermicrosphere. During co-culturing osteogenic process, the sample of the Sr~(2+)enriching in theinner microsphere increased the hMSCs ALP activity about50%and significantly promotedthe hMSCs ALP, Collagen-I and Runx-2gene expression, as well as the ALP enzymesecretion and calcium nodule formation. Sr-CPMC and hMSCs were cultured to turn to be a powder-cells three-dimensional composite group after30days' osteogenic process. HMSCsshowed good adhesion and proliferation condition both inside and outside of the compositegroup and produced a large number of Collagen-I after the osteogenic differentiation. Thethree-dimensional composite group has the potential of transforming to the bone tissue.
     In this work, the biotemplate method was used to prepare Sr-CPMC. The product hadgood ion slow release, mineralization, protein adsorption and cell biological properties. Weproposed the product could be made for the drug carrier, packing material, injectableself-setting calcium phosphate bone cement, or bone tissue engineering scaffold. The producthas broad prospects for the biomedical application.
引文
[1] Goldberg V. M., Lance E. M., Revascularization and accretion in transplantation [J]. JBone Joint Surg,1972,54(4):807-816.
    [2] Chase S. W., Herndon C. H., The fate of autogenous and homogenous bone grafts. Ahistorical review [J]. J Bone Joint Surg,1955,37(4):809-841.
    [3] Goldberg V. M., Powell A., Shaffer J. W., Zika J., Bos G. D., Heiple K. G., Bonegrafting: Role of histocompatibility in transplantation [J]. J Orthop Res,1985,3(4):389-404.
    [4] Stevenson S., Horowitz M., Current concepts review: The response to bone allografts [J].J Bone Joint Surg Am,1992,74(6):939-950.
    [5] Flanagan F., Regenerative medicine enters realm of reality [J]. Genetic Engineering&Biotechnology News,2007,27(7):1252-1254.
    [6]姚康德,尹玉姬,组织工程相关生物材料[M].化学工业出版社,2003.
    [7]俞耀庭,张兴栋,生物医用材料[M].天津大学出版社,2000.
    [8]李世普,生物医用材料导论[M].武汉理工大学出版社,2000.
    [9]王迎军,生物医用陶瓷材料[M].华南理工大学出版社,2010.
    [10] Gerber H. P., Ferrara N., Angiogenesis and bone growth [J]. Trends Cardiovasc Med,2000,10(5):223-228.
    [11] Dorozhkin S. V., Epple M., Biological and medical significance of calcium phosphates[J]. Angew Chem Int Edit,2002,41(17):3130-3146.
    [12] Weiner S., Wagner H. D., The material bone: Structure-mechanical function relations[J]. Annu Rev Mater Sci,1998,28(1):271-298.
    [13] Uskokovi V., Uskokovi D. P., Nanosized hydroxyapatite and other calciumphosphates: Chemistry of formation and application as drug and gene delivery agents [J].J Biomed Mater Res B,2011,96B(1):152-191.
    [14] Shi X., Wang Y., Varshney R. R., Ren L., Zhang F., Wang D., In-vitro osteogenesis ofsynovium stem cells induced by controlled release of bisphosphate additives frommicrospherical mesoporous silica composite [J]. Biomaterials,2009,30(23-24):3996-4005.
    [15] Tung M. S., Brown W. E., The role of octacalcium phosphate in subcutaneousheterotopic calcification [J]. Calcif Tissue Int,1985,37(3):329-331.
    [16] Tomazic B. B., Brown W. E., Schoen F. J., Physicochemical properties of calcificdeposits isolated from porcine bioprosthetic heart valves removed from patientsfollowing2–13years function [J], J Biomed Mater Res A,1994,28(1):35-47.
    [17] Nancollas G. H., Wu W., Biomineralization mechanisms: a kinetics and interfacial energyapproach [J], J Crystal Growth,2000,211(1-4):137-142.
    [18] Wuthier R. E., Rice G. S., Wallace Jr. J. E. B., Weaver R. L., LeGeros R. Z., Eanes E.D., In vitro precipitation of calcium phosphate under intracellular conditions: formationof brushite from an amorphous precursor in the absence of ATP [J], Calcif Tissue Int,1985,37(4):401-410.
    [19] Combes C., Rey C., Amorphous calcium phosphates: Synthesis, properties and uses inbiomaterials [J]. Acta Biomaterialia,2010,6(9):3362-3378.
    [20] Mirtchi A. A., Lema tre J., Calcium phosphate cements: action of setting regulators onthe properties of the β-tricalcium phosphate-monocalcium phosphate cements [J],Biomaterials,1989,10(9):634-638.
    [21] Hesse A., Heimbach D., Causes of phosphate stone formation and the importance ofmetaphylaxis by urinary acidification: a review [J], World J Urol,1999,17(5):308-315.
    [22] Parka M. S., Eanes E. D., Antonucci J. M., Skrtic D., Mechanical properties ofbioactive amorphous calcium phosphate/methacrylate composites [J], Dent Mater,1998,14(2):137-141.
    [23] Tadic D., Peters F., Epple M., Continuous synthesis of amorphous carbonated apatites [J],Biomaterials,2002,,23(12):2553-2559.
    [24] Ferna′ndez E., Gil F. J., Ginebra M. P., M. Driessens F. C., Planell J. A., Best S. M.,Calcium phosphate bone cements for clinical applications. Part I: Solution chemistry [J],J Mater Sci Mater Med,1999,10(3):169-176.
    [25] Boanini E., Gazzano M., Bigi A., Ionic substitutions in calcium phosphates synthesizedat low temperature [J]. Acta Biomaterialia,2010,6(6):1882-1894.
    [26] Shi X., Wang Y., Wei K., Ren L., Lai C., Self-assembly of nanohydroxyapatite inmesoporous silica [J]. J Mater Sci: Mater Med,2008,19(8):2933-2940.
    [27] Hench L. L., Bioceramic [J], J Am Ceram Soc,1998,81(7):1705-1728.
    [28] Gatti A. M., Zaffe D., Poli G. P., Behaviour of tricalcium phosphate and hydroxyapatitegranules in sheep bone defects [J]. Biomaterials,1990,11(7):513-517.
    [29]李世普,王友法,磷灰石纳米粒子的制备改性及其生物安全性[M].北京:科学出版社,2010.
    [30] Kannan S., Lemos A. F., Rocha J. H. G., Ferreira J. M. F., Characterization andmechanical performance of the Mg-stabilized β-Ca3(PO4)2prepared fromMg-substituted Ca-deficient apatite [J]. J Am Ceram Soc,2006,89(9):2757-2761.
    [31] Lagier R., Baud C.-A., Magnesium whitlockite, a calcium phosphate crystals of specialinterest in pathology [J]. Path Res Prac,2003,199(5):329-335.
    [32] Enderle R., G tz-Neunhoeffer F., G bbels M., Müller F. A., Greil P., Influence o fmagnesium doping on the phase transformation temperature of β-TCP ceramicsexamined by rietveld refinement [J]. Biomaterials,2005,26(17):3379-3384.
    [33] Kani T., Kani M., Moriwaki Y., Doi Y. Microbeam X-ray diffraction analysis of dentalcalculus [J]. J Dent Res,1983,62(2):92-95.
    [34] Habibovic P., Barralet J. E., Bioinorganics and biomaterials: bone repair [J]. ActaBiomaterialia,2011,7(8):3013-3026.
    [35] Luo P. Nieh T. G., Preparing hydroxyapatite powders with controlled morphology [J].Biomaterials,1996,19(17):1959-1964.
    [36] Borden M., Attawia M., Khan Y., Laurencin C. T., Tissue engineered microsphere-basedmatrics for bone repair: design and evaluation [J]. Biomaterials,2002,23(2):551-559.
    [37] Pratihar S. K., Garg M., Mehra S., Bhattacharyya S., Phase evolution and sinteringkinetics of hydroxyapatite synthesized by solution combustion technique [J]. J Mater Sci:Mater Med,2006,17(6):501-507.
    [38] Liong M., Lu J., Kovochich M., Xia T., Ruehm S. G., Nel A. E., Tamanoi F., Zink J. I.,Multifunctional inorganic nanoparticles for imaging, targeting, and drug delivery [J].ACS Nano,2008,2(5):889-896.
    [39] Sinha R., Kim G. J., Nie S., Shin D. M., Nanotechnology in cancer therapeutics:bioconjugated nanoparticles for drug delivery [J]. Mol Cancer Ther,2006,5:1909-1917.
    [40] Gil P. R., Parak W. J., Composite nanoparticles take aim at cancer [J]. ACS Nano,2008,2(11):2200-2205.
    [41]Yuan F., Transvascular drug delivery in solid tumors [J]. Semin Radiat Oncol,1998,8(3):164-175.
    [42] Ramachandran R., Paul W., Sharma C. P., Synthesis and characterization of PEGylatedcalcium phosphate nanoparticles for oral insulin delivery [J]. J Biomed Mater Res B,2009,88B(1):41-48.
    [43] Shi X., Wang Y., Varshney R. R., Ren L., Gong Y., Wang D.-A., Microsphere-based drugreleasing scaffolds for inducing osteogenesis of human mesenchymal stem cells in vitro[J]. Eur J Pharm Sci,2010,39(1-3):59-67.
    [44] Graham F. L., Van der Eb A. J., A new technique for the assay of infectivity of humanadenovirus5DNA [J]. Virology,1973,52(2):456-467.
    [45] Sokolova V., Epple M., Inorganic nanoparticles as carriers of nucleic acids into cells [J].Angew Chem Int Ed,2008,47(8):1382-1395.
    [46] Cai Y., Tang R., Calcium phosphate nanoparticles in biomineralization and biomaterials[J]. J Mater Chem,2008,18:3775-3787.
    [47] Chowdhury E. H., Kunou M., Nagaoka M., Kundu A. K., Hoshiba T., Akaike T.High-efficiency gene delivery for expression in mammalian cells by nanoprecipitates ofCa–Mg phosphate [J]. Gene,2004,341(27):77-82.
    [48] Wenseleers W., Cambré S., ulin J., Bouwen A., Goovaerts E., Effect of water fillingon the electronic and vibrational resonances of carbon nanotubes: characterizing tubeopening by raman spectroscopy [J]. Adv Mater,2007,19(17):2236-2240.
    [49]宋琳,朱大章,孙晓宇,汪世龙,孙冬梅,介孔球状纳米羟基磷灰石的多级组装合成[J].化学学报,2009,67(23):2697-2702.
    [50]赵颖,徐为,姚爱华,黄文旵,多孔羟基磷灰石微球的原位转化制备研究[J].功能材料,2010,7(41):1124-1126.
    [51] Akartuna I., Tervoort E., Studart A. R., Gauckler L. J., General route for the assembly offunctional inorganic capsules [J]. Langmuir,2009,25(21):12419-12424.
    [52]罗德福,赵康,汤玉斐,马楚凡.羟基磷灰石空心微球的制备及其释药性能[J].硅酸盐通报,2010,29(3):651-656.
    [53] Cai Y., Pan H., Xu X., Hu Q., Li L., Tang R., Ultrasonic controlled morphologytransformation of hollow calcium phosphate nanospheres: a smart and biocompatibledrug release system [J]. Chem Mater,2007,19(13):3081-3083.
    [54] Epple M., Ganesan K., Heumann R., Klesing J., Kovtun A., Neumann S., Sokoolova V.,Application of calcium phosphate nanoparticles in biomedicine [J]. J Mater Chem,2010,20:18-23.
    [55] Wu Y., Bose S., Nanocrystalline hydroxyapatite: micelle templated synthesis andcharacterization [J]. Langmuir,2005,21(8):3232-3234.
    [56] Liu D.-M., Yang Q., Troczynski T., Tseng W. J., Structural evolution of sol–gel-derivedhydroxyapatite [J]. Biomaterials,2002,23(7):1679-1687.
    [57] Rusu V. M., Ng C.-H., Wilke M., Tiersch B., Fratzl P., Peter M. G., Size-controlledhydroxyapatite nanoparticles as self-organized organic–inorganic composite materials [J].Biomaterials,2005,26(26):5414-5426.
    [58] Bose S., Saha S. K., Synthesis and characterization of hydroxyapatite nanopowders byemulsion technique [J]. Chem Mater,2003,15(23):4464-4469.
    [59] Wang A., Yin H., Liu D., Wu H., Ren M., Jiang T., Cheng X., Xu Y., Size-controlledsynthesis of hydroxyapatite nanorods in the presence of organic modifiers [J]. Mater Lett,2007,61(10):2084-2088.
    [60] Yeong K. C. B., Wang J., Ng S. C., Mechanochemical synthesis of nanocrystallinehydroxyapatite from CaO and CaHPO4[J]. Biomaterials,2001,22(20):2705-2712.
    [61] Flint E. B., Suslick K. S., The temperature of cavitation [J]. Science,1991,253(5026):1397-1399.
    [62] Yao J., Tjandra W., Chen Y. Z., Tam K. C., Ma J., Soh B., Hydroxyapatite nanostructurematerial derived using cationic surfactant as a template [J]. J Mater Chem,2003,13:3053-3057.
    [63] Jiao Y., Lu G.-Y., Xu W.-H., Zhu R.-F., Preparation and characterization of hollowhydroxyapatite microspheres by the centrifugal spray drying method [J]. Powder Technol,2012,217:581-584.
    [64] Hong Y., Fan H., Li B., Liu M., Zhang X., Fabrication, biological effects, and medicalapplications of calcium phosphate nanoceramics [J]. Mat Sci Eng R,2010,70(3-6):225-242.
    [65]崔福斋,冯庆玲.生物材料学[M].清华大学出版社,2004
    [66] Heuer A. H., Fink D. J., Laraia V. J., Arias J. L., et al., Innovative materials proeessing: abiomimetic approach [J]. Science,1992,28:1098-1105.
    [67]Mann S., Biomineralization and biomimetic materials chemistry [J]. J Mater Chem,1995,5:935-946.
    [68]毛传斌,李恒德,崔福斋,冯庆玲,王浩,无机材料的仿生合成[J].化学进展,1998,10(3):246-254.
    [69]刘莹,赵旭,潘琰,赵敬哲,王子忱,简单方法制备羟基磷灰石中空微球[J].物理化学学报,2009,25(7):1467-1471.
    [70] Guo Y..-J, Wang Y.-Y., Chen T., Wei Y.-T., Chu L.-F., Guo Y.-P., Hollow carbonatedhydroxyapatite microspheres with mesoporous structure: hydrothermal fabrication anddrug delivery property [J]. Mat Sci Eng C,2013,33(6):3166-3172.
    [71] Wang Y., Yao A., Huang W., Wang D., Zhou J., In situ fabrication of hollowhydroxyapatite microspheres by phosphate solution immersion [J]. J Cryst Growth,2011,327(1):245-250.
    [72] Yao A., Ai F., Liu X., Wang D., Huang W., Xu W., Preparation of hollow hydroxyapatitemicrospheres by the conversion of borate glass at near room temperature [J]. Mater ResBull,2010,45(1):25-28.
    [73] Ye F., Guo H., Zhang H., He X., Polymeric micelle-templated synthesis ofhydroxyapatite hollow nanoparticles for a drug delivery system [J]. Acta Biomaterialia,2010,6(6):2212-2218.
    [74] Wang Y., Zhang S., Wei K., Zhao N., Chen J., Wang X., Hydrothermal synthesis ofhydroxyapatite nanopowders using cationic surfactant as a template [J]. Mater Lett,2006,60(12):1484-1487.
    [75] Xiao X., Liu R., Qiu C., Zhu D., Liu F., Biomimetic synthesis of micrometer sphericalhydroxyapatite with β-cyclodextrin as template [J]. Mat Sci Eng C,2009,29(3):785-790.
    [76] Liu G., Zhao D., Tomisa A. P., Minor A. M., Song X., Saiz E., Three-dimensionalbiomimetic mineralization of dense hydrogel templates [J]. J A. Chem Soc,2009,131(29):9937-9939.
    [77] Tjandra W., Ravi P., Yao J., Tam K. C., Synthesis of hollow spherical calcium phosphatenanoparticles using polymeric nanotemplates [J]. Nanotechnology,2006,17(24):5988-5994.
    [78] Neumeier M., Aails L. A., Davis S. A., Mann S., Epple M., Synthesis of fuorescentcore-shell hydroxyapatite nanoparticles [J]. J Mater Chem,2011,21:1250-1254
    [79] Vos M. R. J., Bomans P. H. H., de Haas F., Frederik P. M., Jansen J. A., Nolte R. J. M.,Sommerdijk N. A. J. M., Insights in the Organization of DNA Surfactant MonolayersUsing Cryo-Electron Tomography [J]. J Am Chem Soc,2007,129(39):11894-11895.
    [80] Hagmeyer D., Ganesan K., Ruesing J., Schunk D., Mayer C., Dey A., Sommerdijk N. A.J. M., Epple M., Self-assembly of calcium phosphate nanoparticles into hollow spheresinduced by dissolved amino acids [J]. J Mater Chem,2011,21:9219-9223.
    [81] Mendelson N. H., Production and initial characterization of bionites: materials formed ona bacterial backbone [J]. Science,1992,258:1633-1636.
    [82]Mao C., Flynn C. E., Hayhurst A., Sweeney R., Qi J., Georgiou G., Iverson B., Belcher A.M., Viral assembly of oriented quantum dot nanowires [J]. PNAS,2003,100(12):6946-6951
    [83]刘荣继,李斌何,乃彦,酵母细胞壁介导的SiO2纳米结构材料的合成[J].长春理工大学学报,2006,29(4):87-90.
    [84] Yang S. H., Lee K.-B., Kong B., Kim J.-H., Kim H.-S., Choi I. S., Biomimeticencapsulation of individual cells with silica [J]. Angew Chem Int Edit,2009,48(48):9160-9163.
    [85] Tian X., He W., Cui J., Zhang X., Zhou W., Yan S., Sun X., Han X., Han S., Yue Y.,Mesoporous zirconium phosphate from yeast biotemplate [J]. J Colloid Interf Sci,2010,343(1):344-349.
    [86] Fakhrullin R. F., Minullina R. T., Hybrid cellular-Inorganic core-shell microparticles:encapsulation of individual living cells in calcium carbonate microshells [J]. Langmuir,2009,25(12):6617-6621.
    [87] LeGeros R. Z., Calcium phosphate-based osteoinductive materials [J]. Chem Rev,2008,108(11):4742-4753.
    [88] Yao F., LeGeros J. P., LeGeros R. Z., Simultaneous incorporation of carbonate andfluoride in synthetic apatites: effect on crystallographic and physico-chemical properties[J]. Acta Biomaterialia,2009,5(6):2169-2177.
    [89] Wang L., Nancollas G. H., Calcium orthophosphates: crystallization and dissolution [J].Chem Rev,2008,108(11):4628-4669.
    [90] Gibson I. R., Bonfield W., Preparation and characterization of magnesium/carbonateco-substituted hydroxyapatites [J]. J Mater Sci Mater Med,2002,13(7):7685-7693.
    [91] Laurencin D., Almora-Barrios N., De Leeuw N. H., Gervais C., Bonhomme C., Mauri F.,Chrzanowski W., Knowles J. C., Newport R. J., Wong A., Gan Z., Smith M. E.,Magnesium incorporation into hydroxyapatite [J]. Biomaterials,2011,32(7):1826-1837.
    [92] Percival M., Bone health&osteoporosis [J]. Appl Nutr Sci Rep,1999,5(4):1-5.
    [93] Landi E., Logroscino G., Proietti L., Tampieri A., Sandri M., Sprio S., BiomimeticMg-substituted hydroxyapatite: from synthesis to in vivo behaviour [J]. J Mater SciMater Med,2008,19(1):239-247.
    [94]Witte F., Feyerabend F., Maier P., Fischer J., St rmer M., Blawert C., Dietzel W., Hort N.,Biodegradable magnesium-hydroxyapatite metal matrix composites [J]. Biomaterials,2007,28(13):2163-2174.
    [95] Prasad A. S., Zinc: an overview [J]. Nutrition,1995,11(1):93-99.
    [96] Yamaguchi M., Role of zinc in bone formation and bone resorption [J]. Elem Exp Med,1998,11(2-3):119-135.
    [97] Ito A., Kawamura H., Ostsuka M., Ikeuchi M., Ohgushi H., Ishikawa K., Onuma K.,Kanzaki N., Sogo Y., Ichinose N., Zinc-releasing calcium phosphate for stimulating boneformation [J]. Materials Science and Engineering C,2002,22(1):21-25.
    [98] Velard F., Laurent-Maquin D., Braux J., Guillaume C., Bouthors S., Jallot E., NedelecJ.-M., Belaaouaj A., Laquerriere P., The effect of zinc on hydroxyapatite-mediatedactivation of human polymorphonuclear neutrophils and bone implant-associated acuteinflammation [J]. Biomaterials,2010,31(8):2001-2009.
    [99] Dahl S. G., Allain P., Marie P. J., Mauras Y., Boivin G., Ammann P., Tsouderos Y.,Delmas P. D., Incorporation and distribution of strontium in bone [J]. Bone,2001,28(4):446-453.
    [100] Dagang G., Kewei X., Yong H., The influence of Sr doses on the in vitrobiocompatibility and in vivo degradability of single-phase Sr-incorporated HAP cement[J]. J. Biomed Mater Res,2008,86A(4):947-958.
    [101] Marie P. J., Strontium ranelate: a novel mode of action optimizing bone formation andresorption [J]. Osteoporos Int,2005,16(1): S7-S10.
    [102] Reginster J. Y., Bruyère O., Sawicki A., Roces-Varela A., Fardellone P., Roberts A.,Devogelaer J. P., Long-term treatment of postmenopausal osteoporosis with strontiumranelate: Results at8years [J]. Bone,2009,45(6):1059-1064.
    [103] Seeman E., Boonen S., Borgstr m F., Vellas B., Aquino J.-P., Semler J., BenhamouC.-L., Kaufman J.-M., Reginster J.-Y., Five years treatment with strontiumranelate reduces vertebral and nonvertebral fractures and increases the number andquality of remaining life-years in women over80years of age [J]. Bone,2010,46(4):1038-1042,
    [104] Christoffersen J., Christoffersen M. R., Kolthoff N., et al. Effects of Strontium Ions onGrowth and Dissolution of Hydroxyapatite and on Bone Mineral Detection [J]. Bone,1997,20(1):47-54.
    [105] Pan H. B., Li Z. Y., Lam W. M., et al. Solubility of strontium-substituted apatite bysolid titration [J]. Acta Biomaterialia,2009,5(5):1678-1685.
    [106] Bigi A., Boanini E., Capuccini C., et al. Strontium-substituted hydroxyapatitenanocrystals [J]. Inorg Chim Acta,2007,360(3):1009-1016.
    [107] Capuccini C., Torricelli P., Boanini E., et al. Interaction of Sr-doped hydroxyapatitenanocrystals with osteoclast and osteoblast-like cells [J]. J Biomed Mater Res A,2009,89(3):594-600.
    [108] Wong C. T., Lu W. W., Chan W. K., et al. In vivo cancellous bone remodeling on astrontium-containing hydroxyapatite (sr-HA) bioactive cement [J]. J Biomed Mater ResA,2004,68(3):513-521.
    [109] Saint-Jean S. J., Camire C. L., Nevsten P., et al. Study of the reactivity and in vitrobioactivity of Sr-substituted α-TCP cements [J]. J Mater Sci-Mater M,2005,16(11):993-1001.
    [110] Kanna S., Goetz-Neunhoeffer F., Neubauer J., Pina S., Torres P. M. C., Ferreira J. M. F.,Synthesis and structural characterization of strontium-and magnesium-co-substitutedb-tricalcium phosphate [J]. Acta Biomaterialia,2010,6(2):571-576.
    [111] Chung C.-J., Long H.-Y., Systematic strontium substitution in hydroxyapatite coatingson titanium via micro-arc treatment and their osteoblast/osteoclast responses [J]. ActaBiomaterialia,2011,7(11):4081-4087.
    [112] Xiao Y., Du J., Effect of strontium substitution on the structure of45S5bioglasses [J].Chem Mater,2011,23(11):2703-2717.
    [113] Bigi A., Foresti E., Gandolfi M., Gazzano M., Roveri N., Isomorphous substitutions inbeta-tricalcium phosphate: The different effects of zinc and strontium [J]. J InorgBiochem,1997,66(4):259-265.
    [114] Alkhraisat M. H., Moseke C., Blanco L., Barralet J. E., Lopez-Carbacos E., Gbureck U.,Strontium modified biocements with zero order release kinetics [J]. Biomaterials,2008,29(35):4691-4697.
    [115] Kannan S., Pina S., Ferreira J. M. F., Formation of strontium-stabilized b-tricalciumphosphate from calcium-deficient apatite [J]. J Am Ceram Soc,2006,89(10):3277-3280.
    [116] Braux J, Velard F, Guillaume C, et al. A new insight into the dissociating effect ofstrontium on bone resorption and formation [J]. Acta Biomaterialia,2011,7(6):2593-2603.
    [117] Hench L. L., Bioceramices: from concept to clinic [J]. J Am Ceram Soc,1991,74(7):1487-1510.
    [118] Nukavarapu S. P., Kumbar S. G., Brown J. L., Krogman N. R., Weikel A. L., et al.,Polyphosphazene/nano-hydroxyapatite composite microsphere scaffolds for bone tissueengineering [J]. Biomacromolecules,2008,9(7):1818-1825.
    [119] Hutchens S. A., Benson R. S, Evans B. R, et al. Biomimetic synthesis ofcalcium-deficient hydroxyapatite in a natural hydrogel [J]. Biomaterials,2006,27(26):4661–4670.
    [120] Mann S., Molecular tectonics in biomineralization and biomimetic materials [J]. Nature,1993,365(7):499-505.
    [121] Wang A.-J., Lu Y.-P., Sun R.-X., Recent progress on the fabrication of hollowmicrospheres [J]. Mat Sci Eng A-Struct,2007,460-461:1-6.
    [122] Yang S. H., Choi I. S., Bio-inspired silicification on patterned surfaces generated bymicrocontact printing and layer-by-layer self-Assembly [J]. Chem Asian J,2009,4:382-385.
    [123] Wang B., Liu P., Jiang W, et al. Yeast cells with an artificial mineral shell: protectionand modification of living cells by biomimetic mineralization [J]. Angew Chem Int Edit,2008,47:3560-3564.
    [124]杨汝德,现代工业微生物学教程[J].北京:高等教育出版社,2006.
    [125] Valtchev V., Mintova S., Layer-by-layer preparation of zeolite coatings of nanosizedcrystals [J]. Micropor Mesopor Mat,2001,43(1):41-49.
    [126] Kriwet B., Kissel T., Interactions between bioadhesive poly(acrylic acid) and calciumions [J]. Int J Pharm,1996,127(2):135-145.
    [127]王亚雄,郭瑾珑,刘瑞霞,微生物吸附剂对重金属的吸附特性[J].环境科学,2001,22(6):72-75
    [128] Huang S.-C., Naka K., Chujo Y., A carbonate controlled-addition method for amorphouscalcium carbonate spheres stabilized by poly(acrylic acid)s [J]. Langmuir,2007,23(24):12086-12095.
    [129] Briak-BenAbdeslam H. E., Mochales C., Ginebra M. P., Nurit J., Planell J. A.,Boudeville P., Dry mechanochemical synthesis of hydroxyapatites from dicalciumphosphate dihydrate and calcium oxide: a kinetic study [J]. J Biomed Mater Res,2003,67A(3):927-937.
    [130]王德平,王璐,黄文曰, pH值对化学沉淀法制备纳米羟基磷灰石的影响[J].同济大学学报(自然科学版),2005,33(1):93-98.
    [131] Padmavathy V., Vasudevan P., Dhingra S. C., Thermal and spectroscopic studies onsorption of nickel(II) ion on protonated baker's yeast [J]. Chemosphere,2003,52(10):1807-1817.
    [132] Burattini E., Cavagna M., Dell’Anna R., Malvezzi Campeggi F., Monti F., Rossi F.,Torriani S., A FTIR microspectroscopy study of autolysis in cells of the wine yeastSaccharomyces cerevisiae [J]. Vib Spectrosc,2008,47(2):139-147.
    [133] Nazeeruddin Md. K., Humphry-Baker R., Berner D., Rivier S., Zuppiroli L., GraetzelM., Highly phosphorescence iridium complexes and their application in organiclight-emitting devices [J]. J Am Chem Soc,2003,125(29):8790-8797.
    [134] Yao F., LeGeros J. P., LeGeros R. Z., Simultaneous incorporation of carbonate andfluoride in synthetic apatites: Effect on crystallographic and physico-chemical properties[J]. Acta Biomaterialia,2009,5(6):2169-2177.
    [135] Kumar R., Prakash K. H., Cheang P., Khor K. A., Temperature driven morphologicalchanges of chemically precipitated hydroxyapatite nanoparticles [J]. Langmuir,2004,20(13):5196-5200.
    [136] Posner A. S., Crystal chemistry of bone mineral [J]. Bone Mineral Chemistry,1969,49(4):760-792.
    [137] Stockton W. B., Rubner M. F., Molecular-level processing of conjugated polymers.4. Layer-by-layer manipulation of polyaniline via hydrogen-bonding interactions [J].Macromolecules,1997,30(9):2717-2725.
    [138] Wong P. T., Wong R. K., Caputo T. A., Godwin T. A., Rigas B., Infrared spectroscopy ofexfoliated human cervical cells: Evidence of extensive structural changes duringcarcinogenesis [J]. Proc Nati Acad Sci USA,1991,88(24):10988-10992.
    [139] Tjandra W., Yao J., Ravi P., Tam K. C., Alamsjah A., Nanotemplating of calciumphosphate using a double-hydrophilic block copolymer [J]. Chem Mater,2005,17(19):4865-4872.
    [140] McAloney R. A., Goh M. C., In situ investigation of polyelectrolyte film formation bysecond harmonic generation [J]. J Physical Chem B,1999,103(49):10729-10732.
    [141] Sukhishvili S. A., Granick S., Layered, erasable polymer multilayers formed byhydrogen-bonded sequential self-assembly [J]. Macromolecules,2002,35(1):301-310.
    [142]车心如,界面与胶体化学[M].中国铁道出版社,2012.
    [143] Yoshida K., Hashide R., Ishii T., Takahashi S., Sato K., Anzai J., Layer-by-layer filmscomposed of poly(allylamine) and insulin for pH-triggered release of insulin [J]. ColloidSurface B,2012,91(1):274-279.
    [144] Kainourgios P., Efthimiadou E. K., Tziveleka L.-A., Pappas G. S., Boukos N., Kordas G.,Comparative study of LbL and crosslinked pH sensitive PEGylated LbL microspheres:Synthesis, characterization and biological evaluation [J]. Colloid Surface B,2013,104(1):91-98.
    [145] de Viliers M. M., Otto D. P., Strydom S. J., Lvov Y. M., Introduction to nanocoatingsproduced by layer-by-layer (LbL) self-assembly [J]. Adv Drug Deliver Rev,2011,63(9):701-715.
    [146]闻立时,固体材料界面研究的物理基础[M].科学出版社,2011.
    [147] Tas A. C., Synthesis of biomimetic Ca-hydroxyapatite powders at37degrees C insynthetic body fluids [J]. Biomaterials,2000,21(14):1429-1438.
    [148] Pang Y. X., Bao X., Influence of temperature, ripening time and calcination on themorphology and crystallinity of hydroxyapatite nanoparticles [J]. J Eur Ceram Soc,2003,23(10):1697-1704.
    [149]张志杰,材料物理化学[M].化学工业出版社,2006.
    [150]胡志强,无机材料科学基础教程[M].化学工业出版社,2004.
    [151] O’Donnell M.D., Fredholm Y., de Rouffignac A., Hill R. G., Structural analysis of aseries of strontium-substituted apatites [J]. Acta Biomaterialia,2008,4(5):1455-1464.
    [152] Obadia L., Deniard P., Alonso B., et al. Effect of sodium doping in b-tricalciumphosphate on its structure and properties [J]. Chem Mater,2006,18(6):1425-1433.
    [153] Kim H.-W., Koh Y.-H., Kong Y.-M., Kang J.-G., Kim H.-E., Strontium substitutedcalcium phosphate biphasic ceramics obtained by a powder precipitation method [J]. JMater Sci-Mater M,2004,15(10):1129-1134.
    [154] Gustin M. C., Zhou X. L., Martinac B., Kung C., A mechanosensitive ion channel in theyeast plasma membrane [J]. Science,1988,242(4879):762-765.
    [155]孙敬亮,赵瑞雪,郑笑秋,啤酒酵母对Pb2+的生物吸附研究[J].长春理工大学学报,2006,29(4):97-83.
    [156]韩润平,蒋海涛,陆雍森,酵母菌对Cr(VI)的生物吸附作用[J].环境保护科学,2001,27(104):28-30.
    [157]陆雍森,韩蒋.酵母菌对Cr(Ⅵ)的生物吸附作用[J].环境保护科学,2001,27(104):28-33.
    [158] Terra J., Dourado E. R., Eon J.-G., Ellis D. E., Gonzalez G., Rossi A. M., The structureof strontium-doped hydroxyapatite: an experimental and theoretical study [J]. Phy ChemChem Phys,2009,11(3):568-577.
    [159] Collins Y. E., Stotzky G., Heavy metals alter the electrokinetic properties of bacteria,yeasts, and clay Minerals [J]. Appl Environ Microbiol,1992,58(5):1592-1600.
    [160] Li Z. Y., Lam W. M., Yang C., Xu B., Ni G. X., Abbah S. A., Cheung K. M. C., Luk K.D. K., Lu W. W., Chemical composition, crystal size and lattice structural changes afterincorporation of strontium into biomimetic apatite [J]. Biomaterials,2007,28(7):1452-1460.
    [161]吴宝平,陶树兴,酵母菌最适合生长条件和自溶条件研究[J].陕西师范大学学报,2004,32:81-85.
    [162]何秀萍,刘增然,刘春秀,张博润,酵母菌细胞自溶突变株的研究[J].微生物学报,2003,43:283-287.
    [163]曹谊林,组织工程学[M].科学出版社,2008.
    [164] Doillon C. J., Silver F. H., Berg R. A., Fibroblast growth on a porous collagen spongecontaining hyaluronic acid and fibronectin [J]. Biomaterials,1987,8(3):195-200.
    [165] Globus R. K., Doty S. B., Lull J. C., et al. Fibronectin is a survival factor fordifferentiated osteoblasts [J]. J Cell Sci,1998,111(10):1385-1393.
    [166] Wang S., Cukierman E., Swaim W. D., et al. Extracellular matrix protein-inducedchanges in human salivary epithelial cell organization and proliferation on a modelbiological substratum [J]. Biomaterials,1999,20(11):1043-1049.
    [167] Dewez J. L., Doren A., Schneider Y. J., et al. Competitive adsorption of proteins: Key ofthe relationship between substratum surface properties and adhesion of epithelial cell [J].Biomaterials,1999,20(6):547-559.
    [168] Tze-Man K., Jui-Che L., Cooper S. L., Surface characterization and platelet adhesionstudies of plasma-sulphonated polyethylene [J]. Biomaterials,1993,14(9):657-664.
    [169] Kokubo T., Takadama H., How useful is SBF in predicting in vivo bone bioactivity?[J].Biomaterials,2006,27(15):2907-2915.
    [170] Müller L., Müller F. A., Preparation of SBF with different HCO3-content and itsinfluence on the composition of biomimetic apatites [J]. Acta Biomaterialia,2006,2(2):181-189.
    [171] Pan H. B., Darvell B. W., Solubility of TTCP and β-TCP by solid titration [J]. Arch OralBiol,2009,54(7):671-677.
    [172] Heslop D.D., Bi Y., Baig A.A., Otsuka M., Higuchi W.I., A comparative study of themetastable equilibrium solubility behavior of high-crystallinity and low-crystallinitycarbonated apatites using pH and solution strontium as independent variables [J]. JColloid and Interf Sci,2005,289(1):14-25
    [173] Costa P., Sousa Lobo J. M. Modeling and comparison of dissolution profiles [J]. Eur JPharm Sci,2001,13(2):123-133.
    [174] Siepmann J., Peppas N. A., Modeling of drug release from delivery systems based onhydroxypropyl methylcellulose (HPMC)[J]. Adv Drug Deliver Rev,2012,64:163-174.
    [175] Adams E., Coomans D., Smeyers-Verbeke J., et al. Non-linear mixed effects models forthe evaluation of dissolution profiles [J]. International Journal of Pharmaceutics,2002,240(1):37-53.
    [176]高权星, Pickering乳液模板法制备超结构有机/无机杂化微球[M].华南理工大学博士学位论文,2010,30-36.
    [177] Kosmidis K., Argyrakis P., Macheras P., A reappraisal of drug release laws using MonteCarlo simulations: the prevalence of the Weibull function [J]. Pharm Res,2003,20(7):988-995.
    [178] Papadopoulou V., Kosmidis K., Vlachou M., et al. On the use of the Weibull functionfor the discernment of drug release mechanisms [J]. Int J Pharm,2006,309(1):44-50.
    [179] Tang R., Wu W., Haas M., et al. Kinetics of dissolution of b-Tricalcium phosphate [J].Langmuir,2001,17(11):3480-3485.
    [180] Jungbauer A., Hahn R., Deinhofer K., et al. Performance and characterization of ananophased porous hydroxyapatite for protein chromatography [J]. Biotechnnol andBioeng,2004,87(3):364-375.
    [181] Kandori K., Saito M., Takebe T., et al. Adsorption of Bovine Serum Albumin onSynthetic Carbonate Calcium Hydroxyapatite [J]. J Colloid Interf Sci,1995,174(1):124-129.
    [182] Wassell D. T. H., Hall R. C., Embery G., Adsorption of bovine serum albumin ontohydroxyapatite.[J]. Biomaterials,1995,16(9):697-702.
    [183] Tarafder S., Banerjee S., Bandyopadhyay A., et al. Electrically polarized biphasiccalcium phosphates: Adsorption and release of bovine serum albumin [J]. Langmuir,2010,26(22):16625-16629.
    [184] Dasgupta S., Banerjee S. S., Bandyopadhyay A., et al. Zn-and Mg-dopedhydroxyapatite nanoparticles for controlled release of protein [J]. Langmuir,2010,26(7):4958-4964.
    [185]沈卫,顾燕芳,刘昌胜,孙祥明,胡黎明,羟基磷灰石的表面特性[J].硅酸盐通报1996,1:45-52.
    [186] Kwon S. H., Jun Y. K., Hong S. H., et al. Synthesis and dissolution behavior of β-TCPand HA/β-TCP composite powders [J]. J Eur Ceram Soc,2003,23(7):1039-1045.
    [187] Ohta K., Monma H., Takahashi S., Adsorption characteristics of proteins on calciumphosphates using liquid chromatography [J]. J Biomed Mater Res,2001,55(3):409-414.
    [188] Kay M. I., Young R. A., Posner A. S., Crystal structure of hydroxyapatite [J]. Nature,1964,204:1050-1052.
    [189] Wassell D. T. H., Hall R. C., Embery G., Adsorption of bovine serum albumin ontohydroxyapatite [J]. Biomaterials,1995,16(9):697-702.
    [190]叶锋,安英格,秦德志,杨林,佘岚,邢瑞敏,羟基磷灰石结晶对牛血清白蛋白二级结构影响的光谱研究[J].光谱学与光谱分析,2007,27(2):321-324.
    [191] Kandori K., Saito M., Saito H., Yasukawa A., Ishikawa T., Adsorption of proteinonnon-stoichiometric calcium-strontium hydroxyapatite [J]. Coll Surf A: Phychem EngAspects,1995,94(2-3):225-230.
    [192] Bosma J. C., Wesselingh J. A., pH dependence of ion-exchange equilibrium ofproteins [J]. AIChE Journal,1998,44(11):2399-2409.
    [193]肖凤娟,张颖,王少辉,高峻峰,硅掺杂羟基磷灰石生物活性微粉对人血清白蛋白的吸附特性[J].复合材料学报,2009,26(2):149-154.
    [194] Khoshniat S., Bourgine A., Julien M., et al. Phosphate-dependent stimulation of MGPand OPN expression in osteoblasts via the ERK1/2pathway is modulated by calcium [J].Bone,2011,48(4):894-902.
    [195] Nakamura S., Matsumoto T., Sasaki J. I., et al. Effect of calcium ion concentrations onosteogenic differentiation and hematopoietic stem cell niche-related protein expression inosteoblasts [J]. Tissue Eng A,2010,16(8):2467-2473.
    [196] Kanaya S., Nemoto E., Ebe Y., et al. Elevated extracellular calcium increases fibroblast growth factor-2gene and protein expression levels via a cAMP/PKA dependentpathway in cementoblasts [J]. Bone,2010,47(3):564-572.
    [197] Chai Y. C., Roberts S. J., Schrooten J., et al. Probing the osteoinductive effect ofcalcium phosphate by using an in vitro biomimetic model [J]. Tissue Eng Part A,2010,17(7):1083-1097.
    [198] Cai Y., Tang R., Calcium phosphate nanoparticles in biomineralization and biomaterials[J]. Journal of Materials Chemistry,2008,18(32):3775-3787.
    [199] Koempel J. A., Patt B. S., O'Grady K., et al. The effect of recombinant human bonemorphogenetic protein-2on the integration of porous hydroxyapatite implants with bone[J]. J Biomed Mater Res,1998,41(3):359-363.
    [200] Deligianni D. D., Katsala N. D., Koutsoukos P. G., et al. Effect of surface roughness ofhydroxyapatite on human bone marrowcell adhesion, proliferation, differentiation anddetachment strength [J]. Biomaterials,2001,22(1):87-96.
    [201] Barradas A., Fernandes H. A. M., Groen N., et al. A calcium-induced signalingcascade leading to osteogenic differentiation of human bone marrow-derived mesenchymal stromal cells [J]. Biomaterials,2012,33(11):3205-3215.
    [202] Nielsen S. P., The biological role of strontium [J]. Bone,2004,35(3):583-588.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700