用户名: 密码: 验证码:
铁尾矿砂自密实水泥基材料性能试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着资源能源问题的日益突出,采用现代工业废弃物取代天然不可再生资源进行水泥基材料生产需要进行深入研究,以消除或减轻对环境的严重影响将成为水泥基新材料研究的一个重点领域。本文以安徽霍邱特大型铁矿的尾矿砂作为自密实水泥基材料部分细骨料为研究背景,通过试验,系统地研究了水泥基净浆、水泥基砂浆以及自密实混凝土性能。探索铁尾矿砂自密实水泥基材料存在的内部特征以及提高其性能的科学研究方法,对于铁尾矿砂自密实水泥基材料的研究与应用具有重大的现实意义。本文通过对铁尾矿砂自密实水泥基材料的研究得出以下结论:
     1、通过宏观性能指标并结合微观技术手段,本文对于配制铁尾矿砂自密实水泥基材料的原材料进行了深入分析,给出了各组成成分的宏观技术指标,采用能谱分析(EDS)对于原材料进行了定性、半定量的元素组成分析,并采用X射线衍射分析(XRD)手段对各原材料进行了组成物相分析,为铁尾矿砂自密实水泥基材料性能研究提供基础。
     2、研究了铁尾矿砂水泥基砂浆和铁尾矿砂自密实混凝土的流变性能宏观表现特征(工作性能)。以一组普通水泥基砂浆为研究基准,铁尾矿砂取代率、水胶比为变量,研究铁尾矿砂水泥基砂浆的工作性能,结果显示,铁尾矿砂取代率为40%的铁尾矿砂水泥基砂浆(简称IM-2)与普通水泥基砂浆(简称M-I)的工作性能指标值相近,具有较好的性能;以铁尾矿砂取代率作为配合比设计变量,并对比普通型自密实混凝土,铁尾矿砂自密实混凝土的工作性能评价采用动态稳定试验和静态稳定试验,综合评价铁尾矿砂自密实混凝土的工作性能,试验结果显示,铁尾矿砂掺量为40%的自密实混凝土(简称ISCC-2)与普通自密实混凝土(简称SCC-1)具有良好的工作性能。
     3、首次系统地进行了铁尾矿砂水泥基砂浆和铁尾矿砂自密实混凝土的流变性试验研究。推导了Bingham流体模型和Herschel-Bulkley流体模型的库尔特逆问题积分和完整的求解流变本构模型过程。试验结果表明,水泥基砂浆拌合物流变曲线符合非线性特征,符合Herschel-Bulkley流体模型,在相同时间点时,在剪切速率相同的条件下,IM-2的剪切应力更小:自密实混凝土拌合物的流变曲线符合线性特征,符合Bingham流体模型,在相同时间点时,在剪切速率相同的条件下,ISCC-2的剪切应力稍大。
     4、系统地进行了铁尾矿砂水泥基材料基本力学性能试验,试验结果表明,掺入特细天然砂的净浆和掺入铁尾矿砂的净浆在抗压强度随龄期变化的强度,前者高于后者,而抗折强度则相反,后者高于前者:水泥基砂浆抗压强度早期强度发展较快,其中M-1、IM-2的1d强度超过了20MPa;普通型自密实混凝土与铁尾矿砂自密实混凝土抗压强度随龄期变化增长趋势亦相似,早期强度发展可分为三个阶段:快速发展期、平稳过渡期、稳定增长期等三个强度发展区域。轴压比表现为SCC-1、ISCC-2均大于0.80,表现为高强混凝土的性质。弹性模量试验研究表明,当抗压强度偏低,未达到高强混凝土范围时,铁尾矿砂自密实混凝土弹性模量与普通混凝土相似,当铁尾矿砂自密实混凝土抗压强度达到高强混凝土范围时,采用自密实混凝土弹性模量计算公式进行数据拟合对比,结果最为接近,但当抗压强度继续增长时,其曲线偏低,已经不适用于铁尾矿砂自密实混凝土。
     5、研究了普通自密实混凝土和不同铁尾矿砂取代率的铁尾矿砂自密实混凝土的耐久性能。在碳化时间发展指数b和混凝土周围CO2浓度C一定的条件下,碳化速率系数a反映了自密实混凝土碳化深度随碳化时间变化情况,即SCC-1和ISCC-2的碳化速率相近;根据Tang提出氯离子扩散系数标准,SCC-1和ISCC-2在标准养护7d、28d和56d之后氯离子抗渗性试验结果均满足抗氯离子侵蚀性能较好等级。
     6、采用压汞测孔法(MIP)系统地研究了水泥基净浆和水泥基砂浆的微细观孔隙特征参数以及孔隙体积分形维数。三种水泥基净浆孔隙特征参数随龄期变化特点没有明显的规律性;水泥基砂浆各特征参数随龄期变化无明显突变,说明材料性能的稳定性。加天然砂的SCC-1与掺加40%铁尾矿砂的ISCC-2孔隙结构特征参数表现数据较为接近,说明加入铁尾矿砂后,其微观孔隙结构并未发生明显劣化趋势。本文水泥基材料的孔隙结构分布可以用三个阶段的参数描述,即微孔阶段的分形维数,大孔阶段的分形维数和过渡阶段的孔隙特征参数。
     7、采用扫描电镜(SEM)、X射线能谱分析(EDS)和X射线衍射分析(XRD)的方法,研究了三种水泥基净浆和两种自密实混凝土随龄期变化的微观形貌、水化产物的特点、微观缺陷、C-S-H凝胶能谱定性或半定量分析以及物相分析。
     三种净浆和两种自密实混凝土主要水化产物的早期微观形貌具有相似的特点。引入原子率(Atomic ratio)的概念,采用Ca/Si原子率和(Al+Fe)/Ca原子率的比值反应微区全谱扫描水化硅酸钙凝胶晶体的结构致密性。在界面过渡区,两种配比的自密实混凝土均表现出明显偏高的Ca/Si原子率,与水泥浆基体存在明显的差别,随着龄期的增长,界面过渡区的宽度在逐渐减小,同时ISCC-2的界面过渡区宽度总体偏小于同龄期的SCC-1的宽度。从水化过程来看,铁尾矿砂物相中,发现了铁尾矿砂中的某一种或几种物质参与水泥浆基体水化过程,致使水化过程中铁尾矿砂的物相衍射峰发生明显变化。
The research, modern industrial waste used in the preparation of cement-based materials to eliminate or mitigate a serious impact on the environment, will become a focus area. Based on the reality of a large number of abandoned iron mine tailings produced from Huoqiu iron ore in Anhui province, the iron mine tailings was used as fine aggregate to replace part of the natural sand for self-compacting cement-based materials.The properites of iron mine tailings self-compacting cement-based materials were studies by the tests in this paper. The corresponding research works were summarized as follows:
     1. Raw materials of self-compacting cement-based materials were analyzed by Analysis of macroscopic features and microscopic techniques.The research contents were as follows:1) Analysis of macro-technical indicators;2) Qualitative and semi-quantitative analysis of raw materials were carried out by X-ray spectroscopy analysis(EDS);3) Phase analysis of raw materials was carried out by X-ray diffraction (XRD). The results can provide a basis for the properties of iron mine tailings self-compacting cement-based materials.
     2. The workability of iron mine tailings cement-based grouting material(IM) was studied with iron mine tailings ratio and water-binder ratio as variables.The results showed that performance index values of the workability for IM-2and M-lwere better than the others. The dynamic stability test and the static stability test were used the workability evaluation of iron mine tailings self-compacting concrete (ISCC) and self-compacting concrete (SCC). The results showed that ISCC-2and SCC-1had good work performances.
     3. Rheologies of IM and ISCC were first studies by the test methods in China.The Couette inverse problems for a Bingham fluid:"Reiner-Riwlin" equation and a Herschel-Bulkley fluid were derived by integration approach. The results showed that rheological curves of cement-based grouting material can meet Herschel-Bulkley fluid constitutive model with nonlinear characteristics, and IM-2had smaller shear stress than M-1when shear rates had the same values at the same point in time. Rheological curves of self-compacting concrete can meet Bingham fluid constitutive model with linear characteristics, and ISCC-2had greater shear stress than SCC-1when shear rates had the same values at the same point in time.
     4. Basic mechanical properites of iron mine tailings self-compacting cement-based materials were studies in different ages. The results showed that compressive strength of paste containing extre-fine natural sand was greater than paste containing iron mine tailings in different ages, but flexural strength had the opposite characteristics. Early compressive strength of cement-based grouting material rapid developed, and compressive strength of IM-2and M-1were more than 20MPa in one day age. There were similar growth laws for compressive strength of ISCC and SCC with ages, and the early strength development can be divided into three stages:the rapid development, the smooth transition and the steady growth.
     5. Carbonation resistance and anti-chloride penetration of ISCC and SCC has been studied to be used to reflect the durability. The results showed that carbonation ratesof ISCC-2and SCC-1were similar and had good performance of anti-chloride penetration.
     6. Pore characteristics and pore fractal dimension of cement-based paste and self-compacting concrete were studied by the mercury intrusion porosimetry (MIP) method. The results showed that pore characteristic parameters of three cement-based pastes change with can not find out apparent regularity. The test data of ISCC-2and SCC-1on pore characteristic parameters were close; the results showed that the microscopic pore structure of ISCC-2was not obvious deterioration trend after iron mine tailings added.
     7. Morphology, hydration products and micro-defects of three cement-based and two types of self-compacting concrete were investigated with ages by SEM, EDS and XRD, and the C-S-H gel was analyzed. The results showed that there were similar characteristics for early morphology of hydration products of three cement-based and two types of self-compacting concrete. Based on the phase analysis of the hydration products, new material has been found out when iron mine tailings involved in the hydration process.
引文
[1]朱胜元.尾矿综合利用是实现我国矿业可持续发展的重要途径[J].铜陵财经专科学校学报,2000(1):38-40.
    [21中国冶金建设协会.水泥基灌浆材料应用技术规范(GB/T50448-2008)[S].北京:中国计划出版社,2008.
    [3]Yahia A., Khayat, K. H., Analytical models for estimating yield stress of high-performance pseudoplastic grout [J], Cement and Concrete Research.2001,31:731-738.
    [4]Rice G., Miles, N., Farris, S., Approaches to control the quality of cementitious PFA grouts for nuclear waste encapsulation [J], Powder Technology.2007,174:56-59.
    [5]Mirza J., Mirza, M. S., Basic rheological and mechanical properties of high-volume fly ash grouts [J], Construction and Building Materials.2002,16:353-363.
    [6]Sahmaran M., Ozkan, N., Keskin, S. B., Uzal, B., et al. Evaluation of natural zeolite as a viscosity-modifying agent for cement-based grouts [J], Cement and Concrete Research.2008, 38:930-937.
    [7]Yahia A., Khayat, K. H., Experiment design to evaluate interaction of high-range water- reducer and antiwashout admixture in high-performance cement grout [J], Cement and Concrete Research. 2001,31:749-757.
    [8]Jamal Shannag M., High-performance cementitious grouts for structural repair [J], Cement and Concrete Research.2002,32:803-808.
    [9]Huang W. H., Improving the properties of cement-fly ash grout using fiber and superplasticizer [J], Cement and Concrete Research.2001,32:1033-1041.
    [10]Svermova L., Sonebi, M., Bartos Peter, J. M., Influence of mix proportions on rheology of cement grouts containing limestone powder[J], Cement & Concrete Composites.2003,25:737-749.
    [11]Krishnamoorthy T. S., Gopalakrishnan, S., Balasubramanian, K., Bharatkumar, B.H., Rama Mohan Rao, P., Investigations on the cementitious grouts containing supplementary cementitious materials[J], Cement and Concrete Research.2002,32:1395-1405.
    [12]Allan, Marita L., Materials characterization of superplasticized cement-sand grout[J], Cement and Concrete Research.2000,30:937-942.
    [13]Ozcan Tan, Sahin Zaimoglu, A., Sinan Hinislioglu, Selim Sltun, Taguchi approach for optimization of the bleeding on cement-based grouts[J], Tunnelling and Underground Space Technology,2005,20:167-173.
    [14]龙广成,孙振平.新型高性能水泥基灌浆料的研究[J],建筑石膏与胶凝材料,2005,3:32-34.
    [15]黄政宇,钱峰.DSP早强高强灌浆料综合性能研究[J],湖南大学学报,2009,36(8):18-22.
    [16]Okamura, H., Ouchi, M., Self-compacting concrete:development, present use and future. In: SKARENDAHL A, PETERSSONO eds. Proceedings of 1st International RILEM Symposium on Self-Compacting Concrete[C]. Paris:RILEM Publication SARL,1999.3-14.
    [17]Ozawa, K., Maekawa, K., Kunishima M., et al. Development of high performance concrete based on the durability design of concrete structures[C]. The Second East-Asia and Pacific Concrete on Structural Engineering and Construction (EASEC-2), Tokyo, Japan,1989.445-450.
    [18]Bartos, J. M., Testing-SCC:towards new European Standards for fresh SCC. In:Yu Zhiwu, Shi Caijun, Khayat K.H, et al eds. Proceedings of 1st International Symposium on Design, Performance and Use of Self-Consolidating Concrete[C]. Paris:RILEM Publication SARL, 2005.25-46.
    [19]Sven, M., Asmus, F., Yang J., State of the art admixtures for high performance SCC in China. In:Yu Zhiwu, Shi Caijun, Khayat K.H, et al eds. Proceedings of 1st International Symposium on Design, Performance and Use of Self-consolidating Concrete [C]. Paris:RILEM Publication SARL, 2005.129-136.
    [20]Bennenk, W., SCC-an excellent concrete for the pre-cast industry. In:YU Zhiwu, SHI Caijun, KHAYAT K.H, et al eds. Proceedings of 1st International Symposium on Design, Performance and Use of Self-Consolidating Concrete[C]. Paris:RILEM Publication SARL,2005.581-588.
    [21]Corinaldesi, V., Moriconi, G., Tittarelli, F., SCC:a way to sustainable construction development. In:Yu Zhiwu, Shi Caijun, Khayat, K.H, et al eds. Proceedings of 1st International Symposium on Design, Performance and Use of Self-Consolidating Concrete[C]. Paris:RILEM Publication SARL,2005.599-605.
    [22]刘小洁,余志武.自密实混凝土的研究与应用综述[J].铁道科学与工程学报,2006,3(2):6-10.
    [23]翁友法,吕家良.自密实混凝土的研究现状及其发展方向[J].中国港湾建设,2002(2):16-18.
    [24]C.S. Poon, D.W.S. Ho. A feasibility study on the utilization of r-FA in SCC[J]. Cement and Concrete Research,34(2004) 2337-2339.
    [25]K.E. Alyamac, R. Ince. A preliminary concrete mix design for SCC with marble powders[J]. Construction and Building Materials.23(2009)1201-1210.
    [26]P. Dinakar, K.G. Babu, Manu Santhanam. Durability properties of high volume fly ash self compacting concretes[J]. Cement & Concrete Composites 30(2008)880-886.
    [27]O. Boukendakdji, S. Kenai, E.H.Kadri, F. Roris. Effect of slag on the rheology of fresh self-compacted concrete[J]. Construction and Building Materials 2009,1-6.
    [28]B. Felekoglu, S. Turkel, B. Baradan. Effect of water/cement ratio on the fresh and hardened properties of self-compacting concrete[J], Building and Environment 42(2007)1795-1802.
    [29]Mustafa Sahmaran, I. Ozgur Yaman. Hybrid fiber reinforced self-compacting concrete with a high-volume coarse fly ash[J], Construction and Building Materials 21(2007)150-156.
    [30]E. Ozbay, A. Oztas, A. Baykasoglu, H. Ozbebek. Investigating mix proportions of high strength self-compacting concrete by using Taguchi method[J]. Construction and Building Materials 23(2009)694-702.
    [31]Z.J. Grdic, GA. Toplicic-Curcic, I.M. Despotovic, N.S. Ristic. Properties of self-compacting concrete prepared with coarse recycled concrete aggregate[J], Construction and Building Materials 24(2010)1129-1133.
    [32]E. Guneyisi, M. Gesoglu, E. Ozbay. Strength and drying shrinkage properties of self-compacting concretes incorporating multi-system blended mineral admixtures[J], Construction and Building Materials 24(2010)1878-1887.
    [33]Jamal Shannag, M., High-performance cementitious grouts for structural repair[J], Cement and Concrete Research.2002,32:803-808.
    [34]Buia, V. K., Montgomeryb, D., Hinczakc, I., et al. Rapid testing method for segregation resistance of self-compacting concrete[J]. Cem Concr Res,2002,32(9):1489-1496.
    [35]Sonebi, M., Rooney, M., Bartos, P. J. M., Evaluation of the segregation resistance of fresh self-compacting concrete using different test methods. In:Yu Zhiwu, Shi Caijun, Khayat, K..H, et al eds. Proceedings of 1st International Symposium on Design, Performance and Use of Self-Consolidating Concrete[C]. Paris:RILEM Publication SARL,2005.301-308.
    [36]A.U. Elinwa, S.P. Ejeh, A.M. Mamuda. Assessing of the fresh concrete properties of self-compacting concrete containing sawdust ash[J], Construction and Building Materials 22(2008)1178-1182.
    [37]O. Boukendakdji, S. Kenai, E.H. Kadri, F. Rouis. Effect of slag on the rheology of fresh self-compacted concrete[J], Construction and Building Materials 2009,1-6.
    [38]B. Sukumar, K. Nagamani, R. Srinivasa Raghavan. Evaluation of strength at early ages of self-compacting concrete with high volume fly ash[J], Construction and Building Materials 22(2008)1394-1401.
    [39]Y. Ding, S. Liu, Y. Zhang, A.Thomas. The investigation on the workability of fiber cocktail reinforced self-compacting high performance concrete[J], Construction and Building Materials 22(2008)1462-1470.
    [40]M. Sahmaran, A. Yurtseven, I.O. Yaman. Workability of hybrid fiber reinforced self-compacting concrete[J], Building and Environment 40(2005)1672-1677.
    [41]Z. Wu, Y. Zhang, J. Zheng, Y. Ding. An experimental study on the workability of self-compacting lightweight concrete[J], Construction and Building Materials 23(2009)2087-2092.
    [42]X. Wang, P. He, J. Guo. An experimental study on workability of dry-mixed self-compacting concrete[J]. Advanced Materials Research, Switzerland.
    [43]J. M.Bartos. Testing-SCC:towards new European Standards for fresh SCC. In:Yu Zhiwu, Shi Caijun, Khayat K.H, et al eds. Proceedings of 1st International Symposium on Design, Performance and Use of Self-Consolidating Concrete[C]. Paris:RILEM Publication SARL,2005.25-46.
    [44]朱洪波,马保国,王信刚.C80自密实混凝土的体积稳定性及渗透性研究[c],高强与高性能混凝土及其应用专题研讨会论文集.
    [45]曹鹏飞,秦鸿根,庞超明.掺石灰石粉自密实混凝土性能的研究[C],高强与高性能混凝土及其应用专题研讨会论文集.
    [46]刘吴.粗骨料对自密实混凝土性能影响的试验研究[J],商品混凝土,2008(1):15-18.
    [47]吴勇,吴芳.高强自密实混次轻混凝土工作性能研究[J],混凝土,220(2)2008:43-46.
    [48]唐伟.高强自密实混凝土的试验研究[J],四川建筑科学研究,31(2)2005:110-112.
    [49]陶津,赵桂祥,袁勇,姚勇,曹阳.高强自密实混凝土工作性能及配合比优化研究[J],施工技术,2005(34)增刊:31-34.
    [50]丁一宁,王岳华,董香军,张峻翔.纤维自密实高性能混凝土工作度的试验研究[J].土木工程学报,38(11)2005:51-57.
    [51]龙广成,谢友均,刘运华,马昆林.自密实混凝土工作性测试方法[J].硅酸盐学报,35(10)2007:1359-1363.
    [52]陈丽华,叶燕华,缪汉良,杜艳静.自密实混凝土工作性能试验[J],南京工业大学学报,30(3)2008::47-51.
    [53]宁严庆,刘华良,石建军.自密实混凝土间隙通过能力检测技术研究[J],南华大学学报,21(4)2007:69-71.
    [54]王国杰,郑建岚,李轶慧.新拌自密实混凝上工作性测试方法的评价与探讨[J].福州大学学报:2005,S1:177-181
    [55]梅世龙,蒋正武,孙振平.骨料对自密实混凝土性能的影响[J].建筑技术:2007,38(1):53-55.
    [56]B. Persson. A comparison between mechanical properties of self-compacting concrete and the corresponding properties of normal concrete[J], Cement and Concrete Research 31(2001):193-198.
    [57]P.L. Domone. A review of the hardened mechanical properties of self-compacting concrete[J], Cement & Concrete Composites 29(2007):1-12.
    [58]Y.W. Choi, YJ. Kim, H.C. Shin, H.Y. Moon. An experimental research on the fluidity and mechanical properties of high-strength lightweight self-compacting concrete[J], Cement and Concrete Research 36(2006):1595-1602.
    [59]I. Turkmen, A. Kantarcl. Effects of expanded perlite aggregate and different curing conditions on the physical and mechanical properties of self-compacting concrete[J], Building and Environment 42(2007):2378-2383.
    [60]B. Sukumar, K. Nagamani, R.S. Raghavan. Evaluation of strength at early ages of self-compacting concrete with high volume fly ash[J], Construction and Building Materials 22(2008):1394-1401.
    [61]I.B. Topcu, T. Bilir. Experimental investigation of some fresh and hardened properties of rubberized self-compacting concrete[J], Materials and Design 2009:1-10.
    [62]A.Turatsinze, M. Garros. On the modulus of elasticity and strain capacity of self-compacting concrete incorporating rubber aggregates[J], Resources conservation and recycling 52(2008)1209-1215.
    [63]J.M. Khatib. Performance of self-compacting concrete containing fly ash[J], Construction and Building Materials 22(2008)1963-1971.
    [64]H. Mazaheripour, S.Ghanbarpour, S.H. Mirmoradi, I. Hosseinpour. The effect of polypropylene fibers on the properties of fresh and hardened lightweight self-compacting concrete[J], Construction and Building Materials 2010:1-8.
    [65]C. Parra, M. Valcuende, F. Gomez. Splitting tensile strength and modulus of elasticity of self-compacting concrete[J], Construction and Building Materials 2010:1-7.
    [66]欧阳华林,苏祖平.C50免振自密实混凝土耐久性及长期性能的试验研究[J].混凝土:2006,199(5):60-63.
    [67]闫峰.低强度等级自密实混凝土的抗拉性能试验[J],混凝土,211(5)2005:36-40.
    [68]何沛祥,汪秀石.干拌自密实混凝土单轴受压及变形性能试验研究[J],工程力学,200926(增刊I):094-097,103.
    [69]何沛祥,汪秀石.干拌自密实混凝土力学性能研究及其相关性分析[J],合肥工业大学学报,31(12)2008:2016-2019.
    [70]Peixiang He, X. Wang, Jianguo Wang. Evaluation of mechanical properties at early ages of dry-mixed self-compacting concrete[J], Advanced Materials Research, Switzerland.
    [71]X. Wang, P. He. Statistical Analysis on Basic Mechanical Properties of Dry-mixed Self-compacting Concrete[C], WECT2010.
    [72]赵文兰,汤寄予.自密实混凝土的力学性能研究[J],四川建筑科学研究,32(2)2006:142-144.
    [73]赵文兰,赵军.自密实混凝土的应力-应变关系[J],人民黄河,28(7)2006:61-62.
    [74]胡琼,颜伟华,郑文忠.自密实混凝土基本力学性能试验研究[J].工业建筑,38(10)2008:90-93.
    [75]胡琼,颜伟华,郑文忠.自密实混凝土应力-应变全曲线方程[J].低温建筑技术,125(5)2008:70-72.
    [76]陶津,赵桂祥,袁勇.自密实混凝土早期力学性能研究[J].商品混凝土,2005(6):6-10.
    [77]王振军,张思宇,王笑风.自密实轻骨料混凝土力学性能试验研究[J].南昌大学学报,28(1)2006:83-86.
    [78]张国庆,宁金香,倪淑娜,郑涛,钟丽,易岳林,褚东升.自密实再生骨料混凝土试验研究[J].混凝土,226(8)2008:59-64.
    [79]丁一宁,董香军,王岳华.混杂纤维自密实混凝土的强度和抗弯韧性.建筑材料学报:2005, 8(3):294-298.
    [80]Ding, Y., Kusterle, W., Comparative study of steel fiber-deformation behavior of steel fiber reinforced concrete beams[J]. ACI Structural Journal, v 89, n 6, Nov-Dec,1992, p 650-657.
    [81]张根俞,丁一宁,梁书亭.玻璃纤维与混杂纤维自密实混凝土的工作性和强度试验研究[J].混凝土,2006,198(4):43-45.
    [82]刘晓英.钢纤维在自密实混凝土中的应用研究[J].煤炭技术,2008,27(2):112-1]4.
    [83]刘竞,邓德华,赵腾龙.聚丙烯纤维自密实高性能混凝土的配制及性能研究[J].混凝土与水泥制品,2007,6:38-42.
    [84]Holschemacher K., Kiog, Y., Pull-out behavior of steel fibers in self compacting concrete. In: Yu Zhiwu, Shi Caijun, Khayat, K. H., et al eds. Proceedings of 1st International Symposium on Design, Performance and Use of Self-Consolidating Concrete[C]. Paris:RILEM Publication SARL, 2005.523-532.
    [85]张国庆,宁金香等.自密实再生骨料混凝土试验研究[J].混凝土,2008,226(8):59-63.
    [86]李悦,张丽慧.自密实微膨胀钢管混凝土的研制与应用[J].北京工业大学学报,2005,31(5):496-499.
    [87]Okamura, H., Self-compacting high performance concrete[J]. Concrete international,1997, 19(7):50-54.
    [88]Ho, D. W. S., Sheinn, A. M. M., Tam C T.The sandwich concept of construction with SCC[J]. Cement and Concrete Research 2001,31:1377-1381.
    [89]仲朝明,邵正明,王晓丰,仲晓林.高速铁路桥梁盆式橡胶支座灌浆料的研制及应用[J].铁道建筑,2009(10):18-21.
    [90]王铭勇,苏延芬.HSGM-A高强微膨胀灌浆料在王滩电厂工程中的应用[J].武汉大学学报(工学版),2007(40)增刊:512-514.
    [91]王仙云,林国学,肇雅坤CGM-1灌浆料在包钢连铸工程二次灌浆中的应用[J].包钢科技,2005(31):75-77.
    [92]安同富,刘建江等.自密实混凝土在国家体育馆工程中的研究及应用[J].混凝土:2008,225(7):83-86.
    [93]刘霞,吴冬,王兴辉.自密实混凝土在国家体育场的研究和应用[J].混凝土:2008,219(1):107-109.
    [94]高志华,陈勇.自密实混凝土在三峡电源电站工程中的应用[J].人民长江:2007,38(3):38-39.
    [95]宫虹.自密实混凝土在青藏铁路的应用[J].广东建材:2006,11:27-28.
    [96]王宏芳,赵军等.自密实混凝土在滨海会展中心的应用[J].低温建筑技术:2008,125(5):102-103.
    [97]陈波,张亚梅.自密实混凝土在苏通大桥承台封底中的应用[J].混凝土与水泥制品:2005,4:17-19.
    [98]李克亮,陈健等.自密实混凝土在润扬长江大桥中的应用[J].混凝土:2005,183(1):69-71.
    [99]朱效荣,李迁.自密实大体积混凝土在国家大剧院超长环梁中的研究与应用[J].辽宁建材:2005,1:8-10.
    [100]蔡基伟,张少波,侯桂香等.铁尾矿砂对混凝土工作性和强度的影响[J].武汉理工大学学报:2009,31(7):104-107.
    [101]陈家珑,宋少民,路宏波.尾矿配制商品混凝土的应用研究[J].建筑技术:2004,35(1):42-44.
    [102]徐宝华,宋姗.尾矿砂复配在混凝土生产中的研究及应用[J].商品混凝土:2010(1):23-25.
    [103]封孝信,蔡基伟,柴红俊,宋裕增.尾矿砂石混凝土的干缩性能研究[J].商品混凝土:2009(8):29-31.
    [104]邓初首,夏勇.尾矿砂在大流动性混凝土中的应用研究[J].矿冶工程:2009,30(1):9-12.
    [105]何兆芳,邓初首.尾矿在预拌混凝土中应用的试验研究[J]混凝土:2009,239(9):115-118.
    [106]郑永超,倪文,郭珍妮等.铁尾矿制备高强结构材料的试验研究[J].新型建筑材料:2009(3):4-6.
    [107]Magnus Eriksson, Martina Friedrich, Christoph Vorschulze, Variations in the rheology and penetrability of cement-based grouts-an experimental study[J], Cement and Concrete Research.2004,34:1111-1119.
    [108]Mohammed Sonebi, Rheological properties of grouts with viscosity modifying agents as diutan gum and welan gum incorporating pulverized fly ash[J], Cement and Concrete Research.2006,36:1609-1618.
    [109]Yahia A., Khayat, K. H., Analytical models for estimating yield stress of high-performance pseudoplastic grout[J], Cement and Concrete Research.2001,31:731-738.
    [110]Mirza J., Mirza, M. S., Basic rheological and mechanical properties of high-volume fly ash grouts[J], Construction and Building Materials.2002,16:353-363.
    [111]Sahmaran M., Ozkan N., Keskin, S. B., Uzal, B., et al. Evaluation of natural zeolite as a viscosity-modifying agent for cement-based grouts[J], Cement and Concrete Research.2008,38:930-937.
    [112]Svermova L., Sonebi, M., Bartos Peter, J. M., Influence of mix proportions on rheology of cement grouts containing limestone powder[J], Cement & Concrete Composites.2003,25:737-749.
    [113]Rosquoet F., Alexis, A., Khelidj, A., Phelipot, A., Experimental study of cement grout:Rheological behavior and sedimentation[J], Cement and Concrete Research.2003,33:713-722.
    [114]Dimitri Feys, Ronny Verhoeven, Geert De Schutter. Fresh self compacting concrete, a shear thickening material[J], Cement and Concrete Research.2008,38:920-929.
    [115]潘雨,巴恒静,闫贵平.超塑化剂对混凝土流变性能的影响[J].武汉理工大学学报:2003,25(3):23-26.
    [116]尚建丽,李晓光.高性能复合胶凝材料流变性试验研究[J].建筑材料学报:2000,3(3):279-283.
    [117]赵庆新,杜艳廷,李春雨,张永建.自密实砂浆工作性测试方法研究[J].武汉理工大学学报:2009,31(7):9-12.
    [118]赵庆新,杜艳廷.自密实砂浆工作性“沉球法”表征参数研究[J].硅酸盐学报:2010,38(9): 1776-1781.
    [119]杜新光,金先龙,陈向东.基于流固耦合的新拌混凝土流动及变形仿真方法[J].上海交通大学学报:2008,42(12):1993-1996.
    [120]汪廷秀,高建明,丁平华等.干湿交替作用下混凝土抗硫酸盐侵蚀性能研究[J].混凝土与水泥制品:2011(2):17-21.
    [121]龚灵力.自密实混凝土性能及混凝土多场耦合时变性分析研究[D].浙江大学博士论文,2010.
    [122]曾丽娟.干拌自密实混凝土耐久性的试验研究[D].南京林业大学硕士论文,2009.
    [123]谷坤鹏,王成启,时蓓玲.高性能灌浆料抗氯离子侵蚀性能研究[J].工业建筑:2008,38(8):59-63.
    [124]王海娜,金南国,王科元.自密实混凝土抗氯离子渗透性及碳化性能研究[J].混凝土:2010,246(4):37-39.
    [125]Wenzhong Zhu, Peter J.M. Bartos. Permeation properties of self-compacting concrete[J], Cement and Concrete Research.2003,33:921-926.
    [126]Stephan Assie, Gilles Escadeilles, Vincent Waller. Estimates of self-compacting concrete "potential" durability[J]. Construction and Building Materials,2007(21):1909-1917.
    [127]Amr S. El-Dieb. Mechanical, durability and microstructural characteristics of ultra-high-strength self-compacting concrete incorporating steel fibers[J]. Materials and Design, 2009(30):4286-4292.
    [128]P. Dinakar, K.G Babu, Manu Santhanam. Durability properties of high volume fly ash self compacting concretes [J]. Cement and Concrete Composites,2008(30):880-886.
    [129]Assem A.A. Hassan, Mohamed Lachemi, Khandaker M.A. Hossain. Effect of metakaolin and silica fume on the durability of self-consolidating concrete[J]. Cement and Concrete Composites, 2012(34):801-807.
    [130]M. Valcuende, C. Parra. Natural carbonation of self-compacting concretes[J]. Construction and Building Materials,2010(24):848-853.
    [131]Prokopski G., Halbiniak J. Interfacial transition zone in cementitious materials [J]. Cement Concrete Research,2000(30):579-583.
    [132]Diamond S., Huang J. The ITZ in concrete-a different view based on image analysis and SEM observations [J]. Cement and Concrete Composites,2001(23):179-188.
    [133]Leemann A., Munch B., Gasser P., et al. Influence of compaction on the interfacial transition zone and the permeability of concrete[J]. Cement Concrete Research,2006:1425-1433.
    [134]Nadeau J C. A multiscale model for effective moduli of concrete incorporating ITZ water-cement ratio gradients, aggregate size distributions, and entrapped voids [J]. Cement Concrete Research,2003(33):103-113.
    [135]余红发,刘俊龙,张云升等.高性能混凝土微观结构及其高耐久性形成机理[J].南京航空航天大学学报,2007,39(2):240-243.
    [136]董淑慧,张宝生,葛勇,郑秀华.轻骨料-水泥石界面区微观结构特征[J].建筑材料学报,2009,12(6):737-741.
    [137]王宝民.纳米Si02高性能混凝土性能及机理研究[D].大连理工大学,博士学位论文,2009.
    [138]谢友均.超细粉煤灰高性能混凝土的研究与应用[D].中南大学,博士学位论文,2006.
    [139]安明喆,王军民,崔宁,马亚峰.活性粉末混凝土的微观结构研究[J].低温建筑技术,2007,117(3):1-3.
    [140]崔宏志,邢锋.用SEM和FT-IR研究轻骨料混凝土界面过渡区[J].混凝土,2010,243(1):18-20.
    [141]Dimitri Feys, Ronny Verhoeve, Geert De Schutter. Fresh self compacting concrete, a shear thickening material[J]. Cement Concrete Research,2008(38):920-929.
    [142]Dimitri Feys, Ronny Verhoeve, Geert De Schutter. Evaluation of time-independent Theological models applicable to fresh self compacting concrete[J], Applied Rheology 17 (5) (2007) 56244.
    [143]Dimitri Feys, Ronny Verhoeve, Geert De Schutter. Why is fresh self-compacting concrete shear thickening[J]. Cement Concrete Research,2009(39):510-523.
    [144]祁振庆.新拌水泥砂浆与混凝土流变参数测定仪[J].混凝土与水泥制品,1992(2):20-21.
    [145]陈建中.用旋转叶片式流变仪测定新拌混凝土流变性能[J].上海建材学院学报.1992,5(3):164-173.
    [146]巴恒静,潘雨,杨英姿.矿物细掺料对高性能混凝土流变性能的影响[J].哈尔滨建筑大学学报.2002,35(6):49-54.
    [147]潘雨,巴恒静.商品混凝土流变特性的测定[J].混凝土.2001,141(7):12-14.
    [139]European Project Group. Specification and guidelines for self-compacting concrete[S]. EFNARC, UK, May,2005.
    [148]Japanese Society of Civil Engineering. Guide to construction of high flowing concrete [S]. Tokyo:Gihoudou Pub,1998.
    [149]J.E. Wallevik, Thixotropic investigation on cement paste:experimental and numerical approach[J]. J. Non-Newton. Fluid Mech.2005,132 (1-3):86-99.
    [150]M. Keentok, J.F. Milthorpe, E. O'Donovan, On the shearing zone around rotating vanes in plastic liquids:theory and experiment[J]. J. Non-Newton. Fluid Mech.1985,17 (1):23-25.
    [151]J. Yan, A.E. James, The yield surface of viscoelastic and plastic fluids in a vane viscometer[J]. J. Non-Newton. Fluid Mech.1997,70 (3):237-253.
    [152]H.A. Barnes, Q.D. Nguyen, Rotating vane rheometry - a review[J]. J. Non-Newton.Fluid Mech.2001,98(1):1-14.
    [153]Y. Yeow, W. Ko, P. Tang, Solving the inverse problem of Couette viscometry by Tikhonov regularization[J]. J. Rheol.2000,44 (6):1335-1351.
    [154]C. Ancey, Solving the Couette inverse problem using a wavelet-vaguelette decomposition[J]. J. Rheol.2005,49 (2):441-460.
    [155]M. Sahmaran, N. Ozkan, S.B. Keskin, B. Uzal, l.O. Yaman c, T.K. Erdem. Evaluation of natural zeolite as a viscosity-modifying agent for cement-based grouts[J]. Cement Concrete Research,2008(38):930-937.
    [156]中国建筑科学研究院.《普通混凝土力学性能试验方法标准》(GB/T 50081-2002)[S].北京:中国建筑工业出版社,2003.4.
    [157]过镇海,时旭东.钢筋混凝土原理和分析[M].北京:清华大学出版社,2003.12.
    [158]滕智明.钢筋混凝土基本构件[M].北京:清华大学出版社,1987.
    [159]王传志,滕智明.钢筋混凝土结构理论[M].北京:中国建筑工业出版社,1985.
    [160]ACI Committee 318, Building code requirements for reinforced concrete(ACI 318-83)[S].Detroit:American Concrete Institute,1983:111.
    [161]Committee Euro-International du Beton, CEB-FIP Model Code 1990 design code[S]. London: Thomas Telford Services Ltd,1993.
    [162]ACI Committee 318, Building Code Requirements for Structural Concrete, ACI 318-2002[S]. American Concrete Institute, Farmington Hills, Michigan,2002.
    [163]ACI Committee 363, State-of-the-Art Report on High Strength Concrete, ACI 363 [S]. American Concrete Institute, Farmington Hills, Michigan,1992.
    [164]吴中伟,廉慧珍.高性能混凝土[M].第二版,北京:中国铁道出版社,1999.
    [165]王元丰,梁亚平.高性能混凝土的弹性模量与泊松比[J].北方交通大学学报,2004,28(1):5-8.
    [166]中国建筑科学研究院.混凝土结构设计规范[S].中国建筑工业出版社,2010.
    [167]ACI Committee 209. Prediction of creep, shrinkage and temperature effects in concrete structure[S]. Manual of concrete practice, Part 1. American Concrete Institute,209R 1-92,1992.
    [168]成厚昌.高性能混凝土的力学性能研究[J].重庆建筑大学学报,1999,21(3):74-77.
    [169]赵军,高丹盈.高性能自密实混凝土的力学及变形性能试验研究[J].中外公路,2006.4(2):161-165.
    [170]汪秀石.干拌自密实混凝土基本力学性能试验研究[D].合肥工业大学硕士学位论文,2007.
    [171]沈旦申.粉煤灰混凝土[M].北京:中国铁道出版社,1989.
    [172]陈树亮.混凝土碳化机理、影响因素及预测模型[J].水利电力科技,2010,36(2):13-23.
    [173]金伟良,赵羽习.混凝土结构耐久性[M].北京:科学出版社,2002.
    [174]张誉,蒋利学,张伟平等.混凝土结构耐久性概论[M].上海:上海科学技术出版社,2003.
    [175]冯乃谦.氯离子渗透与高性能混凝土[J].施工技术,1995(8):44-45.
    [176]Mehta P K.混凝土的结构、性能与材料[M1.祝永年,沈威,陈志源译.上海:同济大学出版社,1991.
    [177]ASTM C1202-94. Standard test methods for electrical indication of concrete ability to resist chloride ion penetration[S].1994.
    [178]Tang Luping, Nilsson L. O. Rapid determination of the chloride diffusivity in concrete by applying an electric field [J]. ACI Materials Journal.1992,89(1):49-53.
    [179]廉慧珍,童良,陈恩义.建筑材料物相研究基础[M].北京:清华大学出版社,1996.
    [180]T.C.Powers. Structure and physical properties of harden Portland cement[J]. Journal of the American Ceramic Society.1985:4(1):1-6.
    [181]刘培生,马晓明.多孔材料检测方法[M].北京:冶金工业出版社,2006.
    [182]Guang Ye, Hu J, Breugel K.Van, et al. Characterization of the development of microstructure and porosity of cement-based material by numerical simulation and ESEM image analysis[J]. Material and Structures,2002,35(10):603-613.
    [183]孙国文,孙伟,蒋金洋,王彩辉.水泥基复合材料有效孔隙的试验研究与定量表征[J].工业建筑,2010,40(11):98-101.
    [184]冯竟竟.水泥基材料高温微细观劣化与损伤过程的试验研究[D].北京:中国矿业大学(北京),2009.5.
    [185]唐明.混凝土材料分形特征及应用研究[D].哈尔滨:哈尔滨工业大学材料科学与工程学院.2003.
    [186]谢和平.分形-岩石力学导论[M].北京:科学出版社.1997.
    [187]宋军伟,方坤河,刘冬梅,陈霞.压汞测孔评价磷渣-水泥浆体材料孔隙分形特征的试验[J].武汉大学学报(工学版),2008,41(6):41-45.
    [188]Shah S. P., Wang K., Weiss J. Mixture proportioning for durable concrete[J]. Concrete International.2000,9:73-78.
    [189]安然,王清远,闫慧群等.高温后混凝土力学性能研究[J].工程结构,2005,25(6):69-72.
    [190]韦江雄,余其俊,曾小星,白瑞英.混凝土中孔结构的分形维数研究[J].华南理工大学学报,2007,35(2):121-124.
    [191]李永鑫,陈益民,贺行洋等.粉煤灰-水泥浆体的孔体积分形维数及其与孔结构和强度的关系[J].硅酸盐学报,2003,31(8):774-779.
    [1921王宝民.纳米SiO2高性能混凝土性能及机理研究[D].大连理工大学,2009.
    [193]廉慧珍,童良,陈恩义.建筑材料物相研究基础[M].北京:清华大学出版社,1996.
    [194]黄大能,沈威.新拌混凝土的结构和流变特征[M].北京:中国建筑工业出版社,1983.
    [195]徐亦冬,张利娟,陆云龙.粉煤灰、矿渣及硅灰对水泥胶砂流动性及早期强度的影响[J]. 混凝土,2005,191(9):39-41.
    [196]杨静,覃维祖.粉煤灰对高性能混凝土强度的影响[J].建筑材料学报,1999,3(2):218-222.
    [197]徐雪峰,陈葆,刘梦溪.谈粉煤灰掺量对混凝土强度的影响[J].江苏煤炭,2004,1:63-64.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700